О восстановлении решения задачи Коши для сингулярного уравнения теплопроводности

Обложка

Цитировать

Полный текст

Аннотация

Задача восстановления решения сингулярного уравнения теплопроводности по положительной части действительной прямой в данный момент времени решается на основе неточных измерений этого решения в другие предыдущие моменты времени. Получены явные выражения для оптимального метода восстановления и его ошибок.

Полный текст

1. Введение. Постановка проблемы.

Хорошо известно, что распределение температуры в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@  описывается уравнением

u t =Δu+f(x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiaai2dacqqHuoarcaWG1bGaey4kaSIaamOzaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaaa@404B@

где Δ= 2 / x 1 2 ++ 2 / x n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaI9aGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaaG4laiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccqGHRaWkcqWIMaYscqGHRaWkcqGHciITdaahaa WcbeqaaiaaikdaaaGccaaIVaGaeyOaIyRaamiEamaaDaaaleaacaWG UbaabaGaaGOmaaaaaaa@4548@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор Лапласа в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@ .

В [10] была поставлена следующая задача. Пусть известны температурные распределения u(, t 1 ),,u(, t p ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiabgwSixlaaiYcaca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcacqWIMaYscaaI SaGaamyDaiaaiIcacqGHflY1caaISaGaamiDamaaBaaaleaacaWGWb aabeaakiaaiMcaaaa@431B@  в моменты времени 0 t 1 << t p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDamaaBaaale aacaaIXaaabeaakiaaiYdacqWIMaYscaaI8aGaamiDamaaBaaaleaa caWGWbaabeaaaaa@3AE2@ , заданные приближенно. Точнее, известны такие функции y j () L 2 ( N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaOGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVb aceaGae8xhHi1aaWbaaSqabeaacaWGobaaaOGaaGykaaaa@4800@ , что

u(, t j ) y j () L 2 ( N ) δ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiabgwSixlaaiYcacaWG0bWaaSbaaSqaaiaadQga aeqaaOGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaamOAaaqabaGcca aIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaa caaIYaaabeaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiuaacqGFDeIudaahaaqabeaacaWGobaaaiaaiMcaaeqaaOGa eyizImQaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaaGilaaaa@5AFA@

где δ j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamOAaaqaba GccaaI+aGaaGimaaaa@360D@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Для каждого набора таких функций требуется найти функцию в L 2 ( N ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGa e8xhHi1aaWbaaSqabeaacaWGobaaaOGaaGykaaaa@40AA@ , которая наилучшим образом аппроксимирует реальное распределение температуры в N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOtaaaaaaa@3D78@  в фиксированный момент времени τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  в некотором смысле. В данной работе исследуется аналогичная задача для сингулярного уравнения теплового типа с оператором Бесселя (см. [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 9,13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 15]). Особенности вышеуказанного типа возникают в моделях математической физики в таких случаях, когда характеристики сред (например, характеристики диффузии или характеристики теплопроводности) имеют вырожденные степенные неоднородности. Кроме того, к таким уравнениям приводят ситуации, когда исследуются изотропные диффузионные процессы с осевой или сферической симметрией.

Мы далее сосредоточимся на уравнении с одной пространственной переменной. Однако изложенные ниже результаты без труда переносятся на многомерный случай.

Рассмотрим задачу Коши для уравнения

u t =Bu,x + ,t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiaai2dacaWGcbGaamyDaiaaiYcacaaMf8UaamiE aiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaISaGaaGzbVlaadsha caaI+aGaaGimaiaaiYcaaaa@4F21@

где B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор Бесселя в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@ , определенный формулой

Bu= 2 u x 2 + γ x u x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaamyDaiaai2dadaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG 4bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeq4SdC gabaGaamiEaaaadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG 4baaaiaaiYcaaaa@4421@

с начальным условием

u(x,0)= u 0 (x),x + . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIca caWG4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGioprr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIUaaaaa@4CEC@

Предполагаем, что u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMca aaa@497D@ . Единственное решение этой задачи было получено в [2, 15]. Оно выражается следующей формулой, обобщающей хорошо известную формулу Пуассона:

u(x,t)= 1 2t x ν + η ν+1 u 0 (η) I ν ηx 2t exp η 2 + x 2 4t dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiaadshacaWG 4bWaaWbaaSqabeaacqaH9oGBaaaaaOWaa8quaeqaleaatuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjabgUcaRaqa b0Gaey4kIipakiabeE7aOnaaCaaaleqabaGaeqyVd4Maey4kaSIaaG ymaaaakiaayIW7caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiab eE7aOjaaiMcacaaMi8UaamysamaaBaaaleaacqaH9oGBaeqaaOWaae WaaeaadaWcaaqaaiabeE7aOjaadIhaaeaacaaIYaGaamiDaaaaaiaa wIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaala aabaGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiEamaa CaaaleqabaGaaGOmaaaaaOqaaiaaisdacaWG0baaaaGaayjkaiaawM caaiaayIW7caWGKbGaeq4TdGMaaGilaaaa@725A@                                                                        (1)

где

I ν z = m=1 z 2m+ν 2 2m+ν m!Γ(m+ν+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbWaaSbaaSqaaiabe27aUbqaba GcdaqadaqaaiaadQhaaiaawIcacaGLPaaacaaI9aWaaabCaeqaleaa caWGTbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaaba GaamOEamaaCaaaleqabaGaaGOmaiaad2gacqGHRaWkcqaH9oGBaaaa keaacaaIYaWaaWbaaSqabeaacaaIYaGaamyBaiabgUcaRiabe27aUb aakiaayIW7caWGTbGaaGyiaiaayIW7cqqHtoWrcaaIOaGaamyBaiab gUcaRiabe27aUjabgUcaRiaaigdacaaIPaaaaaaa@557C@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  модифицированная функция Бесселя первого рода порядка ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@ , Γ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaeyyXICTaaGykaa aa@36D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  гамма-функция Эйлера.

Поставим следующую задачу. Пусть функции y j () L 2 γ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIucaaIPaaaaa@489E@  известны в моменты 0 t 1 << t p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDamaaBaaale aacaaIXaaabeaakiaaiYdacqWIMaYscaaI8aGaamiDamaaBaaaleaa caWGWbaabeaaaaa@3AE2@  и

u(, t j ) y j () L 2 γ ( + ) δ j ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGaaGikaiabgwSixlaaiYcacaWG0bWaaSbaaSqaaiaadQga aeqaaOGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaamOAaaqabaGcca aIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaa caaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaI PaaabeaakiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiY cacaaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWG WbGaaGilaaaa@64E8@

где δ j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamOAaaqaba GccaaI+aGaaGimaaaa@360D@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Требуется, каждому такому набору функций поставить в соответствие функцию из L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ , которая в некотором смысле наилучшим образом аппроксимировала бы истинное распределение температуры в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@  в фиксированный момент времени τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ . В связи с этим, следуя [10], любое отображение m: L 2 γ ( + )×× L 2 γ ( + ) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGOoaiaadYeadaqhaaWcba GaaGOmaaqaaiabeo7aNbaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaO GaaGykaiabgEna0kablAciljabgEna0kaadYeadaqhaaWcbaGaaGOm aaqaaiabeo7aNbaakiaaiIcacqWFDeIudaWgaaWcbaGaey4kaScabe aakiaaiMcacqGHsgIRcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWz aaGccaaIOaGae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaIPaaaaa@594D@  мы называем методом восстановления (температуры в + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@3D86@  в момент τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  согласно этой информации). Значение

e(τ, δ ¯ ,m)= sup U u(,τ)m( y j ())() L 2 γ ( + ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaISaGaamyBaiaaiMcacaaI9aWaaybuaeqa leaacaWGvbaabeGcbaGaci4CaiaacwhacaGGWbaaaebbfv3ySLgzGu eE0jxyaGabaiab=vIiqjaadwhacaaIOaGaeyyXICTaaGilaiabes8a 0jaaiMcacqGHsislcaWGTbGaaGikaiaadMhadaWgaaWcbaGaamOAaa qabaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGyk aiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdC gaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiaaiYcaaa a@6B11@

