Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия
- Авторы: Шамолин М.В.1
-
Учреждения:
- Московский государственный университет имени М. В. Ломоносова
- Выпуск: Том 205 (2022)
- Страницы: 22-54
- Раздел: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/268576
- DOI: https://doi.org/10.36535/0233-6723-2022-205-22-54
- ID: 268576
Цитировать
Полный текст
Аннотация
Во многих задачах динамики возникают системы с пространствами положений — трехмерными многообразиями. Фазовыми пространствами таких систем естественным образом становятся касательные расслоения к ним. В работе рассматриваются динамические системы с переменной диссипацией. В работе показана интегрируемость общих классов однородных динамических систем на касательных расслоениях к трехмерным многообразиям.
Об авторах
Максим Владимирович Шамолин
Московский государственный университет имени М. В. Ломоносова
Автор, ответственный за переписку.
Email: shamolin.maxim@yandex.ru
Россия, Москва
Список литературы
- Бендиксон И. О кривых, определяемых дифференциальными уравнениями// Усп. мат. наук. — 1941. — 9. — С. 119-211.
- Богоявленский О. И. Динамика твердого тела с n эллипсоидальными полостями, заполненными магнитной жидкостью// Докл. АН СССР. — 1983. — 272, № 6. — С. 1364-1367.
- Богоявленский О. И. Некоторые интегрируемые случаи уравнений Эйлера// Докл. АН СССР. — 1986. — 287, № 5. — С. 1105-1108.
- Бурбаки Н. Интегрирование. Меры, интегрирование мер. — М.: Наука, 1967.
- Бурбаки Н. Интегрирование. Векторное интегрирование. Мера Хаара. Свертка и представления. — М.: Наука, 1970.
- Бурбаки Н. Интегрирование. Меры на локально компактных пространствах. Продолжение меры. Интегрирование мер. Меры на отделимых пространствах. — М.: Наука, 1977.
- Веселов А. П. Об условиях интегрируемости уравнений Эйлера на so(4)// Докл. АН СССР. — 1983. — 270, № 6. — С. 1298-1300.
- Георгиевский Д. В., Шамолин М. В. Кинематика и геометрия масс твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2001. — 380, № 1. — С. 47-50.
- Георгиевский Д. В., Шамолин М. В. Обобщенные динамические уравнения Эйлера для твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2002. — 383, № 5. — С. 635-637.
- Георгиевский Д. В., Шамолин М. В. Первые интегралы уравнений движения обобщенного гироскопа в Rn// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 2003. — 5. — С. 37-41.
- Георгиевский Д. В., Шамолин М. В. Символы Леви-Чивиты, обобщенные векторные произведения и новые случаи интегрируемости в механике многомерного тела// Совр. мат. прилож. — 2012. — 76.— С. 22-39.
- Голубев В. В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. — М.-Л.: Гостехиздат, 1953.
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. — М.: Наука, 1979.
- Ерошин В. А., Самсонов В. А., Шамолин М. В. Модельная задача о торможении тела в сопротивляющейся среде при струйном обтекании// Извю РАН. Мех. жидк. газа. — 1995. — № 3. — С. 23-27.
- Иванова Т. А. Об уравнениях Эйлера в моделях теоретической физики// Мат. заметки. — 1992. — 52, № 2. — С. 43-51.
- Козлов В. В. Интегрируемость и неинтегрируемость в гамильтоновой механике// Усп. мат. наук. — 1983. — 38, № 1. — С. 3-67.
- Козлов В. В. Рациональные интегралы квазиоднородных динамических систем// Прикл. мат. мех. — 2015. — 79, № 3. — С. 307-316.
- Козлов В. В. Тензорные инварианты и интегрирование дифференциальных уравнений// Усп. мат. наук. — 2019. — 74, № 1 (445). — С. 117-148.
- Локшин Б. Я., Самсонов В. А., Шамолин М. В. Маятниковые системы с динамической симметрией// Совр. мат. прилож. — 2016. — 100. — С. 76-133.
- Манаков С. В. Замечание об интегрировании уравнений Эйлера динамики n-мерного твердого тела// Функц. анал. прилож. — 1976. — 10, № 4. — С. 93-94.
- Походня Н. В., Шамолин М. В. Новый случай интегрируемости в динамике многомерного тела// Вестн. СамГУ. Естественнонауч. сер. — 2012. — 9, № 100. — С. 136-150.
- Походня Н. В., Шамолин М. В. Некоторые условия интегрируемости динамических систем в трансцендентных функциях// Вестн. СамГУ. Естественнонауч. сер. — 2013. — 9/1, № 110. — С. 35-41.
- Походня Н. В., Шамолин М. В. Интегрируемые системы на касательном расслоении к многомерной сфере// Вестн. СамГУ. Естественнонауч. сер. — 2014. — 7, № 118. — С. 60-69.
- Самсонов В. А., Шамолин М. В. К задаче о движении тела в сопротивляющейся среде// Вестн. Моск. ун-та. Сер. 1. Мат. мех. — 1989. — № 3. — С. 51-54.
- Тихонов А. А. Метод управления для угловой стабилизации электродинамической тросовой системы// Автомат. телемех. — 2020. — № 2. — С. 91-114.
- Трофимов В. В. Уравнения Эйлера на конечномерных разрешимых группах Ли// Изв. АН СССР. Сер. мат. — 1980. — 44, № 5. — С. 1191-1199.
- Трофимов В. В., Фоменко А. Т. Методика построения гамильтоновых потоков на симметрических пространствах и интегрируемость некоторых гидродинамических систем// Докл. АН СССР. — 1980. — 254, № 6. — С. 1349-1353.
- Трофимов В. В., Шамолин М. В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем// Фундам. прикл. мат. — 2010. — 16, № 4. — С. 3-229.
