О построении решения неоднородного бигармонического уравнения в задачах механики тонких изотропных пластин

Обложка

Цитировать

Полный текст

Аннотация

Предложен метод для построения решения неоднородного бигармонического уравнения в приложении к задачам механики тонких изотропных пластин. Метод основан на полиномиальной аппроксимации Чебышева смешанной частной производной восьмого порядка искомой функции. В качестве базисных функций использованы многочлены Чебышева первого рода. Предложенный метод применен для моделирования изгиба упругой изотропной прямоугольной пластины, находящейся под действием поперечной нагрузки. Проведен анализ результатов, полученных методом коллокации с применением интегрального подхода и в его отсутствии при использовании нулей многочленов Чебышева первого рода в качестве точек коллокации.

Полный текст

1. Введение.

Многие практически значимые инженерные проблемы, связанные с деформацией тонкой пластины, приводят к необходимости решения неоднородного бигармонического уравнения (см. [1–5,8,10,13]). Построение его решения вызывает ряд трудностей, в частности, связанных с наличием в этом уравнении производных четвертого порядка, оказывающих существенное влияние на обусловленность исходных краевых задач (см. [5]). При этом достижение требуемой степени детализации области интегрирования предполагает решение систем линейных уравнений очень высокого порядка с неразреженной матрицей (см. [4]). Одним из перспективных подходов к решению проблемы является развитие методов полиномиальной аппроксимации.

Представленная работа посвящена построению решения неоднородного бигармонического уравнения с использованием системы ортогональных многочленов Чебышева первого рода. Выбор в качестве базисных функций многочленов Чебышева обусловлен тем, что такое приближение минимизирует количество членов усеченного ряда, необходимых для аппроксимации решения [6, 9]. В представленной работе предложено развитие метода полиномиальной аппроксимации Чебышева путем представления в виде усеченного ряда по полиномам Чебышева смешанной производной восьмого порядка искомой функции и использования в качестве точек коллокации нулей этих полиномов.

2. Постановка задачи.

Рассмотрим задачу моделирования прогиба упругой изотропной прямоугольной пластины, закрепленной на краях x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343F@ , x= d 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadsgadaWgaaWcba GaaGymaaqabaaaaa@3555@ , y=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaaicdaaaa@3440@  и y= d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaadsgadaWgaaWcba GaaGOmaaqabaaaaa@3557@  и находящейся под действием поперечной нагрузки q(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@36CD@ . Пластина предполагается тонкой. В этом случае прогиб срединной поверхности пластины ω(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaaaa@37A4@  будем описывать на основе бигармонического уравнения Софи Жермен MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Лагранжа, которое запишем в следующем виде (см. [12]):

4 ω x 4 +2 4 ω x 2 y 2 + 4 ω y 4 = q D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGinaaaakiabeM8a3bqaaiabgkGi2kaadIhadaahaaWcbeqaaiaa isdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabe aacaaI0aaaaOGaeqyYdChabaGaeyOaIyRaamiEamaaCaaaleqabaGa aGOmaaaakiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey 4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccqaHjpWD aeaacqGHciITcaWG5bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dada WcaaqaaiaadghaaeaacaWGebaaaiaaiYcaaaa@5193@                                                                         (1)

где D=E h 3 /(12(1 ν 2 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGypaiaadweacaWGObWaaW baaSqabeaacaaIZaaaaOGaaG4laiaaiIcacaaIXaGaaGOmaiaaiIca caaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaOGaaGykai aaiMcaaaa@3F49@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  цилиндрическая жесткость пластины, h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  толщина пластины, E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbaaaa@328B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  модуль Юнга, ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициент Пуассона.

В качестве граничного условия используем защемление по каждому краю прямоугольной области (см. [12]):

ω=0, ω x =0,x=0, d 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGimaiaaiYcaca aMf8+aaSaaaeaacqGHciITcqaHjpWDaeaacqGHciITcaWG4baaaiaa i2dacaaIWaGaaGilaiaaywW7caWG4bGaaGypaiaaicdacaaISaGaaG jcVlaadsgadaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@4813@                                                                                                 (2)

ω=0, ω y =0,y=0, d 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGimaiaaiYcaca aMf8+aaSaaaeaacqGHciITcqaHjpWDaeaacqGHciITcaWG5baaaiaa i2dacaaIWaGaaGilaiaaywW7caWG5bGaaGypaiaaicdacaaISaGaaG jcVlaadsgadaWgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@4818@                                                                                                 (3)

3. Построение решения краевой задачи.

Представим смешанную производную восьмого порядка функции ω(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaaaa@37A4@  в виде усеченного ряда по полиномам Чебышева первого рода { T j i ( x i )=cos( j i arccos x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamivamaaBaaaleaacaWGQb WaaSbaaeaacaWGPbaabeaaaeqaaOGaaGikaiaadIhadaWgaaWcbaGa amyAaaqabaGccaaIPaGaaGypaiGacogacaGGVbGaai4CaiaaiIcaca WGQbWaaSbaaSqaaiaadMgaaeqaaOGaciyyaiaackhacaGGJbGaai4y aiaac+gacaGGZbGaamiEamaaBaaaleaacaWGPbaabeaakiaaiMcaaa a@4821@ , j i = 0, n i ¯ )} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaakiaaiMcacaaI9baaaa@39ED@  (см. [9]) по каждой введенной новой переменной x i [1,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiabgkHiTiaaigdacaaISaGaaGymaiaai2faaaa@3A4B@  ( n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@4007@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ):

x 1 = 2 d 1 x1, x 2 = 2 d 2 y1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaalaaabaGaaGOmaaqaaiaadsgadaWgaaWcbaGaaGymaaqa baaaaOGaamiEaiabgkHiTiaaigdacaaISaGaaGzbVlaadIhadaWgaa WcbaGaaGOmaaqabaGccaaI9aWaaSaaaeaacaaIYaaabaGaamizamaa BaaaleaacaaIYaaabeaaaaGccaWG5bGaeyOeI0IaaGymaiaai6caaa a@44C0@                                                                                                 (4)

Тогда

8 w( x 1 , x 2 ) x 1 4 x 2 4 = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) T j 2 ( x 2 )=( T 1 ( x 1 ) I s,1 )( T 2 ( x 2 ) I s,2 )A, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aaaaaaakiaai2dadaaeWbqabSqaaqaaceqaaiaadQgadaWg aaqaaiaadMgaaeqaaiaai2dacaaIWaaabaGaamyAaiaai2dacaaIXa GaaGilaiaaikdaaaaabaGaamOBamaaBaaabaGaamyAaaqabaaaniab ggHiLdGccaWGHbWaaSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqaai aadQgadaWgaaqaaiaaikdaaeqaaaqabaGccaWGubWaaSbaaSqaaiaa dQgadaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaale aacaaIXaaabeaakiaaiMcacaWGubWaaSbaaSqaaiaadQgadaWgaaqa aiaaikdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabe aakiaaiMcacaaI9aGaaGikaGqabiaa=rfadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqWIyi YBcaWFjbWaaSbaaSqaaiaadohacaaISaGaaGymaaqabaGccaaIPaGa ey4LIqSaaGikaiaa=rfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEamaaBaaaleaacaaIYaaabeaakiaaiMcacqWIyiYBcaWFjbWaaSba aSqaaiaadohacaaISaGaaGOmaaqabaGccaaIPaGaa8xqaiaaiYcaaa a@7BDD@                                                (5)

где T i ( x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFubWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@374A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-строка размером 1× n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaadMgaaeqaaaaa@36AC@  ( n i = n i +5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaamyAaa qabaGccaaI9aGaamOBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaa iwdaaaa@3863@  ):

T i ( x i )=( T 0 ( x i ) T 1 ( x i ) T n i 1 ( x i ) T n i ( x i ) T n i +1 ( x i ) T n i +2 ( x i ) T n i +3 ( x i ) T n i +4 ( x i )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFubWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGyp aiaaiIcacaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaamyAaaqabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiM cacqWIMaYscaWGubWaaSbaaSqaaiaad6gadaWgaaqaaiaadMgaaeqa aiabgkHiTiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyAaa qabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGaamOBamaaBaaabaGa amyAaaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGykaiaayIW7caWGubWaaSbaaSqaaiaad6gadaWgaaqaaiaadMga aeqaaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaam yAaaqabaGccaaIPaGaaGjcVlaadsfadaWgaaWcbaGaamOBamaaBaaa baGaamyAaaqabaGaey4kaSIaaGOmaaqabaGccaaIOaGaamiEamaaBa aaleaacaWGPbaabeaakiaaiMcacaaMi8UaamivamaaBaaaleaacaWG UbWaaSbaaeaacaWGPbaabeaacqGHRaWkcaaIZaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaayIW7caWGubWaaSba aSqaaiaad6gadaWgaaqaaiaadMgaaeqaaiabgUcaRiaaisdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGykaiaa iYcaaaa@7EFF@