где y ¯ ()=( y 1 (),, y p ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaaaa@46AF@ , δ ¯ =( δ 1 (),, δ p ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabes7aKbaacaaI9aGaaG ikaiabes7aKnaaBaaaleaacaaIXaaabeaakiaaiIcacqGHflY1caaI PaGaaGilaiablAciljaaiYcacqaH0oazdaWgaaWcbaGaamiCaaqaba GccaaIOaGaeyyXICTaaGykaiaaiMcaaaa@44F5@ ,

U={( u 0 (), y ¯ ()) L 2 γ ( + ):u(, t j ) y j () L 2 γ ( + ) δ j ,j=1,,p}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGypaiaaiUhacaaIOaGaam yDamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGil amaanaaabaGaamyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacqGHii IZcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOaWefv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWgaa WcbaGaey4kaScabeaakiaaiMcacaaI6aGaaGjbVhbbfv3ySLgzGueE 0jxyaGqbaiab+vIiqjaadwhacaaIOaGaeyyXICTaaGilaiaadshada WgaaWcbaGaamOAaaqabaGccaaIPaGaeyOeI0IaamyEamaaBaaaleaa caWGQbaabeaakiaaiIcacqGHflY1caaIPaGae4xjIa1aaSbaaSqaai aadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikaiab=1risnaa BaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMiJkabes7aKnaaBa aaleaacaWGQbaabeaakiaaiYcacaaMe8UaamOAaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGWbGaaGyFaiaaiYcaaaa@7FD7@

называется ошибкой этого метода. Значение

Eτ,δ¯einfmL2γpL2γ+τ,δ¯,m

называется ошибкой оптимального восстановления. Метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , для которого

E(τ, δ ¯ )=e(τ, δ ¯ , m ^ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgacaaIOaGaeqiXdqNa aGilamaanaaabaGaeqiTdqgaaiaaiYcadaqiaaqaaiaad2gaaiaawk WaaiaaiMcacaaISaaaaa@4288@

называется оптимальным методом восстановления.

2. Необходимые сведения.

Введем следующие обозначения:

R N + ={x=( x , x ), x =( x 1 ,, x n ), x =( x n+1 ,, x N ), x 1 >0,, x n >0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaa0baaSqaaiaad6eaaeaacq GHRaWkaaGccaaI9aGaaG4EaiaadIhacaaI9aGaaGikaiqadIhagaqb aiaaiYcaceWG4bGbauGbauaacaaIPaGaaGilaiaaysW7ceWG4bGbau aacaaI9aGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGa eSOjGSKaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaG ilaiaaysW7ceWG4bGbauGbauaacaaI9aGaaGikaiaadIhadaWgaaWc baGaamOBaiabgUcaRiaaigdaaeqaaOGaaGilaiablAciljaaiYcaca WG4bWaaSbaaSqaaiaad6eaaeqaaOGaaGykaiaaiYcacaaMe8UaamiE amaaBaaaleaacaaIXaaabeaakiaai6dacaaIWaGaaGilaiablAcilj aaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGOpaiaaicdacaaI 9bGaaGilaaaa@63E6@

γ=( γ 1 ,, γ n ), ( x ) γ = i=1 n x i γ i , γ i >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI9aGaaGikaiabeo7aNn aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeq4SdC2a aSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaMf8UaaGikaiqadI hagaqbaiaaiMcadaahaaWcbeqaaiabeo7aNbaakiaai2dadaqeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaey4dIunakiaadI hadaqhaaWcbaGaamyAaaqaaiabeo7aNnaaBaaabaGaamyAaaqabaaa aOGaaGilaiaaywW7cqaHZoWzdaWgaaWcbaGaamyAaaqabaGccaaI+a GaaGimaiaai6caaaa@56A1@

Через Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  будем обозначать область, прилегающую к гиперплоскостям x 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3530@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIMaYsaaa@32E3@ , x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaaicdaaaa@3568@ . Граница области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  состоит из двух частей: Γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aaaaa@3438@ , расположенной в части пространства R N + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaa0baaSqaaiaad6eaaeaacq GHRaWkaaaaaa@347A@ , и Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaWgaaWcbaGaaGimaaqaba aaaa@340F@ , принадлежащей гиперплоскостям x 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3530@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWIMaYsaaa@32E3@ , x n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaaicdaaaa@3568@ .

Через L p γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaadchaaeaacq aHZoWzaaGccaaIOaGaeuyQdC1aaWbaaSqabeaacqGHRaWkaaGccaaI Paaaaa@3971@  будем обозначать линейное пространство функций, для которых

f L p γ ( Ω + ) = Ω + |f(x )| p ( x ) γ dx 1/p <+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaadchaaeaa cqaHZoWzaaGaaGikaiabfM6axnaaCaaabeqaaiabgUcaRaaacaaIPa aabeaakiaai2dadaqadaqaaiaaysW7daWdrbqabSqaaiabfM6axnaa CaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaaI8bGaamOzaiaaiI cacaWG4bGaaGykaiaaiYhadaahaaWcbeqaaiaadchaaaGccaaMi8Ua aGikaiqadIhagaqbaiaaiMcadaahaaWcbeqaaiabeo7aNbaakiaayI W7caWGKbGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaa i+cacaWGWbaaaOGaaGipaiabgUcaRiabg6HiLkaai6caaaa@6049@

Пусть Ω N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHckcZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGa amOtaaaaaaa@4102@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  объединение множества Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и множества Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ , полученного из Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  симметрией относительно пространства x =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacaaI9aGaaGimaaaa@344B@ .

Смешанный обобщенный сдвиг определим формулой

f( T y f)(x)= i=1 n T x i y i f( x , x y ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyOKH4QaaGikaiaadsfada ahaaWcbeqaaiaadMhaaaGccaWGMbGaaGykaiaaiIcacaWG4bGaaGyk aiaai2dadaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0 Gaey4dIunakiaadsfadaqhaaWcbaGaamiEamaaBaaabaGaamyAaaqa baaabaGaamyEamaaBaaabaGaamyAaaqabaaaaOGaamOzaiaaiIcace WG4bGbauaacaaISaGabmiEayaafyaafaGaeyOeI0IabmyEayaafyaa faGaaGykaiaaiYcaaaa@4EC3@                    (2)

где каждый из обобщенных сдвигов T x i y i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadIhadaWgaa qaaiaadMgaaeqaaaqaaiaadMhadaWgaaqaaiaadMgaaeqaaaaaaaa@36E0@  определен по формуле (см.[8])

TxiyifxΓγi+12πΓγi20πfx1,,xi1,xi2+yi22xiyicosα,xi+1,,xNsinγi1αdα,                    (3)

i=1,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37B2@ , а произведение k=1 n T x k y k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadUgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadsfadaqhaaWcbaGaamiEamaa BaaabaGaam4AaaqabaaabaGaamyEamaaBaaabaGaam4Aaaqabaaaaa aa@3C85@  понимается как произведение (суперпозиция) операторов.

