Combinatorial polynomials and enumeration of trees
- Authors: Balagura A.A.1, Kuzmin O.V.1
-
Affiliations:
- Иркутский государственный университет
- Issue: Vol 214 (2022)
- Pages: 21-29
- Section: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/271750
- DOI: https://doi.org/10.36535/0233-6723-2022-214-21-29
- ID: 271750
Cite item
Full Text
Abstract
In this paper, enumeration properties of combinatorial composition polynomials that generalize B-polynomials are used for the generalized enumeration of the set of trees.
Keywords
About the authors
A. A. Balagura
Иркутский государственный университет
Author for correspondence.
Email: irk25@rambler.ru
Russian Federation, Иркутск
O. V. Kuzmin
Иркутский государственный университет
Email: quzminov@mail.ru
Russian Federation, Иркутск
References
- Балагура А. А., Кузьмин О. В. Перечислительные свойства комбинаторных полиномов разбиений// Дискр. анал. исслед. опер. — 2011. — 18, № 1. — С. 3-14.
- Кузьмин О. В. Обобщенные пирамиды Паскаля и их приложения. — Новосибирск: Наука, 2000.
- Balagura A. A., Kuzmin O. V. Encoding and decoding algorithms for unlabeled trees// J. Phys. Conf. Ser. — 2021. — 1847. — 012027.
- Balagura A. A., Kuzmin O. V. Generalised Pascal pyramids and their reciprocals// Discr. Math. Appl. — 2007. — 17, № 6. — P. 619-628.
- Chow C.-O, Mansour T. On the real-rootedness of generalized Touchard polynomials// Appl. Math. Com- put. — 2015. — 254. — P. 204-209.
- Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A. Partially ordered sets and combinatory objects of the pyramidal structure// Adv. Appl. Discr. Math. — 2019. — 20, № 2. — P. 229-236.
- Kuzmin O. V., Leonova O. V. On analytical conjugacy of Touchard polynomials and the polynomials quasi-orthogonal to them// Discr. Math. Appl. — 2002. — 12, № 1. — P. 97-103.
- Kuzmin O. V., Seregina M. V. Plane sections of the generalised Pascal pyramid and their interpretations// Discr. Math. Appl. — 2010. — 20, № 4. — P. 377-389.
- Kuzmin O. V., S’tarkov B. A. Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal’s triangle in route building problems// J. Phys. Conf. Ser. — 2021. — 1847. — 012030.
- Marcellan F., Jabee S., Shadab M. Analytical properties of Touchard-based hybrid polynomials via operational techniques// Bull. Malaysian Math. Sci. Soc. — 2021. — 44, № 1. — P. 223-242.
- Mihoubi M, Maamra M. S. Touchard polynomials, partial Bell polynomials and polynomials of binomial type// J. Phys. Conf. Ser. — 2011. — 14, № 3. — 11.3.1.
- Stanley R. Enumerated Combinatorics. Vol. 2. — Cambridge: Cambridge Univ. Press, 2005.
Supplementary files