I s,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFjbWaaSbaaSqaaiaadohaca aISaGaamyAaaqabaaaaa@355D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-строка размером 1× n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaadMgaaeqaaaaa@36AC@  с ненулевыми элементами I s,i,0, j i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiaadohacaaISa GaamyAaiaaiYcacaaIWaGaaGilaiaadQgadaWgaaqaaiaadMgaaeqa aaqabaGccaaI9aGaaGymaaaa@3B07@  ( j i = 0, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@3829@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ), знаки MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIyiYBaaa@32FB@  и MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxkcXaaa@33CA@  соответственно обозначают произведение Адамара и тензорное произведение Кронекера двух матриц (см. [7]). Нумерацию строк и столбцов каждой из введенных матриц осуществляем с нуля. Матрица-столбец A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbaaaa@328D@  имеет размер n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@  и содержит неизвестные коэффициенты

A=( a 00 a 01 a 0 n 2 a 0 n 2 +1 a 0 n 2 +2 a 0 n 2 +3 a 0 n 2 +4 a 10 a n 1 n 2 a n 1 n 2 +1 a n 1 +4 n 2 +4 ) T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbGaaGypaiaaiIcacaWGHb WaaSbaaSqaaiaaicdacaaIWaaabeaakiaayIW7caWGHbWaaSbaaSqa aiaaicdacaaIXaaabeaakiablAciljaadggadaWgaaWcbaGaaGimai aad6gadaWgaaqaaiaaikdaaeqaaaqabaGccaaMi8UabmyyayaafaWa aSbaaSqaaiaaicdacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey 4kaSIaaGymaaqabaGccaaMi8UabmyyayaafaWaaSbaaSqaaiaaicda caaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGOmaaqaba GccaaMi8UabmyyayaafaWaaSbaaSqaaiaaicdacaaMi8UaamOBamaa BaaabaGaaGOmaaqabaGaey4kaSIaaG4maaqabaGccaaMi8Uabmyyay aafaWaaSbaaSqaaiaaicdacaaMi8UaamOBamaaBaaabaGaaGOmaaqa baGaey4kaSIaaGinaaqabaGccaaMi8UaamyyamaaBaaaleaacaaIXa GaaGimaaqabaGccaaMi8UaeSOjGSKaamyyamaaBaaaleaacaWGUbWa aSbaaeaacaaIXaaabeaacaWGUbWaaSbaaeaacaaIYaaabeaaaeqaaO GaaGjcVlqadggagaqbamaaBaaaleaacaWGUbWaaSbaaeaacaaIXaaa beaacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaa qabaGccqWIMaYsceWGHbGbauaadaWgaaWcbaGaamOBamaaBaaabaGa aGymaaqabaGaey4kaSIaaGinaiaayIW7caWGUbWaaSbaaeaacaaIYa aabeaacqGHRaWkcaaI0aaabeaakiaaiMcadaahaaWcbeqaaiaadsfa aaGccaaIUaaaaa@8395@

Интегрируя (5) по переменой x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@  и используя обозначения для интегралов из [11], получаем

7 w( x 1 , x 2 ) x 1 4 x 2 3 = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) x 2 T j 2 ( s 2 )d s 2 + j 1 =0 n 1 a j 1 n 2 +1 T j 1 ( x 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaG4naaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaIZaaaaaaakiaai2dadaaeWbqabSqaaqaaceqaaiaadQgadaWg aaqaaiaadMgaaeqaaiaai2dacaaIWaaabaGaamyAaiaai2dacaaIXa GaaGilaiaaikdaaaaabaGaamOBamaaBaaabaGaamyAaaqabaaaniab ggHiLdGccaWGHbWaaSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqaai aadQgadaWgaaqaaiaaikdaaeqaaaqabaGccaWGubWaaSbaaSqaaiaa dQgadaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaale aacaaIXaaabeaakiaaiMcadaWfGaqaamaapeaabeWcbeqab0Gaey4k IipaaSqabeaacaWG4bWaaSbaaWqaaiaaikdaaeqaaaaakiaadsfada WgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacaWG ZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSYaaabCaeqaleaacaWGQbWaaSbaaeaa caaIXaaabeaacaaI9aGaaGimaaqaaiaad6gadaWgaaqaaiaaigdaae qaaaqdcqGHris5aOGabmyyayaafaWaaSbaaSqaaiaadQgadaWgaaqa aiaaigdaaeqaaiaayIW7caWGUbWaaSbaaeaacaaIYaaabeaacqGHRa WkcaaIXaaabeaakiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGym aaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaG ykaiaai6caaaa@7F67@                                                       (6)

Последовательно k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32B1@  раз интегрируя (6) по переменой x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@ , получаем

4 w( x 1 , x 2 ) x 1 4 x 2 3k = j i =0 i=1,2 n i a j 1 j 2 T j 1 ( x 1 ) x 2 k+1 T j 2 ( s 2 ) d k+1 s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGinaaaakiaadEhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisda aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaIZaGaeyOeI0Iaam4AaaaaaaGccaaI9aWaaabCaeqaleaaeaGa beaacaWGQbWaaSbaaeaacaWGPbaabeaacaaI9aGaaGimaaqaaiaadM gacaaI9aGaaGymaiaaiYcacaaIYaaaaaqaaiaad6gadaWgaaqaaiaa dMgaaeqaaaqdcqGHris5aOGaamyyamaaBaaaleaacaWGQbWaaSbaae aacaaIXaaabeaacaWGQbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamiv amaaBaaaleaacaWGQbWaaSbaaeaacaaIXaaabeaaaeqaaOGaaGikai aadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaWaaCbiaeaadaWdbaqa bSqabeqaniabgUIiYdaaleqabaGaamiEamaaDaaameaacaaIYaaaba Gaam4AaiabgUcaRiaaigdaaaaaaOGaamivamaaBaaaleaacaWGQbWa aSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizamaaCaaaleqabaGaam4AaiabgUcaRiaa igdaaaGccaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaScaaa@7055@

+ j 1 =0 n 1 T j 1 ( x 1 ) a j 1 n 2 +k+1 + l=1 k a j 1 n 2 +l x 2 k+1l (k+1l)! ,k= 1,3 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadQgada Wgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabaGaamOBamaaBaaabaGa aGymaaqabaaaniabggHiLdGccaWGubWaaSbaaSqaaiaadQgadaWgaa qaaiaaigdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIXaaa beaakiaaiMcadaqadaqaaiqadggagaqbamaaBaaaleaacaWGQbWaaS baaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGaaGOmaaqabaGa ey4kaSIaam4AaiabgUcaRiaaigdaaeqaaOGaey4kaSYaaabCaeqale aacaWGSbGaaGypaiaaigdaaeaacaWGRbaaniabggHiLdGcceWGHbGb auaadaWgaaWcbaGaamOAamaaBaaabaGaaGymaaqabaGaaGjcVlaad6 gadaWgaaqaaiaaikdaaeqaaiabgUcaRiaadYgaaeqaaOGaaGjcVpaa laaabaGaamiEamaaDaaaleaacaaIYaaabaGaam4AaiabgUcaRiaaig dacqGHsislcaWGSbaaaaGcbaGaaGikaiaadUgacqGHRaWkcaaIXaGa eyOeI0IaamiBaiaaiMcacaaIHaaaaaGaayjkaiaawMcaaiaaiYcaca aMf8Uaam4Aaiaai2dadaqdaaqaaiaaigdacaaISaGaaGjcVlaaioda aaGaaGOlaaaa@7137@                                                         (7)

Для нахождения интегралов от многочленов Чебышева первого рода в (6) и (7) учитывая, что T 0 ( x 2 )=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaa igdaaaa@3860@  и T 1 ( x 2 )= x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaa dIhadaWgaaWcbaGaaGOmaaqabaaaaa@398B@  [9], имеем

x 2 T 0 ( s 2 )d s 2 = x 2 , x 2 T 1 ( s 2 )d s 2 = x 2 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfGaqaamaapeaabeWcbeqab0Gaey 4kIipaaSqabeaacaWG4bWaaSbaaWqaaiaaikdaaeqaaaaakiaadsfa daWgaaWcbaGaaGimaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIYa aabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiaa i2dacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaywW7daWfGa qaamaapeaabeWcbeqab0Gaey4kIipaaSqabeaacaWG4bWaaSbaaWqa aiaaikdaaeqaaaaakiaadsfadaWgaaWcbaGaaGymaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4Camaa BaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadIhadaqhaaWcba GaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaiaaiYcaaaa@53F1@                                                                                                 (8)

для четных j 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaGOmaaaa@3624@  согласно [9] получаем

2 x 2 T j 2 ( s 2 )d s 2 = T j 2 +1 ( x 2 ) j 2 +1 T j 2 1 ( x 2 ) j 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaCbiaeaadaWdbaqabSqabe qaniabgUIiYdaaleqabaGaamiEamaaBaaameaacaaIYaaabeaaaaGc caWGubWaaSbaaSqaaiaadQgadaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4C amaaBaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadsfadaWgaa WcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacaWGQb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaaacqGHsisldaWc aaqaaiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey OeI0IaaGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ymaaaacaaISaaaaa@58E3@                                                                                                (9)

для нечетных j 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaG4maaaa@3625@ :