Обобщенная свертка функций f,g L p γ ( R N + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGilaiaaysW7caWGNbGaey icI4SaamitamaaDaaaleaacaWGWbaabaGaeq4SdCgaaOGaaGikaiaa dkfadaqhaaWcbaGaamOtaaqaaiabgUcaRaaakiaaiMcaaaa@3F2B@  определяется формулой

(fg) γ (x)= R N + f(y) T x y g(x)( y ) γ dy. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOzaiabgEHiQiaadEgaca aIPaWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaamiEaiaaiMcacaaI 9aWaa8quaeqaleaacaWGsbWaa0baaeaacaWGobaabaGaey4kaScaaa qab0Gaey4kIipakiaadAgacaaIOaGaamyEaiaaiMcacaWGubWaa0ba aSqaaiaadIhaaeaacaWG5baaaOGaam4zaiaaiIcacaWG4bGaaGykai aaiIcaceWG5bGbauaacaaIPaWaaWbaaSqabeaacqaHZoWzaaGccaWG KbGaamyEaiaai6caaaa@5088@                      (4)

Прямое и обратное смешанные преобразования Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя определяются соответственно формулами

F B,γ [φ( x , x )](ξ)= R N + φ(x) k=1 n j ν k ( ξ k x k ) e i x ξ ( x ) γ dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadkeacaaISa Gaeq4SdCgabeaakiaaiUfacqaHgpGAcaaIOaGabmiEayaafaGaaGil aiqadIhagaqbgaqbaiaaiMcacaaIDbGaaGikaiabe67a4jaaiMcaca aI9aWaa8quaeqaleaacaWGsbWaa0baaeaacaWGobaabaGaey4kaSca aaqab0Gaey4kIipakiabeA8aQjaaiIcacaWG4bGaaGykamaarahabe WcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHpis1aOGaamOA amaaBaaaleaacqaH9oGBdaWgaaqaaiaadUgaaeqaaaqabaGccaaIOa GaeqOVdG3aaSbaaSqaaiaadUgaaeqaaOGaamiEamaaBaaaleaacaWG RbaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGabm iEayaafyaafaGaeyyXICTafqOVdGNbauGbauaaaaGccaaIOaGabmiE ayaafaGaaGykamaaCaaaleqabaGaeq4SdCgaaOGaaGjcVlaadsgaca WG4bGaaGypaaaa@6B76@

=(2π ) Nn 2 2|ν| k=1 n Γ 2 ( ν k +1) F B,γ 1 [ψ( x , x )](ξ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaaikdacqaHapaCca aIPaWaaWbaaSqabeaacaWGobGaeyOeI0IaamOBaaaakiaayIW7caaI YaWaaWbaaSqabeaacaaIYaGaaGiFaiabe27aUjaaiYhaaaGcdaqeWb qabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0Gaey4dIunakiab fo5ahnaaCaaaleqabaGaaGOmaaaakiaaiIcacqaH9oGBdaWgaaWcba Gaam4AaaqabaGccqGHRaWkcaaIXaGaaGykaiaadAeadaqhaaWcbaGa amOqaiaaiYcacqaHZoWzaeaacqGHsislcaaIXaaaaOGaaG4waiabeI 8a5jaaiIcaceWG4bGbauaacaaISaGaeyOeI0IabmiEayaafyaafaGa aGykaiaai2facaaIOaGaeqOVdGNaaGykaiaaiYcaaaa@609B@      (5)

где

x ξ = x 1 ξ 1 ++ x n ξ n , x ξ = x n+1 ξ n+1 ++ x N ξ N ,|ν|= ν 1 ++ ν n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacqGHflY1cuaH+oaEga qbaiaai2dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeqOVdG3aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaamiEamaaBa aaleaacaWGUbaabeaakiabe67a4naaBaaaleaacaWGUbaabeaakiaa iYcacaaMf8UabmiEayaafyaafaGaeyyXICTafqOVdGNbauGbauaaca aI9aGaamiEamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqaH +oaEdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaeS OjGSKaey4kaSIaamiEamaaBaaaleaacaWGobaabeaakiabe67a4naa BaaaleaacaWGobaabeaakiaaiYcacaaMf8UaaGiFaiabe27aUjaaiY hacaaI9aGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOj GSKaey4kaSIaeqyVd42aaSbaaSqaaiaad6gaaeqaaOGaaGilaaaa@6C80@

j ν k ( z k )= 2 ν k Γ( ν k +1) z k ν k J ν k ( z k )=Γ( ν k +1) m=1 (1) m z k 2m 2 2m m!Γ(m+ ν k +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbWaaSbaaSqaaiabe27aUnaaBa aabaGaam4AaaqabaaabeaakiaaiIcacaWG6bWaaSbaaSqaaiaadUga aeqaaOGaaGykaiaai2dadaWcaaqaaiaaikdadaahaaWcbeqaaiabe2 7aUnaaBaaabaGaam4AaaqabaaaaOGaeu4KdCKaaGikaiabe27aUnaa BaaaleaacaWGRbaabeaakiabgUcaRiaaigdacaaIPaaabaGaamOEam aaDaaaleaacaWGRbaabaGaeqyVd42aaSbaaeaacaWGRbaabeaaaaaa aOGaamOsamaaBaaaleaacqaH9oGBdaWgaaqaaiaadUgaaeqaaaqaba GccaaIOaGaamOEamaaBaaaleaacaWGRbaabeaakiaaiMcacaaI9aGa eu4KdCKaaGikaiabe27aUnaaBaaaleaacaWGRbaabeaakiabgUcaRi aaigdacaaIPaWaaabCaeqaleaacaWGTbGaaGypaiaaigdaaeaacqGH EisPa0GaeyyeIuoakmaalaaabaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGTbaaaOGaamOEamaaDaaaleaacaWGRbaabaGa aGOmaiaad2gaaaaakeaacaaIYaWaaWbaaSqabeaacaaIYaGaamyBaa aakiaad2gacaaIHaGaeu4KdCKaaGikaiaad2gacqGHRaWkcqaH9oGB daWgaaWcbaGaam4AaaqabaGccqGHRaWkcaaIXaGaaGykaaaaaaa@7510@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  нормированная функция Бесселя первого рода порядка ν k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaam4Aaaqaba aaaa@3495@ , Γ() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaeyyXICTaaGykaa aa@36D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  гамма-функция Эйлера, J ν k () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbWaaSbaaSqaaiabe27aUnaaBa aabaGaam4AaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функция Бесселя первого рода порядка ν k =( γ k 1)/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaam4Aaaqaba GccaaI9aGaaGikaiabeo7aNnaaBaaaleaacaWGRbaabeaakiabgkHi TiaaigdacaaIPaGaaG4laiaaikdaaaa@3CB5@ , k=1,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37B4@ .

3. Нижняя граница оптимального метода.

Пусть P t : L 2 γ () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaadshaaeqaaO GaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIca tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risj aaiMcacqGHsgIRcaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGc caaIOaGae8xhHi1aaSbaaSqaaiabgUcaRaqabaGccaaIPaaaaa@4CFA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оператор, определенный формулой (1):

u 0 (η) I ν ηx 2t exp η 2 + x 2 4t dη, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabeE7aOjaaiMcacaaMi8UaamysamaaBaaaleaacqaH9oGB aeqaaOWaaeWaaeaadaWcaaqaaiabeE7aOjaadIhaaeaacaaIYaGaam iDaaaaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiab gkHiTmaalaaabaGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacaWG0baaaaGa ayjkaiaawMcaaiaayIW7caWGKbGaeq4TdGMaaGilaaaa@5265@

t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@343C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  фиксированное значение, P 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaSbaaSqaaiaaicdaaeqaaa aa@337C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тождественный оператор.

Пусть τ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3606@ . Рассмотрим следующую задачу:

P τ u 0 () L 2 γ ( + ) max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqabaGccqGHsgIRciGGTbGaaiyyaiaacIhacaaI Saaaaa@571F@                                           (6)

P t j u 0 () L 2 γ ( + ) δ j ,j=1,,p, u 0 () L 2 γ ( + ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOcqaH 0oazdaWgaaWcbaGaamOAaaqabaGccaaISaGaaGzbVlaadQgacaaI9a GaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcacaaMf8UaamyD amaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4 SaamitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab+1ri snaaBaaaleaacqGHRaWkaeqaaOGaaGykaiaai6caaaa@6FB8@                                                                           (7)

Функция, удовлетворяющая условию(7) называется допустимой функцией задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7).

