Полиномиальные автоморфизмы, квантование и задачи вокруг гипотезы Якобиана. III. Автоморфизмы, топология пополнения и аппроксимация
- Авторы: Елишев А.М.1, Канель-Белов А.Я.1, Разавиния Ф.1, Юй Ц.2, Чжан В.3
-
Учреждения:
- Московский физико-технический институт (национальный исследовательский университет)
- Шэньчженьский университет
- Университет Хуэйчжоу
- Выпуск: Том 215 (2022)
- Страницы: 95-128
- Раздел: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/269992
- DOI: https://doi.org/10.36535/0233-6723-2022-215-95-128
- ID: 269992
Цитировать
Полный текст
Аннотация
Работа является третьей частью обзора результатов, касающихся квантового подхода к некоторым классическим аспектам некоммутативных алгебр. Первая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 213.—С. 110–144. Вторая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 214. — С. 107–126. Продолжение будет опубликовано в следующих выпусках.
Ключевые слова
Об авторах
Андрей Михайлович Елишев
Московский физико-технический институт (национальный исследовательский университет)
Автор, ответственный за переписку.
Email: ame1511@mail.ru
Россия, Москва
Алексей Яковлевич Канель-Белов
Московский физико-технический институт (национальный исследовательский университет)
Email: kanelster@gmail.com
Россия, Москва
Ф. Разавиния
Московский физико-технический институт (национальный исследовательский университет)
Email: farrokh.razavinia@gmail.com
Россия, Москва
Ц.-Т. Юй
Шэньчженьский университет
Email: yujt@hkucc.hku.hk
Китай, Шэньчжень
В. Чжан
Университет Хуэйчжоу
Email: zhangwc@hzu.edu.cn
Школа математики и статистики
Китай, ХуэйчжоуСписок литературы
- Abdesselam A. The Jacobian conjecture as a problem of perturbative quantum field theory// Ann. H. Poincaré. — 2003. — 4, № 2. — P. 199–215.
- Abhyankar S., Moh T. Embedding of the line in the plane// J. Reine Angew. Math. — 1975. — 276.— P. 148–166.
- Amitsur S. A. Algebras over infinite fields// Proc. Am. Math. Soc. — 1956. — 7. — P. 35–48.
- Amitsur S. A. A general theory of radicals, III. Applications// Am. J. Math. — 1954. — 75. — P. 126–136.
- Alev J., Le Bruyn L. Automorphisms of generic 2 by 2 matrices// in: Perspectives in Ring Theory. —Springer, 1988. — P. 69–83.
- Amitsur A. S., Levitzki J. Minimal identities for algebras// Proc. Am. Math. Soc. — 1950. — 1.— P. 449–463.
- Amitsur A. S., Levitzki J. Remarks on minimal identities for algebras// Proc. Am. Math. Soc. — 1951.— 2. — P. 320–327.
- Anick D. J. Limits of tame automorphisms of k[x1,...,xn]// J. Algebra. — 1983. — 82, № 2. — P. 459–468.
- Artamonov V. A. Projective metabelian groups and Lie algebras// Izv. Math. — 1978. — 12, №2.—С. 213–223.
- Artamonov V. A. Projective modules over universal enveloping algebras// Math. USSR Izv. — 1985. —25, № 3. — С. 429.
- Artamonov V. A. Nilpotence, projectivity, decomposability// Sib. Math. J. — 1991. — 32, № 6. — С. 901–909.
- Artamonov V. A. The quantum Serre problem// Russ. Math. Surv. — 1998. — 53, № 4. — С. 3–77.
- Artamonov V. A. Automorphisms and derivations of quantum polynomials// in: Recent Advances in Lie Theory (Bajo I., Sanmartin E., eds.). — Heldermann Verlag, 2002. — P. 109–120.
- Artamonov V. A. Generalized derivations of quantum plane// J. Math. Sci. — 2005. — 131,№5. —С. 5904–5918.
- Artamonov V. A. Quantum polynomials in: Advances in Algebra and Combinatorics. — Singapore: World Scientific, 2008. — P. 19–34.
- Artin M. Noncommutative Rings. — Preprint, 1999.