2 x 2 T j 2 ( s 2 )d s 2 = T j 2 +1 ( x 2 ) j 2 +1 T j 2 1 ( x 2 ) j 2 1 2 j 2 (1) ( j 2 +1)/2 j 2 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaCbiaeaadaWdbaqabSqabe qaniabgUIiYdaaleqabaGaamiEamaaBaaameaacaaIYaaabeaaaaGc caWGubWaaSbaaSqaaiaadQgadaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4C amaaBaaaleaacaaIYaaabeaakiaai2dadaWcaaqaaiaadsfadaWgaa WcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacaWGQb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaaacqGHsisldaWc aaqaaiaadsfadaWgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaGaey OeI0IaaGymaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ymaaaacqGHsisldaWcaaqaaiaaikdacaWGQbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaaIOa GaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaiaaiMcacaaI VaGaaGOmaaaaaOqaaiaadQgadaqhaaWcbaGaaGOmaaqaaiaaikdaaa GccqGHsislcaaIXaaaaiaai6caaaa@6A4C@                                                                                    (10)

Постоянная в (10) получена с использованием следующего представления (см. [9]):

T j 2 ( x 2 )= k=0 [ j 2 /2] χ k x 2 j 2 2k , χ k = (1) k 2 j 2 2k1 j 2 ( j 2 k1)! ( j 2 2k)!k! . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadQgadaWgaa qaaiaaikdaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaa beaakiaaiMcacaaI9aWaaabCaeqaleaacaWGRbGaaGypaiaaicdaae aacaaIBbGaamOAamaaBaaabaGaaGOmaaqabaGaaG4laiaaikdacaaI DbaaniabggHiLdGccqaHhpWydaWgaaWcbaGaam4AaaqabaGccaWG4b Waa0baaSqaaiaaikdaaeaacaWGQbWaaSbaaeaacaaIYaaabeaacqGH sislcaaIYaGaam4AaaaakiaaiYcacaaMf8Uaeq4Xdm2aaSbaaSqaai aadUgaaeqaaOGaaGypamaalaaabaGaaGikaiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaWGRbaaaOGaaGOmamaaCaaaleqabaGaamOAam aaBaaabaGaaGOmaaqabaGaeyOeI0IaaGOmaiaadUgacqGHsislcaaI XaaaaOGaamOAamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGQbWaaS baaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4AaiabgkHiTiaaigdacaaI PaGaaGyiaaqaaiaaiIcacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaaGOmaiaadUgacaaIPaGaaGyiaiaadUgacaaIHaaaaiaai6ca aaa@6F14@                                                                                  (11)

Здесь [ j 2 /2] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamOAamaaBaaaleaacaaIYa aabeaakiaai+cacaaIYaGaaGyxaaaa@36E3@  обозначает целую часть числа j 2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaaG4laiaaikdaaaa@3517@ .

Для нечетных j 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO GaeyyzImRaaG4maaaa@3625@  из (11) получаем

χ ( j 2 +1)/2 j 2 +1 χ ( j 2 1)/2 j 2 1 = (1) ( j 2 +1)/2 j 2 +1 (1) ( j 2 1)/2 j 2 1 = 2 j 2 (1) ( j 2 +1)/2 j 2 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabeE8aJnaaBaaaleaaca aIOaGaamOAamaaBaaabaGaaGOmaaqabaGaey4kaSIaaGymaiaaiMca caaIVaGaaGOmaaqabaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqaaO Gaey4kaSIaaGymaaaacqGHsisldaWcaaqaaiabeE8aJnaaBaaaleaa caaIOaGaamOAamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaGymaiaaiM cacaaIVaGaaGOmaaqabaaakeaacaWGQbWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaaGymaaaacaaI9aWaaSaaaeaacaaIOaGaeyOeI0IaaG ymaiaaiMcadaahaaWcbeqaaiaaiIcacaWGQbWaaSbaaeaacaaIYaaa beaacqGHRaWkcaaIXaGaaGykaiaai+cacaaIYaaaaaGcbaGaamOAam aaBaaaleaacaaIYaaabeaakiabgUcaRiaaigdaaaGaeyOeI0YaaSaa aeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaiIcaca WGQbWaaSbaaeaacaaIYaaabeaacqGHsislcaaIXaGaaGykaiaai+ca caaIYaaaaaGcbaGaamOAamaaBaaaleaacaaIYaaabeaakiabgkHiTi aaigdaaaGaaGypamaalaaabaGaaGOmaiaadQgadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaiI cacaWGQbWaaSbaaeaacaaIYaaabeaacqGHRaWkcaaIXaGaaGykaiaa i+cacaaIYaaaaaGcbaGaamOAamaaDaaaleaacaaIYaaabaGaaGOmaa aakiabgkHiTiaaigdaaaGaaGOlaaaa@782D@                                                                                      (12)

Далее, подставляя (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (12) в (6) иЁ(7), имеем

8k w( x 1 , x 2 ) x 1 4 x 2 4k =( T 1 ( x 1 ) I s,1 ) ( T 2 ( x 2 ) G 2 k ) I s,2 + P k,2 ( x 2 ) A,k= 1,4 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaiabgkHiTiaadUgaaaGccaWG3bGaaGikaiaadIhadaWgaaWc baGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaaki aaiMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOWaaWba aSqabeaacaaI0aaaaOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabe aakmaaCaaaleqabaGaaGinaiabgkHiTiaadUgaaaaaaOGaaGypaiaa iIcaieqacaWFubWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaaGymaaqabaGccaaIPaGaeSigI8Maa8xsamaaBaaaleaa caWGZbGaaGilaiaaigdaaeqaaOGaaGykaiabgEPiepaabmaabaGaaG ikaiaa=rfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIYaaabeaakiaaiMcacaWFhbWaaSbaaSqaaiaaikdaaeqaaO WaaWbaaSqabeaacaWGRbaaaOGaaGykaiablIHiVjaa=LeadaWgaaWc baGaam4CaiaaiYcacaaIYaaabeaakiabgUcaRiaa=bfadaWgaaWcba Gaam4AaiaaiYcacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaGykaaGaayjkaiaawMcaaiaa=feacaaISaGaaGzbVl aadUgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaaisdaaaGaaGilaaaa @744C@                                              (13)

где G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  квадратная матрица размером n 2 × n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGOmaa qabaGccqGHxdaTceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaaaaa@37B0@ , в которой последний столбец нулевой, ненулевые элементы первой строки:

G 2,01 = 1 4 , G 2,02 j 2 +1 =( 1) [( j 2 +1)/2] 2 j 2 +1 (2 j 2 +1) 2 1 , j 2 = 1,[ n 2 /2]1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGimaiaayIW7caaIXaaabeaakiaai2dadaWcaaqaaiaaigdaaeaa caaI0aaaaiaaiYcacaaMf8Uaam4ramaaBaaaleaacaaIYaGaaGilai aaicdacaaMi8UaaGOmaiaadQgadaWgaaqaaiaaikdaaeqaaiabgUca RiaaigdaaeqaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaaG4waiaaiIcacaWGQbWaaSbaaeaacaaIYaaabeaacqGH RaWkcaaIXaGaaGykaiaai+cacaaIYaGaaGyxaaaakmaalaaabaGaaG OmaiaadQgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaaabaGa aGikaiaaikdacaWGQbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG ymaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaa iYcacaaMf8UaamOAamaaBaaaleaacaaIYaaabeaakiaai2dadaqdaa qaaiaaigdacaaISaGaaG4waiqad6gagaqbamaaBaaaleaacaaIYaaa beaakiaai+cacaaIYaGaaGyxaiabgkHiTiaaigdaaaGaaGilaaaa@6B4F@

ненулевые элементы второй строки: G 2,10 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGymaiaayIW7caaIWaaabeaakiaai2dacaaIXaaaaa@38BD@ , G 2,12 =1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaaGymaiaayIW7caaIYaaabeaakiaai2dacqGHsislcaaIXaGaaG4l aiaaikdaaaa@3B21@ , одиночные ненулевые элементы предпоследней и последней строк: G 2, n 2 2 n 2 3 =1/(2 n 2 4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GabmOBayaafaWaaSbaaeaacaaIYaaabeaacqGHsislcaaIYaGaaGjc Vlqad6gagaqbamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaG4maaqaba GccaaI9aGaaGymaiaai+cacaaIOaGaaGOmaiqad6gagaqbamaaBaaa leaacaaIYaaabeaakiabgkHiTiaaisdacaaIPaaaaa@44C9@ , G 2, n 2 1 n 2 2 =1/(2 n 2 2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GabmOBayaafaWaaSbaaeaacaaIYaaabeaacqGHsislcaaIXaGaaGjc Vlqad6gagaqbamaaBaaabaGaaGOmaaqabaGaeyOeI0IaaGOmaaqaba GccaaI9aGaaGymaiaai+cacaaIOaGaaGOmaiqad6gagaqbamaaBaaa leaacaaIYaaabeaakiabgkHiTiaaikdacaaIPaaaaa@44C5@ , парные ненулевые элементы остальных строк:

G 2, j 2 j 2 + (1) i = (1) i+1 j 2 2 ,i=1,2, j 2 = 2, n 2 3 ¯ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaikdacaaISa GaamOAamaaBaaabaGaaGOmaaqabaGaaGjcVlaadQgadaWgaaqaaiaa ikdaaeqaaiabgUcaRiaaiIcacqGHsislcaaIXaGaaGykamaaCaaabe qaaiaadMgaaaaabeaakiaai2dadaWcaaqaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamyAaiabgUcaRiaaigdaaaaakeaaca WGQbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaGzbVlaadQgada WgaaWcbaGaaGOmaaqabaGccaaI9aWaa0aaaeaacaaIYaGaaGilaiqa d6gagaqbamaaBaaaleaacaaIYaaabeaakiabgkHiTiaaiodaaaGaaG 4oaaaa@5896@

P k,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3888@  ( k= 1,4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypamaanaaabaGaaGymai aaiYcacaaI0aaaaaaa@35B8@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрицы-строки размером 1× n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaey41aqRabmOBayaafaWaaS baaSqaaiaaikdaaeqaaaaa@367A@  каждая, в P 1,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaaigdaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3853@  один ненулевой элемент P 1,2,0 n 2 +1 ( x 2 )=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaaigdacaaISa GaaGOmaiaaiYcacaaIWaGaaGjcVlaad6gadaWgaaqaaiaaikdaaeqa aiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGypaiaaigdaaaa@403D@ , в остальных матрицах P k,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiaaiMcaaaa@3888@  ненулевые элементы

P k,2,0 n 2 +k ( x 2 )=1, P k,2,0n+j ( x 2 )= x 2 kj (kj)! ,j= 1,k1 ¯ ,k= 2,4 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaadUgacaaISa GaaGOmaiaaiYcacaaIWaGaaGjcVlaad6gadaWgaaqaaiaaikdaaeqa aiabgUcaRiaadUgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGypaiaaigdacaaISaGaaGzbVlaadcfadaWgaaWc baGaam4AaiaaiYcacaaIYaGaaGilaiaaicdacaaMi8UaamOBaiabgU caRiaadQgaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGc caaIPaGaaGypamaalaaabaGaamiEamaaDaaaleaacaaIYaaabaGaam 4AaiabgkHiTiaadQgaaaaakeaacaaIOaGaam4AaiabgkHiTiaadQga caaIPaGaaGyiaaaacaaISaGaaGzbVlaadQgacaaI9aWaa0aaaeaaca aIXaGaaGilaiaadUgacqGHsislcaaIXaaaaiaaiYcacaaMf8Uaam4A aiaai2dadaqdaaqaaiaaikdacaaISaGaaGinaaaacaaIUaaaaa@68E8@

При n 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaisdaaaa@352B@  приведем развернутую форму матрицы G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@ :

G 2 = 0 1 4 0 3 8 0 5 24 0 7 48 0 1 0 1 2 0 0 0 0 0 0 0 1 4 0 1 4 0 0 0 0 0 0 0 1 6 0 1 6 0 0 0 0 0 0 0 1 8 0 1 8 0 0 0 0 0 0 0 1 10 0 1 10 0 0 0 0 0 0 0 1 12 0 1 12 0 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0 1 16 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaOGaaGypamaabmaabaqbaeqabOqcaaaaaaaabaGaaGimaaqaamaa laaabaGaaGymaaqaaiaaisdaaaaabaGaaGimaaqaaiabgkHiTmaala aabaGaaG4maaqaaiaaiIdaaaaabaGaaGimaaqaamaalaaabaGaaGyn aaqaaiaaikdacaaI0aaaaaqaaiaaicdaaeaacqGHsisldaWcaaqaai aaiEdaaeaacaaI0aGaaGioaaaaaeaacaaIWaaabaGaaGymaaqaaiaa icdaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaaic daaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI2aaaaaqaaiaaicda aeaacqGHsisldaWcaaqaaiaaigdaaeaacaaI2aaaaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaI4aaaaaqaaiaaicdaae aacqGHsisldaWcaaqaaiaaigdaaeaacaaI4aaaaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaaaeaacaaI WaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymaiaaicdaaaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacaaIYa aaaaqaaiaaicdaaeaacqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGa aGOmaaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaWaaSaaaeaacaaIXaaabaGa aGymaiaaisdaaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaWaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaaabaGaaGimaa qaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaaaaiaawIcacaGLPaaa aaa@8C3C@

Аналогично, последовательно интегрируя (13) по переменой x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A5@ , получаем

8 k 1 k 2 w( x 1 , x 2 ) x 1 4 k 1 x 2 4 k 2 = Q k 1 1,i ( x 1 ) Q k 2 1,i ( x 2 )A, k i = 0,4 ¯ ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGioaiabgkHiTiaadUgadaWgaaqaaiaaigdaaeqaaiabgkHiTiaa dUgadaWgaaqaaiaaikdaaeqaaaaakiaadEhacaaIOaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGcda ahaaWcbeqaaiaaisdacqGHsislcaWGRbWaaSbaaeaacaaIXaaabeaa aaGccqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aGaeyOeI0Iaam4AamaaBaaabaGaaGOmaaqabaaaaaaakiaa i2daieqacaWFrbWaaSbaaSqaaiaadUgadaWgaaqaaiaaigdaaeqaai abgkHiTiaaigdacaaISaGaamyAaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIXaaabeaakiaaiMcacqGHxkcXcaWFrbWaaSbaaSqaaiaadU gadaWgaaqaaiaaikdaaeqaaiabgkHiTiaaigdacaaISaGaamyAaaqa baGccaaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcacaWFbb GaaGilaiaaywW7caWGRbWaaSbaaSqaaiaadMgaaeqaaOGaaGypamaa naaabaGaaGimaiaaiYcacaaI0aaaaiaaiYcacaaMf8UaamyAaiaai2 dacaaIXaGaaGilaiaaikdacaaISaaaaa@735B@                                                   (14)

Q 0,i ( x i )= T i ( x i ) I s,i ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFrbWaaSbaaSqaaiaaicdaca aISaGaamyAaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaabeaa kiaaiMcacaaI9aGaa8hvamaaBaaaleaacaWGPbaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiablIHiVjaa=LeadaWg aaWcbaGaam4CaiaaiYcacaWGPbaabeaakiaaiYcacaaMf8UaamyAai aai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@4AAF@                                                                                                                   (15)

Q k i ,i ( x i )=( T i ( x i ) G i k i ) I s,i + P k i ,i ( x i ), k i = 1,4 ¯ ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFrbWaaSbaaSqaaiaadUgada WgaaqaaiaadMgaaeqaaiaaiYcacaWGPbaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacaaIOaGaa8hvamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaa=DeadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaai aadUgadaWgaaqaaiaadMgaaeqaaaaakiaaiMcacqWIyiYBcaWFjbWa aSbaaSqaaiaadohacaaISaGaamyAaaqabaGccqGHRaWkcaWFqbWaaS baaSqaaiaadUgadaWgaaqaaiaadMgaaeqaaiaaiYcacaWGPbaabeaa kiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYcaca aMf8Uaam4AamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqaaiaa igdacaaISaGaaGinaaaacaaISaGaaGzbVlaadMgacaaI9aGaaGymai aaiYcacaaIYaGaaGilaaaa@61EC@                                                                             (16)

где матрицы G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaigdaae qaaaaa@337A@  и P k 1 ,1 ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgada WgaaqaaiaaigdaaeqaaiaaiYcacaaIXaaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3962@  определяются аналогичным образом, что и матрицы G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFhbWaaSbaaSqaaiaaikdaae qaaaaa@337B@  и P k 2 ,2 ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFqbWaaSbaaSqaaiaadUgada WgaaqaaiaaikdaaeqaaiaaiYcacaaIYaaabeaakiaaiIcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3965@ .

В качестве точек коллокации в (13) для переменных x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A5@  и x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaa aa@33A6@  будем использовать нули многочлена T n i +1 ( x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gadaWgaa qaaiaadMgaaeqaaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaamyAaaqabaGccaaIPaaaaa@39F5@  (см. [9]):

x i, j i =cos π(2 n i 2 j i +1) 2( n i +1) , j i = 0, n i ¯ ,i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgacaaISa GaamOAamaaBaaabaGaamyAaaqabaaabeaakiaai2daciGGJbGaai4B aiaacohadaqadaqaamaalaaabaGaeqiWdaNaaGikaiaaikdacaWGUb WaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGOmaiaadQgadaWgaaWc baGaamyAaaqabaGccqGHRaWkcaaIXaGaaGykaaqaaiaaikdacaaIOa GaamOBamaaBaaaleaacaWGPbaabeaakiabgUcaRiaaigdacaaIPaaa aaGaayjkaiaawMcaaiaaiYcacaaMf8UaamOAamaaBaaaleaacaWGPb aabeaakiaai2dadaqdaaqaaiaaicdacaaISaGaamOBamaaBaaaleaa caWGPbaabeaaaaGccaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiY cacaaIYaGaaGOlaaaa@5C80@ (17)