Пусть S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbaaaa@3299@  означает верхнюю границу P τ u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqabaaaaa@519E@  с условиями (7).

Лемма 1. Имеет место неравенство E(τ, δ ¯ )S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaeyyzImRaam4uaaaa@3ABF@ .

Доказательство. Пусть u ¯ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadwhaaaWaaSbaaSqaai aaicdaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@376B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  допустимая функция задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7). Тогда u ¯ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaqdaaqaaiaadwhaaaWaaS baaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@3858@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  допустимая функция задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7). Для всякого метода m:( L 2 γ ( + )) p L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGOoaiaaiIcacaWGmbWaa0 baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaS cabeaakiaaiMcacaaIPaWaaWbaaSqabeaacaWGWbaaaOGaeyOKH4Qa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab=1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaaaa@4F91@ , имеем:

2 P τ u ¯ 0 () L 2 γ ( + ) = P τ u ¯ 0 ()m(0)()+m(0)() P τ ( u ¯ 0 ()) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaqeeuuDJXwAKbsr4rNCHbacea Gae8xjIaLaamiuamaaBaaaleaacqaHepaDaeqaaOWaa0aaaeaacaWG 1baaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGae8 xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGa aGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4 xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaaGypaiab=vIi qjaadcfadaWgaaWcbaGaeqiXdqhabeaakmaanaaabaGaamyDaaaada WgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaa d2gacaaIOaGaaGimaiaaiMcacaaIOaGaeyyXICTaaGykaiabgUcaRi aad2gacaaIOaGaaGimaiaaiMcacaaIOaGaeyyXICTaaGykaiabgkHi TiaadcfadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacqGHsisldaqdaa qaaiaadwhaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaa iMcacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikaiab+1risnaaBaaabaGaey4kaScabeaacaaI PaaabeaakiabgsMiJcaa@81B3@

P τ u ¯ 0 ()m(0)() L 2 γ ( + ) +m(0)() P τ ( u ¯ 0 ()) L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaqdaaqaaiaa dwhaaaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWGTbGaaGikaiaaicdacaaIPaGaaGikaiabgwSixlaaiMca cqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNb aacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHRaWkcq WFLicucaWGTbGaaGikaiaaicdacaaIPaGaaGikaiabgwSixlaaiMca cqGHsislcaWGqbWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaeyOeI0 Yaa0aaaeaacaWG1baaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGH flY1caaIPaGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaaca aIYaaabaGaeq4SdCgaaiaaiIcacqGFDeIudaWgaaqaaiabgUcaRaqa baGaaGykaaqabaGccqGHKjYOaaa@796B@

2supu0L2γ+Ptju0L2γδj,j,pPτu0mL2γ+

2 supUPτu0my¯L2γ+.

В левой части полученного неравенства мы переходим к верхней границе допустимых функций, а в правой MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  к нижней границе всех методов. Этот шаг завершает доказательство леммы.

С помощью [1, формула 6.633(4)] легко убещиться в справедливости равенства

F γ [ P t u 0 ()](ξ)=exp(|ξ | 2 t) F γ u 0 (ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamiuamaaBaaaleaacaWG0baabeaakiaadwhadaWgaaWc baGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiaai2facaaIOaGaeq OVdGNaaGykaiaai2daciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0Ia aGiFaiabe67a4jaaiYhadaahaaWcbeqaaiaaikdaaaGccaWG0bGaaG ykaiaadAeadaWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGa aGimaaqabaGccaaIOaGaeqOVdGNaaGykaiaai6caaaa@551B@

Следовательно, по теореме Парсеваля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Планшереля для преобразования Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя квадрат значения задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равен значению следующей задачи:

1 2 2ν Γ 2 (ν+1) + ξ 2ν+1 e 2|ξ | 2 τ | F γ u 0 (ξ )| 2 dξmax, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaamaapefabe WcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaWgaaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaeqOVdG3aaW baaSqabeaacaaIYaGaeqyVd4Maey4kaSIaaGymaaaakiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabe qaaiaaikdaaaGaeqiXdqhaaOGaaGiFaiaadAeadaWgaaWcbaGaeq4S dCgabeaakiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdG NaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaMi8Uaamizaiab e67a4jabgkziUkGac2gacaGGHbGaaiiEaiaaiYcacaaMf8UaamyDam aaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Sa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab=1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaiaaiYcaaaa@7F29@                                                   (8)

1 2 2ν Γ 2 (ν+1) + ξ 2ν+1 e 2|ξ | 2 t j | F γ u 0 (ξ )| 2 dξ δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaamaapefabe WcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaWgaaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaeqOVdG3aaW baaSqabeaacaaIYaGaeqyVd4Maey4kaSIaaGymaaaakiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabe qaaiaaikdaaaGaamiDamaaBaaabaGaamOAaaqabaaaaOGaaGiFaiaa dAeadaWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGaaGimaa qabaGccaaIOaGaeqOVdGNaaGykaiaaiYhadaahaaWcbeqaaiaaikda aaGccaaMi8Uaamizaiabe67a4jabgsMiJkabes7aKnaaDaaaleaaca WGQbaabaGaaGOmaaaakiaaiYcacaaMf8UaamOAaiaai2dacaaIXaGa aGilaiablAciljaaiYcacaWGWbGaaGOlaaaa@77C4@                                                             (9)

Перейдем от задачи (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9) к расширенной задаче (согласно терминологии [10]). Для этого заменим 1 2 2ν Γ 2 (ν+1) | F γ u 0 (ξ )| 2 ξ 2ν+1 dξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaWaaW baaSqabeaacaaIYaGaeqyVd4gaaOGaeu4KdC0aaWbaaSqabeaacaaI YaaaaOGaaGikaiabe27aUjabgUcaRiaaigdacaaIPaaaaiaayIW7ca aI8bGaamOramaaBaaaleaacqaHZoWzaeqaaOGaamyDamaaBaaaleaa caaIWaaabeaakiaaiIcacqaH+oaEcaaIPaGaaGiFamaaCaaaleqaba GaaGOmaaaakiabe67a4naaCaaaleqabaGaaGOmaiabe27aUjabgUca RiaaigdaaaGccaaMi8Uaamizaiabe67a4baa@539A@  на положительную меру dμ(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiVd0MaaGikaiabe67a4j aaiMcaaaa@3788@ :

+ e 2|ξ | 2 τ dμ(ξ)max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgkziUk Gac2gacaGGHbGaaiiEaiaaiYcaaaa@55DB@                                                                                                     (10)

+ e 2|ξ | 2 t j dμ(ξ) δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEca aIPaGaeyizImQaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilai aadchacaaIUaaaaa@5D43@                                                                                                 (11)

Функция Лагранжа для этой задачи имеет вид

L(dμ(),λ)= λ 0 + e 2|ξ | 2 τ dμ(ξ)+ j=1 p λ j + e 2|ξ | 2 t j dμ(ξ) δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaaiIcacaWGKbGaeqiVd0MaaGikaiab gwSixlaaiMcacaaISaGaeq4UdWMaaGykaiaai2dacqaH7oaBdaWgaa WcbaGaaGimaaqabaGcdaWdrbqabSqaamrr1ngBPrwtHrhAYaqehuuD JXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaa qab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaaI 8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqhaaOGaaG jcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgUcaRmaaqaha beWcbaGaamOAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOGaeq 4UdW2aaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaadaWdrbqabSqaaiab +1risnaaBaaabaGaey4kaScabeaaaeqaniabgUIiYdGccaWGLbWaaW baaSqabeaacqGHsislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaaqa beaacaaIYaaaaiaadshadaWgaaqaaiaadQgaaeqaaaaakiaadsgacq aH8oqBcaaIOaGaeqOVdGNaaGykaiabgkHiTiabes7aKnaaDaaaleaa caWGQbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@8C4E@