- Arzhantsev I., Kuyumzhiyan K., Zaidenberg M. Infinite transitivity, finite generation, and Demazure roots// Adv. Math. — 2019. — 351. — P. 1–32.
- Asanuma T. Non-linearizable algebraic k∗-actions on affine spaces. — Preprint, 1996.
- Backelin E. Endomorphisms of quantized Weyl algebras// Lett. Math. Phys. — 2011. — 97, № 3. — P. 317–338.
- Bass H. A non-triangular action of Ga on A3// J. Pure Appl. Algebra. — 1984. — 33, № 1. — P. 1–5.
- Bass H., Connell E. H., Wright D. The Jacobian conjecture: reduction of degree and formal expansion of the inverse// Bull. Am. Math. Soc. — 1982. — 7, № 2. — P. 287–330.
- Bavula V. V. A question of Rentschler and the Dixmier problem// Ann. Math. (2). — 2001. — 154, № 3.— P. 683–702.
- Bavula V. V. Generalized Weyl algebras and diskew polynomial rings/ arXiv: 1612.08941 [math.RA].
- Bavula V. V. The group of automorphisms of the Lie algebra of derivations of a polynomial algebra// J. Alg. Appl. — 2017. — 16, № 5. — 1750088.
- Bavula V. V. The groups of automorphisms of the Lie algebras of formally analytic vector fields with constant divergence// C. R. Math. — 2014. — 352, № 2. — P. 85–88.
- Bavula V. V. The inversion formulae for automorphisms of Weyl algebras and polynomial algebras// J. Pure Appl. Algebra. — 2007. — 210. — P. 147–159.
- Bavula V. V. The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic// J. Pure Appl. Algebra. — 2008. — 212, № 10. — P. 2320–2337.
- Bavula V. V. An analogue of the conjecture of Dixmier is true for the algebra of polynomial integro-differential operators// J. Algebra. — 2012. — 372. — P. 237–250.
- Bavula V. V. Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an au-thomorphism// C. R. Acad. Sci. Paris. Ser. 1. — 2012. — 350, № 11–12. — P. 553–556.
- Bavula V. V. The Jacobian conjecture2n implies the Dixmier problemn/ arXiv: math/0512250[math.RA].
- Beauville A., Colliot-Thelene J.-L., Sansuc J.-J., and Swinnerton-Dyer P. Varietes stablement rationnelles non rationnelles// Ann. Math. — 1985. — 121. — P. 283–318.
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D. Deformation theory and quantization. I. Deformations of symplectic structures// Ann. Phys. — 1978. — 111, № 1. — P. 61–110.
- Belov A. Linear recurrence equations on a tree// Math. Notes. — 2005. — 78, № 5. — С. 603–609.
- Belov A. Local finite basis property and local representability of varieties of associative rings.// Izv. Math.— 2010. — 74. — С. 1–126.
- Belov A., Bokut L., Rowen L., Yu J.-T. The Jacobian conjecture, together with Specht and Burnside-type problems// in: Automorphisms in Birational and Affine Geometry. — Springer, 2014. — P. 249–285.
- Belov A., Makar-Limanov L., Yu J. T. On the generalised cancellation conjecture// J. Algebra. — 2004.— 281. — P. 161–166.
- Belov A., Rowen L. H., Vishne U. Structure of Zariski-closed algebras// Trans. Am. Math. Soc. — 2012.— 362. — P. 4695–4734.
- Belov-Kanel A., Yu J.-T. On the lifting of the Nagata automorphism// Selecta Math. — 2011. — 17.— P. 935–945.
- Kanel-Belov A., Berzins A., Lipyanski R. Automorphisms of the semigroup of endomorphisms of free associative algebras// Int. J. Algebra Comp. — 2007. — 17, № 5/6. — P. 923–939.
- Belov-Kanel A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteristic// J. Algebra Appl. — 2016. — 15, № 8. — 1650155.
- Belov-Kanel A., Kontsevich M. Automorphisms of the Weyl algebra// Lett. Math. Phys. — 2005. — 74,№ 2. — P. 181–199.
- Belov-Kanel A., Kontsevich M. The Jacobian conjecture is stably equivalent to the Dixmier conjecture//Moscow Math. J. — 2007. — 7, № 2. — С. 209–218.