Значения полиномов Чебышева в точках (13) находим, используя геометрическое представление T q i ( x i )=cos( q i arccos x i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadghadaWgaa qaaiaadMgaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbaa beaakiaaiMcacaaI9aGaci4yaiaac+gacaGGZbGaaGikaiaadghada WgaaWcbaGaamyAaaqabaGcciGGHbGaaiOCaiaacogacaGGJbGaai4B aiaacohacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@472A@ :

T q i ( x i, j i )=cos π q i (2 n i 2 j i +1) 2( n i +1) , j i , q i = 0, n i ¯ ,i=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadghadaWgaa qaaiaadMgaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbGa aGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaIPaGaaGypai GacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaCcaWGXbWa aSbaaSqaaiaadMgaaeqaaOGaaGikaiaaikdacaWGUbWaaSbaaSqaai aadMgaaeqaaOGaeyOeI0IaaGOmaiaadQgadaWgaaWcbaGaamyAaaqa baGccqGHRaWkcaaIXaGaaGykaaqaaiaaikdacaaIOaGaamOBamaaBa aaleaacaWGPbaabeaakiabgUcaRiaaigdacaaIPaaaaaGaayjkaiaa wMcaaiaaiYcacaaMf8UaamOAamaaBaaaleaacaWGPbaabeaakiaaiY cacaaMi8UaamyCamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqa aiaaicdacaaISaGaamOBamaaBaaaleaacaWGPbaabeaaaaGccaaISa GaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGOlaaaa@6774@

Подставляя (4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) в (1) и используя (2) и (3), приходим к системе линейных n 1 n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaaaaa@3598@  -уравнений в матричной форме:

BA=F,B= i=1 5 B i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbGaa8xqaiaai2dacaWFgb GaaGilaiaaywW7caWFcbGaaGypamaaqahabeWcbaGaamyAaiaai2da caaIXaaabaGaaGynaaqdcqGHris5aOGaa8NqamaaBaaaleaacaWGPb aabeaakiaaiYcaaaa@40C5@                                                                                                                           (18)

где B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadMgaae qaaaaa@33A8@  ( i= 1,5 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaI1aaaaaaa@35B7@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  квадратные матрицы размером n 1 n 2 × n 1 n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTceWG UbGbauaadaWgaaWcbaGaaGymaaqabaGcceWGUbGbauaadaWgaaWcba GaaGOmaaqabaaaaa@3B90@ , F=( F 01 F 02 , F n 1 n 2 ) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFgbGaaGypaiaaiIcacaWGgb WaaSbaaSqaaiaaicdacaaIXaaabeaakiaayIW7caWGgbWaaSbaaSqa aiaaicdacaaIYaaabeaakiaaiYcacqWIMaYscaaMi8UaamOramaaBa aaleaaceWGUbGbauaadaWgaaqaaiaaigdaaeqaaiaayIW7ceWGUbGb auaadaWgaaqaaiaaikdaaeqaaaqabaGccaaIPaWaaWbaaSqabeaaca WGubaaaaaa@45F4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-столбец размером n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@  с элементами F k 1 k 2 =q( d 1 ( x 1, k 1 +1)/2, d 2 ( x 2, k 2 +1)/2)/D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgadaWgaa qaaiaaigdaaeqaaiaayIW7caWGRbWaaSbaaeaacaaIYaaabeaaaeqa aOGaaGypaiaadghacaaIOaGaamizamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaam4AamaaBaaabaGa aGymaaqabaaabeaakiabgUcaRiaaigdacaaIPaGaaG4laiaaikdaca aISaGaamizamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaSba aSqaaiaaikdacaaISaGaam4AamaaBaaabaGaaGOmaaqabaaabeaaki abgUcaRiaaigdacaaIPaGaaG4laiaaikdacaaIPaGaaG4laiaadsea aaa@52CB@  за исключением нулевых элементов при k 1 = n 1 +1, n 1 +4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaanaaabaGaamOBamaaBaaaleaacaaIXaaabeaakiabgUca RiaaigdacaaISaGaaGjcVlaad6gadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaaI0aaaaaaa@3DC6@  или k 2 = n 2 +1, n 2 +4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaikdaaeqaaO GaaGypamaanaaabaGaamOBamaaBaaaleaacaaIYaaabeaakiabgUca RiaaigdacaaISaGaaGjcVlaad6gadaWgaaWcbaGaaGOmaaqabaGccq GHRaWkcaaI0aaaaaaa@3DC9@ , которые соответствуют граничным условиям (2) и (3). Ненулевые строки B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadMgaae qaaaaa@33A8@  ( i= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B5@  ) получены из уравнения (1) в узлах (17) с использованием (14) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (16):

B 1 = κ 1 Q 0,1 ( x 1,0 ) Q 0,1 ( x 1,1 ) Q 0,1 ( x 1, n 1 ) 0 0 0 0 Q 4,2 ( x 2,0 ) Q 4,2 ( x 2,1 ) Q 4,2 ( x 2, n 2 ) 0 0 0 0 , B 2 = κ 2 Q 4,1 ( x 1,0 ) Q 4,1 ( x 1,1 ) Q 4,1 ( x 1, n 1 ) 0 0 0 0 Q 0,2 ( x 2,0 ) Q 0,2 ( x 2,1 ) Q 0,2 ( x 2, n 2 ) 0 0 0 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaigdaae qaaOGaaGypaiabeQ7aRnaaBaaaleaacaaIXaaabeaakmaadmaaeaqa beaacaWFrbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqaaOGaaGykaaqa aiaa=ffadaWgaaWcbaGaaGimaiaaiYcacaaIXaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGccaaIPaaabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq WIMaYsaeaacaWFrbWaaSbaaSqaaiaaicdacaaISaGaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaaIXaGaaGilaiaad6gadaWgaaqaai aaigdaaeqaaaqabaGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa icdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaaacaGLBbGaayzxaa Gaey4LIq8aamWaaqaabeqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYca caaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaaG imaaqabaGccaaIPaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaa ikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaiaaiYcacaaIXa aabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGinai aaiYcacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaI SaGaamOBamaaBaaabaGaaGOmaaqabaaabeaakiaaiMcaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaI WaaaaiaawUfacaGLDbaacaaISaGaaGzbVlaa=jeadaWgaaWcbaGaaG OmaaqabaGccaaI9aGaeqOUdS2aaSbaaSqaaiaaikdaaeqaaOWaamWa aqaabeqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaabeaaki aaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaaGimaaqabaGccaaI PaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaaigdaaeqaaOGaaG ikaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaaIXaaabeaakiaaiMca aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaamOBamaaBa aabaGaaGymaaqabaaabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaabaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaaaiaawUfaca GLDbaacqGHxkcXdaWadaabaeqabaGaa8xuamaaBaaaleaacaaIWaGa aGilaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaiaaiY cacaaIWaaabeaakiaaiMcaaeaacaWFrbWaaSbaaSqaaiaaicdacaaI SaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGilai aaigdaaeqaaOGaaGykaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeSOjGSeabaGaa8xuamaaBaaaleaaca aIWaGaaGilaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOm aiaaiYcacaWGUbWaaSbaaeaacaaIYaaabeaaaeqaaOGaaGykaaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaicdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdaaaGaay5waiaaw2faaiaacYcaaaa@CEC9@

B 3 = κ 3 Q 2,1 ( x 1,0 ) Q 2,1 ( x 1,1 ) Q 2,1 ( x 1, n 1 ) 0 0 0 0 Q 2,2 ( x 2,0 ) Q 2,2 ( x 2,1 ) Q 2,2 ( x 2, n 2 ) 0 0 0 0 , κ i = 16 d i 4 ,i=1,2, κ 3 = 32 d 1 2 d 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaiodaae qaaOGaaGypaiabeQ7aRnaaBaaaleaacaaIZaaabeaakmaadmaaeaqa beaacaWFrbWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqaaOGaaGykaaqa aiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIXaaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGccaaIPaaabaGa aGzaVlaaygW7caaMb8UaaGzaVlaaygW7caaMb8UaaGzaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIMaYsaeaacaWF rbWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGccaaIOaGaamiEam aaBaaaleaacaaIXaGaaGilaiaad6gadaWgaaqaaiaaigdaaeqaaaqa baGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGimaiaaykW7aaGaay5waiaaw2faaiabgEPi epaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaikdacaaISaGaaGOmaa qabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGilaiaaicdaaeqa aOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIYaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaaGymaaqabaGc caaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlablAcilbqaaiaa=ffadaWgaaWcbaGaaGOmaiaaiYcacaaIYaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGaamOBamaaBa aabaGaaGOmaaqabaaabeaakiaaiMcaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaicdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaicdaaaGaay5waiaaw2faaiaaiYcacaaMf8UaeqOUdS 2aaSbaaSqaaiaadMgaaeqaaOGaaGypamaalaaabaGaaGymaiaaiAda aeaacaWGKbWaa0baaSqaaiaadMgaaeaacaaI0aaaaaaakiaaiYcaca aMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaGzbVlab eQ7aRnaaBaaaleaacaaIZaaabeaakiaai2dadaWcaaqaaiaaiodaca aIYaaabaGaamizamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadsga daqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaaGOlaaaa@1F60@

Ненулевые строки матриц B 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaisdaae qaaaaa@3378@  и B 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaiwdaae qaaaaa@3379@  соответствуют граничным условиям (2) и (3):