где λ=( λ 0 , λ 1 ,, λ p ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaI9aGaaGikaiabeU7aSn aaBaaaleaacaaIWaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGym aaqabaGccaaISaGaeSOjGSKaaGilaiabeU7aSnaaBaaaleaacaWGWb aabeaakiaaiMcaaaa@410D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  набор множителей Лагранжа. Расширенная проблема (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) была решена в [10]. Для полноты повествования нам нужно будет переписать это решение, слегка изменив конкретные значения в соответствии с нашими потребностями. На двумерной плоскости (t,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG5bGaaG ykaaaa@35D3@  построим множество

M=co t j ,ln 1 δ j ,j=1,,p + (t,0):t0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGypaiaadogacaWGVbWaai WaaeaadaqadaqaaiaadshadaWgaaWcbaGaamOAaaqabaGccaaISaGa ciiBaiaac6gadaqadaqaamaalaaabaGaaGymaaqaaiabes7aKnaaBa aaleaacaWGQbaabeaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaa caaISaGaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWb aacaGL7bGaayzFaaGaey4kaSYaaiWaaeaacaaIOaGaamiDaiaaiYca caaIWaGaaGykaiaaiQdacaWG0bGaeyyzImRaaGimaaGaay5Eaiaaw2 haaiaaiYcaaaa@5544@

где coA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaam4Baiaadgeaaaa@3463@  означает выпуклую оболочку множества A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@ . Введем функцию θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@  на луче [0,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHRaWkcq GHEisPcaaIPaaaaa@371C@  с помощью формулы

θ(t)=max{y:(t,y)M}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaciyBaiaacggacaGG4bGaaG4EaiaadMhacaaI6aGaaGikaiaa dshacaaISaGaamyEaiaaiMcacqGHiiIZcaWGnbGaaGyFaiaaiYcaaa a@445C@

предполагая, что θ(t)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaeyOeI0IaeyOhIukaaa@38FA@ , если (t,y)M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG5bGaaG ykaiabgMGiplaad2eaaaa@382B@  при всех y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BF@ . На луче [ t 1 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@384C@  график функции θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направленная вверх выпуклая (вогнутая) ломаная линия. Пусть t 1 = t s 1 < t s 2 << t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadshadaWgaaWcbaGaam4CamaaBaaabaGaaGymaaqabaaa beaakiaaiYdacaWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaaikdaae qaaaqabaGccaaI8aGaeSOjGSKaaGipaiaadshadaWgaaWcbaGaam4C amaaBaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq GacqWFXpq8aeqaaaqabaaaaa@4C20@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  точки ее изломов. Очевидно,

{ t s 1 < t s 2 << t s ϱ }{ t 1 < t 2 << t p }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaaIXaaabeaaaeqaaOGaaGipaiaadshadaWgaaWcbaGa am4CamaaBaaabaGaaGOmaaqabaaabeaakiaaiYdacqWIMaYscaaI8a GaamiDamaaBaaaleaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaakiaai2hacq GHgksZcaaI7bGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYdacaWG 0bWaaSbaaSqaaiaaikdaaeqaaOGaaGipaiablAciljaaiYdacaWG0b WaaSbaaSqaaiaadchaaeqaaOGaaGyFaiaai6caaaa@59B7@

Рассмотрим три случая.

(a) Пусть τ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaaigdaaeqaaaaa@372C@ , в то время как справа от τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  имеется точка излома функции θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaaa a@35D5@ . Предположим, что τ[ t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F63@ . Пусть d μ ^ (ξ)= x γ T ξ ξ 0 δ γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiaadsfadaqhaaWcbaGaeqOVdGhabaGaeqOVdG3aaSbaae aacaaIWaaabeaaaaGccqaH0oazdaWgaaWcbaGaeq4SdCgabeaaaaa@44D5@ , где параметры A 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaicdaaeqaaa aa@336D@  и ξ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaaGimaaqaba aaaa@346A@  определяются из условий

+ e 2|ξ | 2 τ d μ ^ (ξ)=A e 2| ξ 0 | 2 t k = δ k 2 ,k= s j , s j+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaamyqaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacaWG0bWaaSbaaeaacaWGRbaabeaaaaGccaaI9aGa eqiTdq2aa0baaSqaaiaadUgaaeaacaaIYaaaaOGaaGilaiaaywW7ca WGRbGaaGypaiaadohadaWgaaWcbaGaamOAaaqabaGccaaISaGaam4C amaaBaaaleaacaWGQbGaey4kaSIaaGymaaqabaGccaaIUaaaaa@6C9E@                                                                                            (12)

Из условия (12) получим

A= δ s j 2 t s j+1 /( t s j+1 t s j ) δ s j+1 2 t s j /( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaiabes7aKnaaDaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaGaamiDamaaBaaa baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaaG 4laiaaiIcacaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4k aSIaaGymaaqabaaabeaacqGHsislcaWG0bWaaSbaaeaacaWGZbWaaS baaeaacaWGQbaabeaaaeqaaiaaiMcaaaGccaaMi8UaeqiTdq2aa0ba aSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacq GHsislcaaIYaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqa baaabeaacaaIVaGaaGikaiaadshadaWgaaqaaiaadohadaWgaaqaai aadQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaadshadaWgaaqa aiaadohadaWgaaqaaiaadQgaaeqaaaqabaGaaGykaaaakiaaiYcaaa a@5F18@

| ξ 0 | 2 = ln δ s j / δ s j+1 t s j+1 t s j = ln(1/ δ s j+1 )ln(1/ δ s j ) t s j+1 t s j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaakiaai2dadaWcaaqa aiGacYgacaGGUbGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGccaaIVaGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqa aiaadQgacqGHRaWkcaaIXaaabeaaaeqaaaGcbaGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiab gkHiTiaadshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabe aaaaGccaaI9aWaaSaaaeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4l aiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaG ymaaqabaaabeaakiaaiMcacqGHsislciGGSbGaaiOBaiaaiIcacaaI XaGaaG4laiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabe aaaeqaaOGaaGykaaqaaiaadshadaWgaaWcbaGaam4CamaaBaaabaGa amOAaiabgUcaRiaaigdaaeqaaaqabaGccqGHsislcaWG0bWaaSbaaS qaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGOlaaaa@6B93@

Пусть λ ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaicdaaeqaaOGaaGypaiabgkHiTiaaigdaaaa@3796@ , λ ^ k =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadUgaaeqaaOGaaGypaiaaicdaaaa@36DE@ , k s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyiyIKRaam4CamaaBaaale aacaWGQbaabeaaaaa@368B@ , s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaaabeaaaaa@3571@ . Для того, чтобы найти числа λ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaaaaa@35A9@ , λ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaaaaa@3746@ , сделаем некоторые приготовления. Пусть

f(v)= λ 0 + j=1 p λ j e 2v( t j τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadAhacaaIPaGaaG ypaiabeU7aSnaaBaaaleaacaaIWaaabeaakiabgUcaRmaaqahabeWc baGaamOAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOGaeq4UdW 2aaSbaaSqaaiaadQgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0Ia aGOmaiaadAhacaaIOaGaamiDamaaBaaabaGaamOAaaqabaGaeyOeI0 IaeqiXdqNaaGykaaaakiaai6caaaa@4C82@

Потребуем, чтобы f(| ξ 0 | 2 )= f (| ξ 0 | 2 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaiYhacqaH+oaEda WgaaWcbaGaaGimaaqabaGccaaI8bWaaWbaaSqabeaacaaIYaaaaOGa aGykaiaai2daceWGMbGbauaacaaIOaGaaGiFaiabe67a4naaBaaale aacaaIWaaabeaakiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaIPaGa aGypaiaaicdaaaa@4419@ . Отсюда получаем систему линейных уравнений относительно λ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaaaaa@35A9@ , λ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaaaaa@3746@ :