- Belov-Kanel A., Lipyanski R. Automorphisms of the endomorphism semigroup of a polynomial algebra// J. Algebra. — 2011. — 333, № 1. — P. 40–54.
- Belov-Kanel A., Yu J.-T. Stable tameness of automorphisms of F x, y, z fixing z// Selecta Math. — 2012.— 18. — P. 799–802.
- Bergman G. M. Centralizers in free associative algebras// Trans. Am. Math. Soc. — 1969. — 137.— P. 327–344.
- Bergman G. M. The diamond lemma for ring theory// Adv. Math. — 1978. — 29, № 2. — P. 178–218.
- Berson J., van den Essen A., Wright D. Stable tameness of two-dimensional polynomial automorphisms over a regular ring// Adv. Math. — 2012. — 230. — P. 2176–2197.
- Birman J. An inverse function theorem for free groups// Proc. Am. Math. Soc. — 1973. — 41. — P. 634–638.
- Bonnet P., Vénéreau S. Relations between the leading terms of a polynomial automorphism// J. Algebra.— 2009. — 322, № 2. — P. 579—599.
- Berzins A. The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebras/ arXiv: abs/math/0504015 [math.AG].
- Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, I// Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. — 1966. — 14. — P. 177–181.
- Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, II// Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. — 1967. — 15. — P. 123–125.
- Bialynicki-Birula A. Some theorems on actions of algebraic groups// Ann. Math. — 1973. — 98, № 3. — P. 480–497.
- Bitoun T. The p-support of a holonomic D-module is lagrangian, for p large enough/ arXiv: 1012.4081 [math.AG].
- Bodnarchuk Yu. Every regular automorphism of the affine Cremona group is inner// J. Pure Appl. Algebra.— 2001. — 157. — P. 115–119.
- Bokut L., Zelmanov E. Selected works of A. I. Shirshov. — Springer, 2009.
- Bokut L. A. Embedding Lie algebras into algebraically closed Lie algebras// Algebra Logika. — 1962. — 1.— С. 47–53.
- Bokut L. A. Embedding of algebras into algebraically closed algebras// Dokl. Akad. Nauk. — 1962. — 145,№ 5. — С. 963–964.
- Bokut L. A. Theorems of embedding in the theory of algebras// Colloq. Math. — 1966. — 14. — P. 349–353.
- Brešar M., Procesi C., Špenko Š. Functional identities on matrices and the Cayley–Hamilton polynomial/arXiv: 1212.4597 [math.RA].
- Campbell L. A. A condition for a polynomial map to be invertible// Math. Ann. — 1973. — 205, № 3. — P. 243–248.
- Cohn P. M. Subalgebras of free associative algebras// Proc. London Math. Soc. — 1964. — 3, № 4. — P. 618–632.
- Cohn P. M. Progress in free associative algebras// Isr. J. Math. — 1974. — 19, № 1-2. — P. 109–151.
- Cohn P. M. A brief history of infinite-dimensional skew fields// Math. Sci. — 1992. — 17. — P. 1–14.
- Cohn P. M. Free Rings and Their Relations. — Academic Press, 1985.
- Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. I// Trans. Am. Math. Soc.— 1971. — 160. — P. 393–401.
- Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. II// Trans. Am. Math. Soc.— 1972. — 171. — P. 309–315.
- Danielewski W. On the cancellation problem and automorphism groups of affine algebraic varieties. —Warsaw: Preprint, 1989.
- De Bondt M., van den Essen A. The Jacobian conjecture for symmetric Druzkowski mappings. — University of Nijmegen, 2004.
- De Bondt M., van den Essen A. A reduction of the Jacobian conjecture to the symmetric case// Proc. Am. Math. Soc. — 2005. — 133, № 8. — P. 2201–2205.
- De Concini C., Procesi C. A characteristic free approach to invariant theory// in: Young Tableaux in Combinatorics, Invariant Theory, and Algebra. — Elsevier, 1982. — P. 169–193.
- Déserti J. Sur le groupe des automorphismes polynomiaux du plan affine// J. Algebra. — 2006. — 297.— P. 584–599.
- Dicks W. Automorphisms of the free algebra of rank two// Contemp. Math. — 1985. — 43. — P. 63–68.
- Dicks W., Lewin J. Jacobian conjecture for free associative algebras// Commun. Algebra. — 1982. — 10,№ 12. — P. 1285–1306.