B 4 = 0 0 ... 0 κ 4 Q 3,1 (1) κ 4 Q 3,1 (1) Q 4,1 (1) Q 4,1 (1) Q 4,2 ( x 2,0 ) Q 4,2 ( x 2,1 ) ... Q 4,2 ( x 2, n 2 ) κ 5 Q 3,2 (1) κ 5 Q 3,2 (1) Q 4,2 (1) Q 4,2 (1) , B 5 = Q 4,1 ( x 1,0 ) Q 4,1 ( x 1,1 ) ... Q 4,1 ( x 1, n 1 ) 0 0 0 0 0 0 ... 0 κ 5 Q 2,2 (1) κ 5 Q 2,2 (1) Q 4,2 (1) Q 4,2 (1) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaaisdaae qaaOGaaGypamaadmaaeaqabeaacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaicdaaeaacqaH6oWAdaWgaaWcbaGaaGinaaqabaGccaWF rbWaaSbaaSqaaiaaiodacaaISaGaaGymaaqabaGccaaIOaGaeyOeI0 IaaGymaiaaiMcaaeaacqaH6oWAdaWgaaWcbaGaaGinaaqabaGccaWF rbWaaSbaaSqaaiaaiodacaaISaGaaGymaaqabaGccaaIOaGaaGymai aaiMcaaeaacaWFrbWaaSbaaSqaaiaaisdacaaISaGaaGymaaqabaGc caaIOaGaeyOeI0IaaGymaiaaiMcaaeaacaWFrbWaaSbaaSqaaiaais dacaaISaGaaGymaaqabaGccaaIOaGaaGymaiaaiMcaaaGaay5waiaa w2faaiabgEPiepaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaisdaca aISaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaaleaacaaIYaGaaGil aiaaicdaaeqaaOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiY cacaaIYaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaikdacaaISaGa aGymaaqabaGccaaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGa a8xuamaaBaaaleaacaaI0aGaaGilaiaaikdaaeqaaOGaaGikaiaadI hadaWgaaWcbaGaaGOmaiaaiYcacaWGUbWaaSbaaeaacaaIYaaabeaa aeqaaOGaaGykaaqaaiabeQ7aRnaaBaaaleaacaaI1aaabeaakiaa=f fadaWgaaWcbaGaaG4maiaaiYcacaaIYaaabeaakiaaiIcacqGHsisl caaIXaGaaGykaaqaaiabeQ7aRnaaBaaaleaacaaI1aaabeaakiaa=f fadaWgaaWcbaGaaG4maiaaiYcacaaIYaaabeaakiaaiIcacaaIXaGa aGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIYaaabeaaki aaiIcacqGHsislcaaIXaGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGin aiaaiYcacaaIYaaabeaakiaaiIcacaaIXaGaaGykaaaacaGLBbGaay zxaaGaaGilaiaaywW7caWFcbWaaSbaaSqaaiaaiwdaaeqaaOGaaGyp amaadmaaeaqabeaacaWFrbWaaSbaaSqaaiaaisdacaaISaGaaGymaa qabaGccaaIOaGaamiEamaaBaaaleaacaaIXaGaaGilaiaaicdaaeqa aOGaaGykaaqaaiaa=ffadaWgaaWcbaGaaGinaiaaiYcacaaIXaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaaigdacaaISaGaaGymaaqabaGc caaIPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaiOlaiaac6cacaGGUaaabaGaa8xuamaaBaaa leaacaaI0aGaaGilaiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcba GaaGymaiaaiYcacaWGUbWaaSbaaeaacaaIXaaabeaaaeqaaOGaaGyk aaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaIWaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWaaaaiaawUfacaGL DbaacqGHxkcXdaWadaabaeqabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGimaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaac6cacaGGUaGaaiOlaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaIWaaabaGaeqOUdS2aaSbaaSqaaiaaiwdaaeqaaOGaa8 xuamaaBaaaleaacaaIYaGaaGilaiaaikdaaeqaaOGaaGikaiabgkHi TiaaigdacaaIPaaabaGaeqOUdS2aaSbaaSqaaiaaiwdaaeqaaOGaa8 xuamaaBaaaleaacaaIYaGaaGilaiaaikdaaeqaaOGaaGikaiaaigda caaIPaaabaGaa8xuamaaBaaaleaacaaI0aGaaGilaiaaikdaaeqaaO GaaGikaiabgkHiTiaaigdacaaIPaaabaGaa8xuamaaBaaaleaacaaI 0aGaaGilaiaaikdaaeqaaOGaaGikaiaaigdacaaIPaaaaiaawUfaca GLDbaacaGGSaaaaa@AED7@

где κ 4 =2/ d 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH6oWAdaWgaaWcbaGaaGinaaqaba GccaaI9aGaaGOmaiaai+cacaWGKbWaaSbaaSqaaiaaigdaaeqaaaaa @3873@ , κ 5 =2/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH6oWAdaWgaaWcbaGaaGynaaqaba GccaaI9aGaaGOmaiaai+cacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaa @3875@ .

Для приведения матрицы B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbaaaa@328E@  в (18) к разреженной и уменьшения числа вычислений при ее заполнении используем свойство конечных сумм многочленов Чебышева в точках (17) (см. [9]):

j i =0 n i T l i ( x i, j i ) T q i ( x i, j i )= γ l i δ l i , q i ,i=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgadaWgaaqaai aadMgaaeqaaiaai2dacaaIWaaabaGaamOBamaaBaaabaGaamyAaaqa baaaniabggHiLdGccaWGubWaaSbaaSqaaiaadYgadaWgaaqaaiaadM gaaeqaaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGPbGaaGilaiaa dQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaIPaGaamivamaaBaaale aacaWGXbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaamyAaiaaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaO GaaGykaiaai2dacqaHZoWzdaWgaaWcbaGaamiBamaaBaaabaGaamyA aaqabaaabeaakiabes7aKnaaBaaaleaacaWGSbWaaSbaaeaacaWGPb aabeaacaaISaGaamyCamaaBaaabaGaamyAaaqabaaabeaakiaaiYca caaMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@5E3C@

где δ l i , q i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaGaaGilaiaadghadaWgaaqaaiaadMgaaeqaaaqa baaaaa@384D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  символ Кронекера, коэффициент γ l i =1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaaabeaakiaai2dacaaIXaGaaG4laiaaikdaaaa@3895@ , если l i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3557@ , иначе γ l i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamiBamaaBa aabaGaamyAaaqabaaabeaakiaai2dacaaIXaaaaa@3720@ . В этом случае левые и правые части уравнения (18) умножаем на матрицу S= S 1 S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaGypaiaa=nfadaWgaa WcbaGaaGymaaqabaGccqGHxkcXcaWFtbWaaSbaaSqaaiaaikdaaeqa aaaa@38F0@ , где отличные от нуля элементы квадратных матриц S 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaigdaae qaaaaa@3386@  и S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaikdaae qaaaaa@3387@ , имеющих размер соответственно n i × n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaamyAaa qabaGccqGHxdaTceWGUbGbauaadaWgaaWcbaGaamyAaaqabaaaaa@3814@ , определяются как S i,0, j i =1/( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaaISa GaaGimaiaaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGyp aiaaigdacaaIVaGaaGikaiaad6gadaWgaaWcbaGaamyAaaqabaGccq GHRaWkcaaIXaGaaGykaaaa@3F35@ , S i, q i , j i =2 T q i ( x i, j i )/( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaaISa GaamyCamaaBaaabaGaamyAaaqabaGaaGilaiaadQgadaWgaaqaaiaa dMgaaeqaaaqabaGccaaI9aGaaGOmaiaadsfadaWgaaWcbaGaamyCam aaBaaabaGaamyAaaqabaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaa dMgacaaISaGaamOAamaaBaaabaGaamyAaaqabaaabeaakiaaiMcaca aIVaGaaGikaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaaI XaGaaGykaaaa@49CF@ , ( j i = 0, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGimaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@3829@ , j i = 1, n i ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGymaiaaiYcacaWGUbWaaSbaaSqaaiaadMga aeqaaaaaaaa@382A@  ), S n i + k i , n i + k i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gadaWgaa qaaiaadMgaaeqaaiabgUcaRiaadUgadaWgaaqaaiaadMgaaeqaaiaa iYcacaWGUbWaaSbaaeaacaWGPbaabeaacqGHRaWkcaWGRbWaaSbaae aacaWGPbaabeaaaeqaaOGaaGypaiaaigdaaaa@3ECD@ , ( k i = 1,4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaanaaabaGaaGymaiaaiYcacaaI0aaaaaaa@36DC@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ). В результате получаем

B S A= F S , B S = i=1 5 B S,i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadofaae qaaOGaa8xqaiaai2dacaWFgbWaaSbaaSqaaiaadofaaeqaaOGaaGil aiaaywW7caWFcbWaaSbaaSqaaiaadofaaeqaaOGaaGypamaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaaGynaaqdcqGHris5aOGaa8Nq amaaBaaaleaacaWGtbGaaGilaiaadMgaaeqaaOGaaGilaaaa@457D@                                                                                                                    (19)

где B S,i =S B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFcbWaaSbaaSqaaiaadofaca aISaGaamyAaaqabaGccaaI9aGaam4uaiaa=jeadaWgaaWcbaGaamyA aaqabaaaaa@38BC@  ( i= 1,5 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaaI1aaaaaaa@35B7@  ), F S =SF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFgbWaaSbaaSqaaiaadofaae qaaOGaaGypaiaa=nfacaWFgbaaaa@3602@ . Решение уравнения (19) находим LU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaamyvaaaa@336C@  -методом. Зная элементы матрицы A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbaaaa@328D@ , функцию w(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@36D3@  получаем, используя (14).