λ s j e 2| ξ 0 | 2 ( t s j τ) + λ s j+1 e 2| ξ 0 | 2 ( t s j+1 τ) =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGa amOAaaqabaaabeaacqGHsislcqaHepaDcaaIPaaaaOGaey4kaSIaeq 4UdW2aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaa beaaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacq aH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYhadaahaaqabeaacaaIYaaa aiaaiIcacaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaacqGHsislcqaHepaDcaaIPaaaaOGaaGypaiaa igdacaaISaaaaa@5F0F@

λ s j ( t s j τ) e 2| ξ 0 | 2 ( t s j τ) + λ s j+1 ( t s j+1 τ) e 2| ξ 0 | 2 ( t s j+1 τ) =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadoha daWgaaqaaiaadQgaaeqaaaqabaGccqGHsislcqaHepaDcaaIPaGaam yzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqa aiaaicdaaeqaaiaaiYhadaahaaqabeaacaaIYaaaaiaaiIcacaWG0b WaaSbaaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiabgkHiTiab es8a0jaaiMcaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaamiDamaa BaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabe aakiabgkHiTiabes8a0jaaiMcacaWGLbWaaWbaaSqabeaacqGHsisl caaIYaGaaGiFaiabe67a4naaBaaabaGaaGimaaqabaGaaGiFamaaCa aabeqaaiaaikdaaaGaaGikaiaadshadaWgaaqaaiaadohadaWgaaqa aiaadQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiabes8a0jaaiM caaaGccaaI9aGaaGimaiaai6caaaa@6F49@

Решив эту систему, находим

λ s j = t s j+1 τ t s j+1 t s j δ s j+1 δ s j 2(τ t s j )/( t s j+1 t s j ) , λ s j = τ t s j t s j+1 t s j δ s j δ s j+1 2( t s j+1 τ)/( t s j+1 t s j ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaai2dadaWcaaqaaiaadshadaWgaaWc baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccq GHsislcqaHepaDaeaacaWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaOGaeyOeI0IaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaakmaabmaabaWaaSaa aeaacqaH0oazdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRi aaigdaaeqaaaqabaaakeaacqaH0oazdaWgaaWcbaGaam4CamaaBaaa baGaamOAaaqabaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdacaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaaqabaaabeaacaaIPaGaaG4laiaaiIcacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaa cqGHsislcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaacaWGQbaabeaaae qaaiaaiMcaaaGccaaISaGaaGzbVlabeU7aSnaaBaaaleaacaWGZbWa aSbaaeaacaWGQbaabeaaaeqaaOGaaGypamaalaaabaGaeqiXdqNaey OeI0IaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqa aaGcbaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiaadshadaWgaaWcbaGaam4Camaa BaaabaGaamOAaaqabaaabeaaaaGcdaqadaqaamaalaaabaGaeqiTdq 2aaSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaakeaacqaH 0oazdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaaGik aiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXa aabeaaaeqaaiabgkHiTiabes8a0jaaiMcacaaIVaGaaGikaiaadsha daWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaae qaaiabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQgaaeqa aaqabaGaaGykaaaakiaai6caaaa@9B73@

Для меры d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  имеем:

min0Ldμλ^Ldμλ^                                                                                                                (13)

λ ^ j + e 2|ξ | 2 τ d μ ^ (ξ) δ j 2 =0,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadQgaaeqaaOWaaeWaaeaadaWdrbqabSqaamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacq GHRaWkaeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHi TiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeq iXdqhaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGik aiabe67a4jaaiMcacqGHsislcqaH0oazdaqhaaWcbaGaamOAaaqaai aaikdaaaaakiaawIcacaGLPaaacaaI9aGaaGimaiaaiYcacaaMf8Ua amOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOlaa aa@652F@                                                                                                 (14)

Пусть

ρ(t)= ln(1/ δ s j+1 )ln(1/ δ s j ) t s j+1 t s j (t t s j )+ln(1/ δ s j ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCcaaIOaGaamiDaiaaiMcaca aI9aWaaSaaaeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7a KnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqaba aabeaakiaaiMcacqGHsislciGGSbGaaiOBaiaaiIcacaaIXaGaaG4l aiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaO GaaGykaaqaaiaadshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiab gUcaRiaaigdaaeqaaaqabaGccqGHsislcaWG0bWaaSbaaSqaaiaado hadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGikaiaadshacqGHsisl caWG0bWaaSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGcca aIPaGaey4kaSIaciiBaiaac6gacaaIOaGaaGymaiaai+cacqaH0oaz daWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaakiaaiMcaca aIUaaaaa@6434@

Прямая y=ρ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeg8aYjaaiIcaca WG0bGaaGykaaaa@37A4@  проходит через точки ( t s j ,ln(1/ δ s j )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiGacYgacaGGUbGaaGik aiaaigdacaaIVaGaeqiTdq2aaSbaaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGccaaIPaGaaGykaaaa@3FB3@  и ( t s j+1 ,ln(1/ δ s j+1 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiaaiYcaciGG SbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaleaacaWGZb WaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiaaiMcacaaI Paaaaa@42ED@  и лежит ниже графика функции y=θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeI7aXjaaiIcaca WG0bGaaGykaaaa@379A@ . Для найденных значений A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  и | ξ 0 | 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaaaaa@3769@  имеем

+ e 2|ξ | 2 t i d μ ^ (ξ)=A e 2| ξ 0 | 2 t i = δ s j 2( t s j+1 t i )/( t s j+1 t s j ) δ s j+1 2( t i t s j )/( t s j+1 t s j ) = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamyAaaqabaaaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTb GaayPadaGaaGikaiabe67a4jaaiMcacaaI9aGaamyqaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWa aabeaacaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaSbaaeaacaWG PbaabeaaaaGccaaI9aGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaai aadQgaaeqaaaqaaiaaikdacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaamyAaaqabaGaaGykaiaai+cacaaIOaGaamiDamaaBaaa baGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaey OeI0IaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaa caaIPaaaaOGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaaiaadQgacq GHRaWkcaaIXaaabeaaaeaacaaIYaGaaGikaiaadshadaWgaaqaaiaa dMgaaeqaaiabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqabaGaaGykaiaai+cacaaIOaGaamiDamaaBaaabaGaam4C amaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0Iaam iDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaa aOGaaGypaaaa@9028@

= e 2ρ( t i ) e 2ln(1/ δ i ) = δ i 2 ,i=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiabeg8aYjaaiIcacaWG0bWaaSbaaeaacaWGPbaabeaa caaIPaaaaOGaeyizImQaamyzamaaCaaaleqabaGaeyOeI0IaaGOmai GacYgacaGGUbGaaGikaiaaigdacaaIVaGaeqiTdq2aaSbaaeaacaWG PbaabeaacaaIPaaaaOGaaGypaiabes7aKnaaDaaaleaacaWGPbaaba GaaGOmaaaakiaaiYcacaaMf8UaamyAaiaai2dacaaIXaGaaGilaiab lAciljaaiYcacaWGWbGaaGOlaaaa@53AB@

Это означает, что d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  вляется допустимой мерой в расширенной задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и является ее решением. Если мы подставим d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  в функционал, определенный в (10), получим значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11), которое также является решением задачи (8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9):

+ e 2|ξ | 2 τ d μ ^ (ξ)=A e 2| ξ 0 | 2 τ = δ s j 2( t s j+1 τ)/( t s j+1 t s j ) δ s j+1 2(τ t s j )/( t s j+1 t s j ) = e 2ρ(τ) = e 2θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaamyqaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdacaaI8bGaeqOVdG3aaSbaaeaacaaIWaaabeaacaaI8bWaaWbaae qabaGaaGOmaaaacqaHepaDaaGccaaI9aGaeqiTdq2aa0baaSqaaiaa dohadaWgaaqaaiaadQgaaeqaaaqaaiaaikdacaaIOaGaamiDamaaBa aabaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGa eyOeI0IaeqiXdqNaaGykaiaai+cacaaIOaGaamiDamaaBaaabaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0Ia amiDamaaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPa aaaOGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWk caaIXaaabeaaaeaacaaIYaGaaGikaiabes8a0jabgkHiTiaadshada WgaaqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGaaGykaiaai+ca caaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaiabgUcaRi aaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGaam4CamaaBaaa baGaamOAaaqabaaabeaacaaIPaaaaOGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiaaikdacqaHbpGCcaaIOaGaeqiXdqNaaGykaaaakiaa i2dacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaeqiUdeNaaGikai abes8a0jaaiMcaaaGccaaIUaaaaa@9FF9@

Это означает, что значение задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно S= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3A44@ .