- Dixmier J. Sur les algebres de Weyl// Bull. Soc. Math. France. — 1968. — 96. — P. 209–242.
- Dodd C. The p-cycle of holonomic D-modules and auto-equivalences of the Weyl algebra/ arXiv: 1510.05734 [math.OC].
- Donkin S. Invariants of several matrices// Inv. Math. — 1992. — 110, № 1. — P. 389–401.
- Donkin S. Invariant functions on matrices// Math. Proc. Cambridge Phil. Soc. — 1993. — 113, № 1. — P. 23–43.
- Drensky V., Yu J.-T. A cancellation conjecture for free associative algebras// Proc. Am. Math. Soc. —2008. — 136, № 10. — P. 3391–3394.
- Drensky V., Yu J.-T. The strong Anick conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2006. — 103.— P. 4836–4840.
- Drensky V., Yu J.-T. Coordinates and automorphisms of polynomial and free associative algebras of rank three// Front. Math. China. — 2007. — 2, № 1. — P. 13–46.
- Drensky V., Yu J.-T. The strong Anick conjecture is true// J. Eur. Math. Soc. — 2007. — 9. — P. 659–679.
- Drużkowski L. An effective approach to Keller’s Jacobian conjecture// Math. Ann. — 1983. — 264, № 3.— P. 303–313.
- Drużkowski L. The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case// Ann. Polon. Math. — 2005. — 87, № 1. — P. 83–92.
- Drużkowski L. M. New reduction in the Jacobian conjecture// in: Effective Methods in Algebraic and Analytic Geometry. — Kraków: Univ. Iagel. Acta Math., 2001. — P. 203–206.
- Elishev A. Automorphisms of polynomial algebras, quantization and Kontsevich conjecture/ PhD Thesis— Moscow Institute of Physics and Technology, 2019.
- Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Noncommutative Bialynicki-Birula theo-rem./ arXiv: 1808.04903 [math.AG].
- Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Torus actions on free associative algebras, lifting and Bialynicki-Birula type theorems/ arXiv: 1901.01385 [math.AG].
- van den Bergh M. On involutivity of p-support// Int. Math. Res. Not. — 2015. — 15. — P. 6295–6304.
- van den Essen A. The amazing image conjecture/ arXiv: 1006.5801 [math.AG].
- van den Essen A., de Bondt M. Recent progress on the Jacobian conjecture// Ann. Polon. Math. — 2005.— 87. — P. 1–11.
- van den Essen A., de Bondt M. The Jacobian conjecture for symmetric Druźkowski mappings// Ann. Polon. Math. — 2005. — 86, № 1. — P. 43–46.
- van den Essen A., Wright D., Zhao W. On the image conjecture// J. Algebra. — 2011. — 340. — P. 211—224.
- Fox R. H. Free differential calculus, I. Derivation in the free group ring// Ann. Math. (2). — 1953. — 57.— P. 547–560.
- Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, I// Izv. Math. — 1975. — 9,№3.—С. 493–534.
- Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, II// Izv. Math. — 1977. — 11,№1. —С. 51–98.
- Gorni G., Zampieri G. Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse// Polon. Math. — 1996. — 64. — P. 285–290.
- Fedosov B. A simple geometrical construction of deformation quantization// J. Differ. Geom. — 1994. —40, № 2. — P. 213–238.
- Frayne T., Morel A. C., Scott D. S. Reduced direct products// J. Symb. Logic.. — 31, № 3. — P. 1966.
- Fulton W., Harris J. Representation Theory. A First Course. — Springer-Verlag, 1991.
- Furter J.-P., Kraft H. On the geometry of the automorphism groups of affine varieties/ arXiv: 1809.04175 [math.AG].
- Gutwirth A. The action of an algebraic torus on the affine plane// Trans. Am. Math. Soc. — 1962. — 105,№ 3. — P. 407–414.
- Jung H. W. E. Ü ber ganze birationale Transformationen der Ebene// J. Reine Angew. Math. — 1942. — 184. — P. 161–174.
- Kaliman S., Koras M., Makar-Limanov L., Russell P. C∗-actions on C3 are linearizable// Electron. Res. Announc. Am. Math. Soc. — 1997. — 3. — P. 63–71.