4. Представление и анализ результатов.

Рассмотрим изгиб пластины, на которую действует распределенная нагрузка:

q(x,y)= q 0 cos π(2x d 1 ) d 1 cos π(2y d 2 ) d 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam yEaiaaiMcacaaI9aGaamyCamaaBaaaleaacaaIWaaabeaakmaabeaa baGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiI cacaaIYaGaamiEaiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaGc caaIPaaabaGaamizamaaBaaaleaacaaIXaaabeaaaaaakiaawIcaca GLPaaaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGaeqiWdaNa aGikaiaaikdacaWG5bGaeyOeI0IaamizamaaBaaaleaacaaIYaaabe aakiaaiMcaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjk aiaawMcaaiabgUcaRaGaayjkaaaaaa@56F5@

+ d 1 4 d 2 4 π 4 D ( d 1 2 + d 2 2 ) 2 1 d 1 2 cos π(2x d 1 ) d 1 + 1 d 2 2 cos π(2y d 2 ) d 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaam izamaaDaaaleaacaaIXaaabaGaaGinaaaakiaadsgadaqhaaWcbaGa aGOmaaqaaiaaisdaaaaakeaacqaHapaCdaahaaWcbeqaaiaaisdaaa GccaWGebGaaGikaiaadsgadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWGKbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGykam aaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaamaalaaabaGaaGymaaqa aiaadsgadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaci4yaiaac+ gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiIcacaaIYaGaamiE aiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGaam izamaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaacqGHRaWk daWcaaqaaiaaigdaaeaacaWGKbWaa0baaSqaaiaaikdaaeaacaaIYa aaaaaakiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaC caaIOaGaaGOmaiaadMhacqGHsislcaWGKbWaaSbaaSqaaiaaikdaae qaaOGaaGykaaqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaaaaGccaGL OaGaayzkaaaacaGLOaGaayzkaaaacaGLPaaacaaISaaaaa@6A4B@

где q 0 =10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaaigdacaaIWaWaaWbaaSqabeaacaaI1aaaaaaa@36CF@  Па. В этом случае аналитическое решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3) имеет вид

ω(x,y)= q 0 d 1 4 d 2 4 π 4 D ( d 1 2 + d 2 2 ) 2 1+cos π(2x d 1 ) d 1 1+cos π(2y d 2 ) d 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamiEaiaaiYcaca WG5bGaaGykaiaai2dadaWcaaqaaiaadghadaWgaaWcbaGaaGimaaqa baGccaWGKbWaa0baaSqaaiaaigdaaeaacaaI0aaaaOGaamizamaaDa aaleaacaaIYaaabaGaaGinaaaaaOqaaiabec8aWnaaCaaaleqabaGa aGinaaaakiaadseacaaIOaGaamizamaaDaaaleaacaaIXaaabaGaaG OmaaaakiabgUcaRiaadsgadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc caaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaaGymaiabgU caRiGacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacqaHapaCcaaI OaGaaGOmaiaadIhacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGykaaqaaiaadsgadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaci4yai aac+gacaGGZbWaaeWaaeaadaWcaaqaaiabec8aWjaaiIcacaaIYaGa amyEaiabgkHiTiaadsgadaWgaaWcbaGaaGOmaaqabaGccaaIPaaaba GaamizamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaiaa wIcacaGLPaaacaaIUaaaaa@6E4F@                                                     (20)

При проведении вычислений предложенным методом (ChPIn) использованы значения физических параметров из [1, 2]: d 1 = d 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadsgadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGymaiaa icdaaaa@3879@  м, h=0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGypaiaaicdacaaISaGaaG ymaaaa@35A0@  м, E=200 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaikdacaaIWaGaaG imaaaa@3582@  ГПа, ν=0,28 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGimaiaaiYcaca aIYaGaaGioaaaa@372E@ , n 1,2 =n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaigdacaaISa GaaGOmaaqabaGccaaI9aGaamOBaaaa@36D1@ . В таблице 1 представлены результаты вычислений, где для расчета погрешности построенного решения применены 100 равномерно распределенных контрольных точек ( x i , y j ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEamaaBaaaleaacaWGPb aabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa @3820@  (см. [1]):

E n = max i,j |ω( x i , y j )w( x i , y j )| max i,j |ω( x i , y j )| . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGfbWaaSbaaSqaaiaad6gaaeqaaOGae8xjIa1aaSbaaSqaaiab g6HiLcqabaGccaaI9aWaaSaaaeaadaGfqbqabSqaaiaadMgacaaISa GaamOAaaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI8bGaeqyYdCNa aGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBa aaleaacaWGQbaabeaakiaaiMcacqGHsislcaWG3bGaaGikaiaadIha daWgaaWcbaGaamyAaaqabaGccaaISaGaamyEamaaBaaaleaacaWGQb aabeaakiaaiMcacaaI8baabaWaaybuaeqaleaacaWGPbGaaGilaiaa dQgaaeqakeaaciGGTbGaaiyyaiaacIhaaaGaaGiFaiabeM8a3jaaiI cacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMhadaWgaaWc baGaamOAaaqabaGccaaIPaGaaGiFaaaacaaIUaaaaa@664B@

В таблице приведены также значения погрешности численного решения краевой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), полученного на основе представления в виде усеченного ряда по многочленам Чебышева первого рода самой искомой функции. Результаты вычислений в этом случае без использования интегрального подхода в таблице имеют аббревиатуру ChP. Здесь приходим к системе линейных ( n 1 +1)( n 2 +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBamaaBaaaleaacaaIXa aabeaakiabgUcaRiaaigdacaaIPaGaaGikaiaad6gadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaaIXaGaaGykaaaa@3B8E@  уравнений, полученных при использовании точек (17), и осуществляем замену уравнений согласно граничным условиям (2) и (3) в точках, для которых x 1 = x 1,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaaIWaaabeaaaaa@37CA@ , x 1, n 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdacaaISa GaamOBamaaBaaabaGaaGymaaqabaaabeaaaaa@362A@  или x 2 = x 2,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGOmaiaaiYcacaaIWaaabeaaaaa@37CC@ , x 2, n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdacaaISa GaamOBamaaBaaabaGaaGOmaaqabaaabeaaaaa@362C@ , соответственно на уравнения

w=0, w x 1 =0, x 1 =1,1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdacaaISaGaaG zbVpaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWc baGaaGymaaqabaaaaOGaaGypaiaaicdacaaISaGaaGzbVlaadIhada WgaaWcbaGaaGymaaqabaGccaaI9aGaeyOeI0IaaGymaiaaiYcacaaM i8UaaGymaiaaiYcaaaa@4822@

w=0, w x 2 =0, x 2 =1,1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiaaicdacaaISaGaaG zbVpaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhadaWgaaWc baGaaGOmaaqabaaaaOGaaGypaiaaicdacaaISaGaaGzbVlaadIhada WgaaWcbaGaaGOmaaqabaGccaaI9aGaeyOeI0IaaGymaiaaiYcacaaM i8UaaGymaiaai6caaaa@4826@

В последнем столбце таблицы представлены результаты полиномиальной интерполяции (ChPS) аналитического решения (20), коэффициенты в разложении которого определяются с использованием значений ω( d 1 ( x 1 +1)/2, d 2 ( x 2 +1)/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamizamaaBaaale aacaaIXaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaaGymaiaaiMcacaaIVaGaaGOmaiaaiYcacaWGKbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcaaIXaGaaGykaiaai+cacaaIYaGaaGykaaaa@4629@ , вычисленных в узлах (17):

A=S ' 1 1 S ' 2 1 W, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFbbGaaGypaiaa=nfacaaINa WaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaey4LIqSaa83uaiaaiEcadaWgaaWcbaGaaGOmaaqabaGcdaahaa WcbeqaaiabgkHiTiaaigdaaaGccaWFxbGaaGilaaaa@3F96@

где элементы квадратных матриц S ' 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaG4jamaaBaaaleaaca aIXaaabeaaaaa@3437@  и S ' 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbGaaG4jamaaBaaaleaaca aIYaaabeaaaaa@3438@ , имеющих размер ( n i +1)×( n i +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBamaaBaaaleaacaWGPb aabeaakiabgUcaRiaaigdacaaIPaGaey41aqRaaGikaiaad6gadaWg aaWcbaGaamyAaaqabaGccqGHRaWkcaaIXaGaaGykaaaa@3E0A@ , равны соответствующим элементам матриц S 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaigdaae qaaaaa@3386@  и S 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieqacaWFtbWaaSbaaSqaaiaaikdaae qaaaaa@3387@ :