- Чаплыгин С. А. О движении тяжелых тел в несжимаемой жидкости// в кн.: Полн. собр. соч.. — Л.: Изд-во АН СССР, 1933. — С. 133-135.
- Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1987.
- Шамолин М. В. К задаче о движении тела в среде с сопротивлением// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1992. — 1 . — С. 52-58.
- Шамолин М. В. Классификация фазовых портретов в задаче о движении тела в сопротивляющейся среде при наличии линейного демпфирующего момента// Прикл. мат. мех. — 1993. — 57,№4.— С. 40-49.
- Шамолин М. В. Введение в задачу о торможении тела в сопротивляющейся среде и новое двухпараметрическое семейство фазовых портретов// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1996. — 4.— С. 57-69.
- Шамолин М. В. Об интегрируемости в трансцендентных функциях// Усп. мат. наук. — 1998. — 53, № 3. — С. 209-210.
- Шамолин М. В. Новые интегрируемые по Якоби случаи в динамике твердого тела, взаимодействующего со средой// Докл. РАН. — 1999. — 364, № 5. — С. 627-629.
- Шамолин М. В. Интегрируемость по Якоби в задаче о движении четырехмерного твердого тела в сопротивляющейся среде// Докл. РАН. — 2000. — 375, № 3. — С. 343-346.
- Шамолин М. В. Об интегрировании некоторых классов неконсервативных систем// Усп. мат. наук. — 2002. — 57, № 1. — С. 169-170.
- Шамолин М. В. Об одном интегрируемом случае уравнений динамики на so(4) х R4// Усп. мат. наук. — 2005. — 60, № 6. — С. 233-234.
- Шамолин М. В. Сопоставление интегрируемых по Якоби случаев плоского и пространственного движения тела в среде при струйном обтекании// Прикл. мат. мех. — 2005. — 69, № 6. — С. 1003-1010.
- Шамолин М. В. Случай полной интегрируемости в динамике на касательном расслоении двумерной сферы// Усп. мат. наук. — 2007. — 62, № 5. — С. 169-170.
- Шамолин М. В. Динамические системы с переменной диссипацией: подходы, методы, приложения// Фундам. прикл. мат. — 2008. — 14, № 3. — С. 3-237.
- Шамолин М. В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2009. — 425, № 3. — С. 338-342.
- Шамолин М. В. Случай полной интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Усп. мат. наук. — 2010. — 65, № 1. — С. 189-190.
- Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2011. — 437, № 2. — С. 190-193.
- Шамолин М. В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2011. — 440, № 2. — С. 187-190.
- Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2012. — 444, № 5. — С. 506-509.
- Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2013. — 453, № 1. — С. 46-49.
- Шамолин М. В. Новый случай интегрируемости уравнений динамики на касательном расслоении к трехмерной сфере// Усп. мат. наук. — 2013. — 68, № 5 (413). — С. 185-186.
- Шамолин М. В. Полный список первых интегралов динамических уравнений движения четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2013. — 449, № 4. — С. 416-419.
- Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования// Докл. РАН. — 2014. — 457, № 5. — С. 542-545.
- Шамолин М. В. Интегрируемые системы с переменной диссипацией на касательном расслоении к многомерной сфере и приложения// Фундам. прикл. мат. — 2015. — 20, № 4. — С. 3-231.
- Шамолин М. В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2015. — 461, № 5. — С. 533-536.
- Шамолин М. В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2015. — 464, № 6. — С. 688-692.
- Шамолин М. В. Интегрируемые неконсервативные динамические системы на касательном расслоении к многомерной сфере// Диффер. уравн. — 2016. — 52, № 6. — С. 743-759.
- Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. — 2017. — 475, № 5. — С. 519-523.
- Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении к многомерной сфере// Докл. РАН. — 2017. — 474, № 2. — С. 177-181.
- Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. — 2017. — 477, № 2. — С. 168-172.
- Шамолин М. В. Интегрируемые динамические системы с конечным числом степеней свободы с диссипацией// Пробл. мат. анал. — 2018. — № 95. — С. 79-101.
- Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия// Докл. РАН. — 2018. — 482, № 5. — С. 527-533.
- Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. — 2018. — 479, № 3. — С. 270-276.
- Шамолин М. В. Новые случаи интегрируемых систем девятого порядка с диссипацией// Докл. РАН. — 2019. — 489, № 6. — С. 592-598.
- Шамолин М. В. Новые случаи интегрируемых систем пятого порядка с диссипацией// Докл. РАН. — 2019. — 485, № 5. — С. 583-587.
- Шамолин М. В. Новые случаи интегрируемых систем седьмого порядка с диссипацией// Докл. РАН. — 2019. — 487, № 4. — С. 381-386.
- Шамолин М. В. Новые случаи интегрируемых систем нечетного порядка с диссипацией// Докл. РАН. Мат. информ. процессы управл. — 2020. — 491, № 1. — С. 95-101.
- Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 494, № 1. — С. 105-111.
- Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 495, № 1. — С. 84-90.
- Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 1. Твердое тело в неконсервативном поле. — М.: ЛЕНАНД, 2019.
- Шамолин М. В. Интегрируемые динамические системы с диссипацией. Кн. 2: Закрепленные маятники разной размерности. — М.: ЛЕНАНД, 2021.
- Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A. On the monoaxial stabilization of a rigid body under vanishing restoring torque// AIP Conf. Proc. — 2018. — 1959. — 080001.
- Tikhonov A. A., Yakovlev A. B. On dependence of equilibrium characteristics of the space tethered system on environmental parameters// Int. J. Plasma Env. Sci. Techn.. — 13, № 1. — P. 49-52.
Дополнительные файлы