- Kaliman S., Zaidenberg M. Families of affine planes: the existence of a cylinder// Michigan Math. J. —2001. — 49. — P. 353–367.
- Kuroda S. Shestakov–Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism//Tôhoku Math. J. — 2010. — 62. — P. 75–115.
- Kuzmin E., Shestakov I. P. Nonassociative structures// Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr. — 1990. — 57. — С. 179–266.
- Karas’ M. Multidegrees of tame automorphisms of Cn// Dissert. Math. — 2011. — 477.
- Khoroshkin A., Piontkovski D. On generating series of finitely presented operads/ arXiv: 1202.5170 [math.QA].
- Kambayashi T. Pro-affine algebras, Ind-affine groups and the Jacobian problem// J. Algebra. — 1996. —185, № 2. — P. 481–501.
- Kambayashi T. Some basic results on pro-affine algebras and Ind-affine schemes// Osaka J. Math. — 2003.— 40, № 3. — P. 621–638.
- Kambayashi T., Russell P. On linearizing algebraic torus actions// J. Pure Appl. Algebra. — 1982. — 23, № 3. — P. 243–250.
- Kanel-Belov A., Borisenko V., Latysev V. Monomial algebras// J. Math. Sci. — 1997. — 87,№3. —С. 3463–3575.
- Kanel-Belov A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteristic/arXiv: 1412.6836 [math.AG].
- Kanel-Belov A., Elishev A., Yu J.-T. Independence of the B-KK isomorphism of infinite prime/ arXiv: 1512.06533 [math.AG].
- Kanel-Belov A., Elishev A., Yu J.-T. Augmented polynomial symplectomorphisms and quantization///arXiv: 1812.02859 [math.AG].
- Kanel-Belov A., Grigoriev S., Elishev A., Yu J.-T., Zhang W. Lifting of polynomial symplectomorphisms and deformation quantization// Commun. Algebra. — 2018. — 46, № 9. — P. 3926–3938.
- Kanel-Belov A., Malev S., Rowen L. The images of noncommutative polynomials evaluated on 2 × 2 matrices// Proc. Am. Math. Soc. — 2012. — 140. — P. 465–478.
- Kanel-Belov A., Malev S., Rowen L. The images of multilinear polynomials evaluated on 3 × 3 matrices//Proc. Am. Math. Soc. — 2016. — 144. — P. 7–19.
- Kanel-Belov A., Razavinia F., Zhang W. Bergman’s centralizer theorem and quantization// Commun. Algebra. — 2018. — 46, № 5. — P. 2123–2129.
- Kanel-Belov A., Razavinia F., Zhang W. Centralizers in free associative algebras and generic matrices/arXiv: 1812.03307 [math.RA].
- Kanel-Belov A., Rowen L. H., Vishne U. Full exposition of Specht’s problem// Serdica Math. J. — 2012.— 38. — P. 313–370.
- Kanel-Belov A., Yu J.-T., Elishev A. On the augmentation topology of automorphism groups of affine spaces and algebras// Int. J. Algebra Comput. * — 2018. — 28, № 08. — P. 1449–1485.
- Keller B. Notes for an Introduction to Kontsevich’s Quantization Theorem, 2003.
- Keller O. H. Ganze Cremona Transformationen// Monatsh. Math. Phys. — 1939. — 47, № 1. — P. 299–306.
- Kolesnikov P. S. The Makar-Limanov algebraically closed skew field// Algebra Logic. — 2000. — 39,№6.— С. 378–395.
- Kolesnikov P. S. Different definitions of algebraically closed skew fields// Algebra Logic. — 2001. — 40,№ 4. — С. 219–230.
- Kontsevich M. Deformation quantization of Poisson manifolds// Lett. Math. Phys. — 2003. — 66, № 3.— P. 157–216.
- Kontsevich M. Holonomic D-modules and positive characteristic// Jpn. J. Math. — 2009. — 4, № 1. — P. 1–25.
- Koras M., Russell P. C∗-actions on C3: The smooth locus of the quotient is not of hyperbolic type// J. Alg. Geom. — 1999. — 8, № 4. — P. 603–694.