S i,0, j i = S i,0, j i , S i, q i , j i = S i, q i , j i , j i = 0, n i ¯ , j i = 1, n i ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGtbGbauaadaWgaaWcbaGaamyAai aaiYcacaaIWaGaaGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGc caaI9aGaam4uamaaBaaaleaacaWGPbGaaGilaiaaicdacaaISaGaam OAamaaBaaabaGaamyAaaqabaaabeaakiaaiYcacaaMf8Uabm4uayaa faWaaSbaaSqaaiaadMgacaaISaGaamyCamaaBaaabaGaamyAaaqaba GaaGilaiaadQgadaWgaaqaaiaadMgaaeqaaaqabaGccaaI9aGaam4u amaaBaaaleaacaWGPbGaaGilaiaadghadaWgaaqaaiaadMgaaeqaai aaiYcacaWGQbWaaSbaaeaacaWGPbaabeaaaeqaaOGaaGilaiaaywW7 caWGQbWaaSbaaSqaaiaadMgaaeqaaOGaaGypamaanaaabaGaaGimai aaiYcacaWGUbWaaSbaaSqaaiaadMgaaeqaaaaakiaaiYcacaaMf8Ua amOAamaaBaaaleaacaWGPbaabeaakiaai2dadaqdaaqaaiaaigdaca aISaGaamOBamaaBaaaleaacaWGPbaabeaaaaGccaaISaaaaa@62E4@

W=( w 00 w 01 w n 1 n 2 1 w n 1 n 2 ) T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGypaiaaiIcacaWG3bWaaS baaSqaaiaaicdacaaIWaaabeaakiaaysW7caWG3bWaaSbaaSqaaiaa icdacaaIXaaabeaakiaaysW7cqWIMaYscaaMe8Uaam4DamaaBaaale aacaWGUbWaaSbaaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGa aGOmaaqabaGaeyOeI0IaaGymaaqabaGccaaMe8Uaam4DamaaBaaale aacaWGUbWaaSbaaeaacaaIXaaabeaacaaMi8UaamOBamaaBaaabaGa aGOmaaqabaaabeaakiaaiMcadaahaaWcbeqaaiaadsfaaaaaaa@50DE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица-столбец размера n 1 n 2 ×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGUbGbauaadaWgaaWcbaGaaGymaa qabaGcceWGUbGbauaadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaaI Xaaaaa@3874@ , элементы которой равны w k 1 k 2 =ω( d 1 ( x 1, k 1 +1)/2, d 2 ( x 2, k 2 +1)/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadUgadaWgaa qaaiaaigdaaeqaaiaayIW7caWGRbWaaSbaaeaacaaIYaaabeaaaeqa aOGaaGypaiabeM8a3jaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhadaWgaaWcbaGaaGymaiaaiYcacaWGRbWaaSbaaeaa caaIXaaabeaaaeqaaOGaey4kaSIaaGymaiaaiMcacaaIVaGaaGOmai aaiYcacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhadaWg aaWcbaGaaGOmaiaaiYcacaWGRbWaaSbaaeaacaaIYaaabeaaaeqaaO Gaey4kaSIaaGymaiaaiMcacaaIVaGaaGOmaiaaiMcaaaa@5251@ , ( k i =0, n i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdacaaISaGaamOBamaaBaaaleaacaWGPbaabeaaaaa@3819@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@  ).

n 3|c| E n 24 ChPIn ChP ChPS 6 1,3 10 4 7,1 10 2 1,4 10 3 9 5,1 10 7 1,8 10 3 4,2 10 5 12 2,7 10 11 2,7 10 6 1,2 10 8 18 1,2 10 12 3,5 10 12 9,8 10 15 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWbeaaaaaqaaiaad6gaaeaaca aIZaGaaGiFaiaadogacaaI8bqeeuuDJXwAKbsr4rNCHbaceaGae8xj IaLaamyramaaBaaaleaacaWGUbaabeaakiab=vIiqnaaBaaaleaacq GHEisPaeqaaaGcbaaabaaabaGaaGOmaiabgkHiTiaaisdaaeaacaqG dbGaaeiAaiaabcfacaqGjbGaaeOBaaqaaiaaboeacaqGObGaaeiuaa qaaiaaboeacaqGObGaaeiuaiaabofaaeaacaaI2aaabaGaaGymaiaa iYcacaaIZaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTi aaisdaaaaakeaacaaI3aGaaGilaiaaigdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaeyOeI0IaaGOmaaaaaOqaaiaaigdacaaISaGaaG inaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaa aaGcbaGaaGyoaaqaaiaaiwdacaaISaGaaGymaiabgwSixlaaigdaca aIWaWaaWbaaSqabeaacqGHsislcaaI3aaaaaGcbaGaaGymaiaaiYca caaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaio daaaaakeaacaaI0aGaaGilaiaaikdacqGHflY1caaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaGynaaaaaOqaaiaaigdacaaIYaaabaGaaG OmaiaaiYcacaaI3aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiab gkHiTiaaigdacaaIXaaaaaGcbaGaaGOmaiaaiYcacaaI3aGaeyyXIC TaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiAdaaaaakeaacaaI XaGaaGilaiaaikdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaey OeI0IaaGioaaaaaOqaaiaaigdacaaI4aaabaGaaGymaiaaiYcacaaI YaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdaca aIYaaaaaGcbaGaaG4maiaaiYcacaaI1aGaeyyXICTaaGymaiaaicda daahaaWcbeqaaiabgkHiTiaaigdacaaIYaaaaaGcbaGaaGyoaiaaiY cacaaI4aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaa igdacaaI1aaaaaGcbaaabaaabaaabaaaaaaa@B2C5@

Таблица 1. Значения погрешности полученного решения

 

Из таблицы видно, что высокая точность полученного решения с использованием нулей многочленов Чебышева первого рода достигается при сравнительно малых значениях n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@ .

5. Заключение.

В работе методом полиномиальной аппроксимации с использованием интегрального подхода построено решение задачи расчета напряженно-деформированного состояния прямоугольной изотропной пластины под действием заданной поперечной нагрузки для случая граничного условия защемленого края. Показано, что построенное решение с высокой точностью приближает аналитическое решение.

×

Об авторах

Василий Николаевич Попов

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Автор, ответственный за переписку.
Email: v.popov@narfu.ru
Россия, Архангельск

Оксана Владимировна Гермидер

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: o.germider@narfu.ru
Россия, Архангельск

Список литературы

  1. Беляев В. А., Брындин Л. С., Голушко С. К., Семисалов Б. В., Шапеев В. П. H-, P- и HР-варианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения// Ж. вычисл. мат. мат. физ. — 2022. — 62, № 4. — С. 531–552.
  2. Голушко С. К., Идимешев С. В., Шапеев В. П. Метод коллокаций и наименьших невязок в приложении к задачам механики изотропных пластин// Вычисл. технол. — 2013. — 18, №6. — С. 31–43.
  3. Карчевский А. Л. Вычисление напряжений в угольном пласте с учетом диффузии газа// Сиб. ж. индустр. мат. — 2016. — 19, №4. — С. 31–43.
  4. Ряжских В. И., Слюсарев М. И., Попов М. И.Численное интегрирование бигармонического уравнения в квадратной области// Вестн. С.-Петерб. ун-та. Сер. 10. Прикл. мат. Информ. Процессы управл. — 2013. — 1. — С. 52–62.
  5. Шапеев В. П., Брындин Л. С., Беляев В. А. HP-Вариант метода коллокации и наименьших квадратов с интегральными коллокациями решения бигармонического уравнения// Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. — 2022. — 26, №3. — С. 556–572.
  6. Baseri A., Abbasbandy S., Babolian E. A collocation method for fractional diffusion equation in a long time with Chebyshev functions// Appl. Math. Comput. — 2018. — 322. — P. 55–65.
  7. Liu S., Trenkler G. Hadamard, Khatri-Rao, Kronecker and other matrix products// Int. J. Inform. Syst. Sci. — 2008. — 4, № 1. — P. 160–177.
  8. Mai-Duy N., Strunin D., Karunasena W. A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation// Eng. Anal. Bound. Elements. — 2022. — 143. — P. 687–699.
  9. Mason J., Handscomb D. Chebyshev Polynomials. — Florida: CRC Press, 2003.
  10. Shao W., Wu X. An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations// Appl. Math. Model. — 2015. — 39, № 9. — P. 2554–2569.
  11. Shao W., Wu X., Wang C. Numerical study of an adaptive domain decompositionalgorithm based on Chebyshev tau method forsolving singular perturbed problems// Appl. Num. Math. — 2017. — 118. — P. 19–32.
  12. Timoshenko S., Woinowsky–Krieger S. Theory of Plates and Shells. — New York: McGraw-Hill, 1959.
  13. Ye X., Zhang Sh. A family of H-div-div mixed triangular finite elements for the biharmonic equation// Res. Appl. Math. — 2022. — 15. — P. 100318.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Попов В.Н., Гермидер О.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».