(b) Пусть τ t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbaceiGae8x8depabeaaaeqaaaaa@437F@ . Если график функции y=θ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiabeI7aXjaaiIcaca WG0bGaaGykaaaa@379A@  представляет собой прямую линию, то t s ϱ = t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadohadaWgaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x8 depabeaaaeqaaOGaaGypaiaadshadaWgaaWcbaGaaGymaaqabaaaaa@42A5@ . На этот раз положим λ ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaicdaaeqaaOGaaGypaiabgkHiTiaaigdaaaa@3796@ , λ ^ s ϱ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbaceiGae8x8depabeaaaeqaaOGaaGypaiaaigdaaaa@42FD@ , λ ^ s j =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaI9aGaaGim aaaa@37F6@ , где jϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaeyiyIK7efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqGacqWFXpq8aaa@406C@ , d μ ^ (ξ)= x γ δ s ϱ δ γ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiabes7aKnaaBaaaleaacaWGZbWaaSbaaeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaa kiabes7aKnaaBaaaleaacqaHZoWzaeqaaOGaaGikaiabe67a4jaaiM caaaa@517F@ . Для всех ξ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcqGHiiIZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaBaaaleaacqGH RaWkaeqaaaaa@40CD@  выполняется неравенство

f(|ξ | 2 )=1+ e 2|ξ | 2 ( t s ϱ τ) 0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaiYhacqaH+oaEca aI8bWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2dacqGHsislcaaI XaGaey4kaSIaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacq aH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaa baGaam4CamaaBaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiqGacqWFXpq8aeqaaaqabaGaeyOeI0IaeqiXdqNaaGykaaaa kiabgwMiZkaaicdacaaI7aaaaa@591F@

также имеет место неравенство f(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaIPaGaaG ypaiaaicdaaaa@364C@ . Следовательно, условие (13) также выполняется. На луче [ t s ϱ ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaWGZb WaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGab ciab=f=aXdqabaaabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@449F@ , равенство θ(t)ln(1/ δ s ϱ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcacq GHHjIUciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaa leaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGabciab=f=aXdqabaaabeaakiaaiMcaaaa@4B44@  выполняется тождественно. Следовательно, ln(1/ δ j )ln(1/ δ s ϱ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGSbGaaiOBaiaaiIcacaaIXaGaaG 4laiabes7aKnaaBaaaleaacaWGQbaabeaakiaaiMcacqGHKjYOciGG SbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaleaacaWGZb WaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGab ciab=f=aXdqabaaabeaakiaaiMcaaaa@4EA3@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ . Отсюда

+ e 2|ξ | 2 t j d μ ^ (ξ)= δ s ϱ 2 = e 2ln(1/ δ s ϱ ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaaGjcVlaadsgadaqiaaqaaiabeY7aTb GaayPadaGaaGikaiabe67a4jaaiMcacaaI9aGaeqiTdq2aa0baaSqa aiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8 KBLbacfiGae4x8depabeaaaeaacaaIYaaaaOGaaGypaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdaciGGSbGaaiOBaiaaiIcacaaIXaGaaG 4laiabes7aKnaaBaaabaGaam4CamaaBaaabaGae4x8depabeaaaeqa aiaaiMcaaaGccaaIUaaaaa@7026@

Таким образом, мера d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  допустима в задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и является ее решением. Значение этой задачи вычисляется следующим образом:

+ e 2|ξ | 2 τ d μ ^ (ξ)= δ s ϱ 2 = e 2ln(1/ δ s ϱ ) = e 2θ(t) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgadaqiaaqaaiabeY7aTbGaayPadaGaaGikaiabe6 7a4jaaiMcacaaI9aGaeqiTdq2aa0baaSqaaiaadohadaWgaaqaamrr 1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacfiGae4x8depabe aaaeaacaaIYaaaaOGaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiaa ikdaciGGSbGaaiOBaiaaiIcacaaIXaGaaG4laiabes7aKnaaBaaaba Gaam4CamaaBaaabaGae4x8depabeaaaeqaaiaaiMcaaaGccaaI9aGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiabeI7aXjaaiIcacaWG0b GaaGykaaaakiaai6caaaa@7787@

Это снова означает, что решение проблемы (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно S= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3A44@ .

(c) Пусть τ< t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI8aGaamiDamaaBaaale aacaaIXaaabeaaaaa@362C@ . Для произвольного y 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@3531@ , существует прямая линия, заданная уравнением y=at+b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaadggacaWG0bGaey 4kaSIaamOyaaaa@372E@ , a>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGOpaiaaicdaaaa@3429@ , разделяющая точку (τ, y 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqiXdqNaaGilaiabgkHiTi aadMhadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@387C@  и множество M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbaaaa@3293@ . В то же время

aτ y 0 ba t j +ln 1 δ s j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeqiXdqNaeyOeI0 IaamyEamaaBaaaleaacaaIWaaabeaakiabgwMiZkaadkgacqGHLjYS cqGHsislcaWGHbGaamiDamaaBaaaleaacaWGQbaabeaakiabgUcaRi GacYgacaGGUbWaaSaaaeaacaaIXaaabaGaeqiTdq2aaSbaaSqaaiaa dohadaWgaaqaaiaadQgaaeqaaaqabaaaaOGaaGilaiaaywW7caWGQb GaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaadchacaaIUaaaaa@50FC@

Пусть A= e 2b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGypaiaadwgadaahaaWcbe qaaiabgkHiTiaaikdacaWGIbaaaaaa@36F5@ . Выберем ξ 0 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaaGimaaqaba GccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaBaaaleaacqGHRaWkaeqaaaaa@41BD@ , чтобы обеспечить | ξ 0 | 2 =a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGiFamaaCaaaleqabaGaaGOmaaaakiaai2dacaWGHbaa aa@3920@ . Тогда

A e 2| ξ 0 | 2 t j δ j 2 ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYha daahaaqabeaacaaIYaaaaiaadshadaWgaaqaaiaadQgaaeqaaaaaki abgsMiJkabes7aKnaaDaaaleaacaWGQbaabaGaaGOmaaaakiaaiYca caaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWb GaaGOlaaaa@4B0E@

Это значит, что мера d μ ^ (ξ)= x γ T ξ ξ 0 δ γ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaGaaGypaiaadIhadaahaaWcbeqaaiab eo7aNbaakiaadsfadaqhaaWcbaGaeqOVdGhabaGaeqOVdG3aaSbaae aacaaIWaaabeaaaaGccqaH0oazdaWgaaWcbaGaeq4SdCgabeaakiaa iIcacqaH+oaEcaaIPaaaaa@4807@  допустима в задаче (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и A e 2| ξ 0 | 2 τ e 2 y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaamyzamaaCaaaleqabaGaey OeI0IaaGOmaiaaiYhacqaH+oaEdaWgaaqaaiaaicdaaeqaaiaaiYha daahaaqabeaacaaIYaaaaiabes8a0baakiabgwMiZkaadwgadaahaa WcbeqaaiaaikdacaWG5bWaaSbaaeaacaaIWaaabeaaaaaaaa@4210@ . В силу произвольности y 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@3531@  значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11), а вместе с ним и решение задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7) равно + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqGHEisPaaa@3414@ .