- Kovalenko S., Perepechko A., Zaidenberg M. On automorphism groups of affine surfaces// in: Algebraic Varieties and Automorphism Groups. — Math. Soc. Jpn., 2017. — P. 207–286.
- Kraft H., Regeta A. Automorphisms of the Lie algebra of vector fields// J. Eur. Math. Soc. — 2017. —19, № 5. — P. 1577–1588.
- Kraft H., Stampfli I. On automorphisms of the affine Cremona group// Ann. Inst. Fourier. — 2013. —63, № 3. — P. 1137–1148.
- Kulikov V. S. Generalized and local Jacobian problems// Izv. Math. — 1993. — 41, № 2. — С. 351–365.
- Kulikov V. S. The Jacobian conjecture and nilpotent maps// J. Math. Sci. — 2001. — 106, № 5. — С. 3312–3319.
- Levy R., Loustaunau P., Shapiro J. The prime spectrum of an infinite product of copies of Z// Fundam. Math. — 1991. — 138. — P. 155–164.
- Li Y.-C., Yu J.-T. Degree estimate for subalgebras// J. Algebra. — 2012. — 362. — P. 92–98.
- Gaiotto D., Witten E. Probing quantization via branes/ arXiv: 2107.12251 [hep-th].
- Lothaire M. Combinatorics on Words. — Cambridge Univ. Press, 1997.
- Makar-Limanov L. A new proof of the Abhyankar–Moh-=Suzuki theorem/ arXiv: 1212.0163 [math.AC].
- Makar-Limanov L. Automorphisms of a free algebra with two generators// Funct. Anal. Appl. — 1970. —4, № 3. — С. 262–264.
- Makar-Limanov L. On automorphisms of Weyl algebra// Bull. Soc. Math. France. — 1984. — 112.— P. 359–363.
- Makar-Limanov L., Yu J.-T. Degree estimate for subalgebras generated by two elements// J. Eur. Math. Soc. — 2008. — 10. — P. 533–541.
- Makar-Limanov L. Algebraically closed skew fields// J. Algebra. — 1985. — 93, № 1. — P. 117–135.
- Makar-Limanov L., Turusbekova U., Umirbaev U. Automorphisms and derivations of free Poisson algebras in two variables// J. Algebra. — 2009. — 322, № 9. — P. 3318–3330.
- Markl M., Shnider S., Stasheff J. Operads in Algebra, Topology, and Physics. — Providence, Rhode Island: Am. Math. Soc., 2002.
- Miyanishi M., Sugie T. Affine surfaces containing cylinderlike open sets// J. Math. Kyoto Univ. — 1980.— 20. — P. 11–42.
- Nagata M. On the automorphism group of k[x, y]. — Tokyo: Kinokuniya, 1972.
- Nielsen J. Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden// Math. Ann. — 1918. — 78. — P. 385–397.
- Nielsen J. Die Isomorphismengruppe der freien Gruppen// Math. Ann. — 1924. — 91. — P. 169–209.
- Ol’shanskij A. Yu. Groups of bounded period with subgroups of prime order// Algebra and Logic. — 1983.— 21. — С. 369–418.
- Peretz R. Constructing polynomial mappings using non-commutative algebras// in: Affine Algebraic Ge-ometry. — Providence, Rhode Island: Am. Math. Soc., 2005. — P. 197–232.
- Piontkovski D. Operads versus Varieties: a dictionary of universal algebra. — Preprint, 2011.
- Piontkovski D. On Kurosh problem in varieties of algebras// J. Math. Sci. — 2009. — 163, № 6. — С. 743–750.
- Razmyslov Yu. P. Algebras satisfying identity relations of Capelli type// Izv. Akad. Nauk SSSR. Ser. Mat.— 1981. — 45. — С. 143–166, 240.
- Razmyslov Yu. P. Identities of Algebras and Their Representations. — Providence, Rhode Island: Am. Math. Soc., 1994.
- Razmyslov Yu. P., Zubrilin K. A. Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type// Russ. Math. Surveys — 1993. — 48. — С. 183–184.
- Reutenauer C. Applications of a noncommutative Jacobian matrix// J. Pure Appl. Algebra. — 1992. — 77. — P. 634–638.
- Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
- Moh T.-T. On the global Jacobian conjecture for polynomials of degree less than 100. — Preprint, 1983.
- Moh T.-T. On the Jacobian conjecture and the configurations of roots// J. Reine Angew. Math. — 1983.— 340. — P. 140–212.
- Moyal J. E. Quantum mechanics as a statistical theory// Math. Proc. Cambridge Philos. Soc. — 1949. —45, № 1. — P. 99–124.
- Orevkov S. Yu. The commutant of the fundamental group of the complement of a plane algebraic curve//Russ. Math. Surv. — 1990. — 45, № 1. — С. 221–222.
- Orevkov S. Yu. An example in connection with the Jacobian conjecture// Math. Notes. — 1990. — 47,№ 1. — С. 82–88.
- Orevkov S. Yu. The fundamental group of the complement of a plane algebraic curve// Sb. Math. — 1990.— 65, № 1. — С. 267–267.
- Plotkin B. Varieties of algebras and algebraic varieties// Israel J. Math. — 1996. — 96, № 2. — P. 511–522.
- Plotkin B. Algebras with the same (algebraic) geometry/ arXiv: math/0210194 [math.GM].
- Popov V. L. Around the Abhyankar-Sathaye conjecture/ arXiv: 1409.6330 [math.AG].
- Procesi C. Rings with Polynomial Identities. — Marcel Dekker, 1973.
- Procesi C. The invariant theory of n × n matrices// Adv. Math. — 1976. — 19, № 3. — P. 306–381.
- Razar M. Polynomial maps with constant Jacobian// Israel J. Math. — 1979. — 32, № 2-3. — P. 97–106.
- Robinson A. Non-Standard Analysis. — Princeton Univ. Press, 2016.
- Rosset S. A new proof of the Amitsur–Levitzki identity// Israel J. Math. — 1976. — 23, № 2. — P. 187–188.
- Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
- Schofield A. H. Representations of Rings over Skew Fields. — Cambridge: Cambridge Univ. Press, 1985.
- Schwarz G. Exotic algebraic group actions// C. R. Acad. Sci. Paris — 1989. — 309. — P. 89–94.
- Shafarevich I. R. On some infinite-dimensional groups, II// Izv. Ross. Akad. Nauk. Ser. Mat. — 1981. —45, № 1. — С. 214–226.
- Sharifi Y. Centralizers in Associative Algebras/ Ph.D. thesis, 2013.
- Shestakov I. P. Finite-dimensional algebras with a nil basis// Algebra Logika. — 1971. — 10. — С. 87–99.
- Shestakov I. P., Umirbaev U. U. Degree estimate and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17. — P. 181–196.
- Shestakov I., Umirbaev U. The Nagata automorphism is wild// Proc. Natl. Acad. Sci. — 2003. — 100,№ 22. — P. 12561–12563.
- Shestakov I., Umirbaev U. Poisson brackets and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17, № 1. — P. 181–196.
- Shestakov I. P., Umirbaev U. U. The tame and the wild automorphisms of polynomial rings in three variables// J. Am. Math. Soc. — 2004. — 17. — P. 197–220.
- Umirbaev U., Shestakov I. Subalgebras and automorphisms of polynomial rings// Dokl. Ross. Akad. Nauk— 2002. — 386, № 6. — С. 745–748.
- Shpilrain V. On generators of L/R2 Lie algebras// Proc. Am. Math. Soc. — 1993. — 119. — P. 1039–1043.
- Singer D. On Catalan trees and the Jacobian conjecture// Electron. J. Combin. — 2001. — 8, № 1. — 2.
- Shpilrain V., Yu J.-T. Affine varieties with equivalent cylinders// J. Algebra. — 2002. — 251, № 1. — P. 295–307.
- Shpilrain V., Yu J.-T. Factor algebras of free algebras: on a problem of G. Bergman// Bull. London Math. Soc. — 2003. — 35. — P. 706–710.
- Suzuki M. Propiétés topologiques des polynômes de deux variables complexes, et automorphismes algébraique de l’espace C2// J. Math. Soc. Jpn. — 1974. — 26. — P. 241–257.
- Tsuchimoto Y. Preliminaries on Dixmier conjecture Mem. Fac. Sci. Kochi Univ. Ser. A. Math. — 2003.— 24. — P. 43–59.
- Tsuchimoto Y. Endomorphisms of Weyl algebra and p-curvatures// Osaka J. Math. — 2005. — 42, № 2.— P. 435–452.
- Tsuchimoto Y. Auslander regularity of norm based extensions of Weyl algebra/// arXiv: 1402.7153 [math.AG].
- Umirbaev U. On the extension of automorphisms of polynomial rings// Sib. Math. J. — 1995. — 36,№4.— С. 787–791.
- Umirbaev U. U. On Jacobian matrices of Lie algebras// в кн.: Proc. 6 All-Union Conf. on Varieties of Algebraic Systems. — Magnitogorsk, 1990. — С. 32–33.
- Umirbaev U. U. Shreer varieties of algebras// Algebra Logic. — 1994. — 33. — С. 180–193.
- Umirbaev U. U. Tame and wild automorphisms of polynomial algebras and free associative algebras. —Preprint MPIM 2004–108..
- Umirbaev U. The Anick automorphism of free associative algebras// J. Reine Angew. Math. — 2007. — 605. — P. 165–178.
- Umirbaev U. U. Defining relations of the tame automorphism group of polynomial algebras in three vari-ables// J. Reine Angew. Math. — 2006. — 600. — P. 203–235.
- Umirbaev U. U. Defining relations for automorphism groups of free algebras// J. Algebra. — 2007. — 314.— P. 209–225.
- Umirbaev U. U., Yu J.-T. The strong Nagata conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2004. — 101.— P. 4352–4355.
- Urech C., Zimmermann S. Continuous automorphisms of Cremona groups/ 1909.11050 [math.AG].
- van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. — Birkhäuser, 2012.
- van der Kulk W. On polynomial rings in two variables// Nieuw Arch. Wisk. (3) — 1953. — 1. — P. 33–41.
- Vitushkin A. G. A criterion for the representability of a chain of σ-processes by a composition of triangular chains// Math. Notes — 1999. — 65, № 5-6. — С. 539–547.
- Vitushkin A. G. On the homology of a ramified covering over C2// Math. Notes. — 1998. — 64,№5. —С. 726–731.
- Vitushkin A. G. Evaluation of the Jacobian of a rational transformation of C2 and some applications//Math. Notes — 1999. — 66, № 2. — С. 245–249.
- Wedderburn J. H. M. Note on algebras// Ann. Math. — 1937. — 38. — P. 854–856.
- Wright D. The Jacobian conjecture as a problem in combinatorics/ arXiv: math/0511214 [math.CO].
- Wright D. The Jacobian conjecture: Ideal membership questions and recent advances// Contemp. Math.— 2005. — 369. — P. 261–276.
- Yagzhev A. V. Finiteness of the set of conservative polynomials of a given degree// Math. Notes. — 1987.— 41, № 2. — С. 86—88.
- Yagzhev A. V. Nilpotency of extensions of an abelian group by an abelian group// Math. Notes. — 1988.— 43, № 3-4. — С. 244–245.
- Yagzhev A. V. Locally nilpotent subgroups of the holomorph of an abelian group// Mat. Zametki — 1989.— 46, № 6. — С. 118.
- Yagzhev A. V. A sufficient condition for the algebraicity of an automorphism of a group// Algebra Logic.— 1989. — 28, № 1. — С. 83–85.
- Yagzhev A. V. The generators of the group of tame automorphisms of an algebra of polynomials// Sib. Mat. Zh. — 1977. — 18, № 1. — P. 222–225.
- Wang S. A Jacobian criterion for separability// J. Algebra. — 1980. — 65, № 2. — P. 453–494.
- Wright D. On the Jacobian conjecture// Ill. J. Math. — 1981. — 25, № 3. — P. 423–440.
- Yagzhev A. V. Invertibility of endomorphisms of free associative algebras// Math. Notes. — 1991. — 49,№ 3–4. — С. 426—430.
- Yagzhev A. V. Endomorphisms of free algebras// Sib. Math. J. — 1980. — 21, № 1. — С. 133—141.
- Yagzhev A. V. On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank// Sib. Math. J. — 1980. — 21, № 1. — С. 142–146.
- Yagzhev A. V. Keller’s problem// Sib. Math. J. — 1980. — 21, № 5. — С. 747–754.
Дополнительные файлы