Во всех трех случаях, для всех τ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3606@ , ошибка оптимального восстановления оценивается снизу: E(τ, δ ¯ ) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaeyyzImRaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMcaaaaaaa@40CB@ .

4. Верхняя оценка оптимальной ошибки восстановления

Пусть τ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaWG0bWaaSbaaS qaaiaaigdaaeqaaaaa@372C@  и λ ^ 1 ,, λ ^ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcadaqiaaqaaiab eU7aSbGaayPadaWaaSbaaSqaaiaadchaaeqaaaaa@3B4D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  множители Лагранжа из случаев (a), (b) для таких значений τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ .

Лемма 2. Пусть для множества функций y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  задача

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 min, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaa GccqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVlaadwhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgIGiolaadY eadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIcacqGFDeIudaWg aaWcbaGaey4kaScabeaakiaaiMcacaaISaaaaa@7888@                                                                      (15)

имеет решение u ^ 0 ()= u ^ 0 (, y ¯ ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaI Paaaaa@44B2@ . Тогда для любого σ 1 ,, σ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaaqaba GccaaISaGaeSOjGSKaaGilaiabeo8aZnaaBaaaleaacaWGWbaabeaa aaa@39E7@  значение задачи

P τ u 0 () P τ u ^ 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWGqbWaaSbaaS qaaiabes8a0bqabaGcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaa caaIWaaabeaakiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaai aadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacq GHRaWkaeqaaiaaiMcaaeaacaaIYaaaaOGaeyOKH4QaciyBaiaacgga caGG4bGaaGilaiaaywW7caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikdaaeaa cqaHZoWzaaGccaaIOaGae4xhHi1aaSbaaSqaaiabgUcaRaqabaGcca aIPaGaaGilaaaa@7251@                                                                           (16)

P t j u 0 () y j () L 2 γ ( + ) σ j ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKj YOcqaHdpWCdaWgaaWcbaGaamOAaaqabaGccaaISaGaaGzbVlaadQga caaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcaaaa@6636@                                                                                            (17)

не превосходит значения задачи

P τ u 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGccaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiMcacqWFLicudaqhaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgU caRaqabaGaaGykaaqaaiaaikdaaaGccqGHsgIRciGGTbGaaiyyaiaa cIhacaaISaGaaGzbVlaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOa GaeyyXICTaaGykaiabgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiab eo7aNbaakiaaiIcacqGFDeIudaWgaaWcbaGaey4kaScabeaakiaaiM cacaaISaaaaa@6839@                                                                                        (18)

j=1 p λ ^ j P t j u 0 () L 2 γ ( + ) 2 j=1 p λ ^ j σ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGH KjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0Gaey yeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaa dQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGaaG Olaaaa@6CE8@                                                                                              (19)

Доказательство. Равенство нулю дифференциала Фреше выпуклого гладкого целевого функционала из (15) в точке u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@ , т.е. равенство

2 j=1 p λ ^ j + x γ ( P t j u ^ 0 (x) y j (x)) P t j u 0 (x)dx=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGWbaaniabggHiLdGccaaMi8+aaecaaeaacqaH 7oaBaiaawkWaamaaBaaaleaacaWGQbaabeaakmaapefabeWcbaWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWg aaqaaiabgUcaRaqabaaabeqdcqGHRiI8aOGaamiEamaaCaaaleqaba Gaeq4SdCgaaOGaaGikaiaadcfadaWgaaWcbaGaamiDamaaBaaabaGa amOAaaqabaaabeaakmaaHaaabaGaamyDaaGaayPadaWaaSbaaSqaai aaicdaaeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaamyEamaaBaaa leaacaWGQbaabeaakiaaiIcacaWG4bGaaGykaiaaiMcacaWGqbWaaS baaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGccaWG1bWaaSba aSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaIPaGaamizaiaadIhaca aI9aGaaGimaiaaiYcaaaa@68BC@                                                                                              (20)

является необходимым и достаточным условием для доставки минимума к этому функционалу функцией u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@ . Принимая во внимание это равенство, легко получить, что

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 = j=1 p λ ^ j P t j u 0 () P t j u ^ 0 () L 2 γ ( + ) 2 + j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaa iMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo 7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaa GccaaI9aWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGWbaa niabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaadQ gaaeqaaOGae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSbaaeaacaWG QbaabeaaaeqaaOGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIcacq GHflY1caaIPaGaeyOeI0IaamiuamaaBaaaleaacaWG0bWaaSbaaeaa caWGQbaabeaaaeqaaOWaaecaaeaacaWG1baacaGLcmaadaWgaaWcba GaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiab=vIiqnaaDaaaleaa caWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcacqGFDeIuda WgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGHRaWkdaae WbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0GaeyyeIuoakm aaHaaabaGaeq4UdWgacaGLcmaadaWgaaWcbaGaamOAaaqabaGccqWF LicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqaba GcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabe aakiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqh aaqaaiaaikdaaeaacqaHZoWzaaGaaGikaiab+1risnaaBaaabaGaey 4kaScabeaacaaIPaaabaGaaGOmaaaakiaai6caaaa@AEE4@

Пусть функция u 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcaaaa@375A@  действительна для задачи (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17). Тогда

j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc daqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaaiI cacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabeaa kiaaiIcacqGHflY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqhaa qaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaai aaiMcaaeaacaaIYaaaaOGaaGypaaaa@643F@

= j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 j=1 p λ ^ j P t j u ^ 0 () y j () L 2 γ ( + ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGQbGaaG ypaiaaigdaaeaacaWGWbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGa ayPadaWaaSbaaSqaaiaadQgaaeqaaebbfv3ySLgzGueE0jxyaGabaO Gae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSbaaeaacaWGQbaabeaa aeqaaOGaamyDamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamyEamaaBaaaleaacaWGQbaabeaakiaaiIcacqGH flY1caaIPaGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeaaca aIYaaaaOGaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaa caWGWbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaS qaaiaadQgaaeqaaOGae8xjIaLaamiuamaaBaaaleaacaWG0bWaaSba aeaacaWGQbaabeaaaeqaaOWaaecaaeaacaWG1baacaGLcmaadaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMha daWgaaWcbaGaamOAaaqabaGccaaIOaGaeyyXICTaaGykaiab=vIiqn aaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIca cqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccq GHKjYOaaa@8998@

j=1 p λ ^ j P t j u 0 () y j () L 2 γ ( + ) 2 j=1 p λ ^ j σ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaaeWbqabSqaaiaadQgaca aI9aGaaGymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWga caGLcmaadaWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqa aaqabaGccaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixl aaiMcacqGHsislcaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiab gwSixlaaiMcacqWFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaa qaaiabeo7aNbaacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqGFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaai aaikdaaaGccqGHKjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqa aiaadchaa0GaeyyeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPada WaaSbaaSqaaiaadQgaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadQgaaeqa aOGaaGOlaaaa@749F@

Это означает, что функция u 0 () u ^ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHsisldaqiaaqaaiaadwhaaiaawkWa amaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@3EA2@  допустима в задаче (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Значение функционала (16) на функции u 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcaaaa@375A@  равно значнию функционала (18).

Лемма 3Значения задач (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (7) и (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A96@ (19), где σ j = δ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaaqaba GccaaI9aGaeqiTdq2aaSbaaSqaaiaadQgaaeqaaaaa@3830@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , совпадают.

Доказательство. С помощью равенства Парсеваля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Планшереля перейдем от задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19) к задаче

+ e 2|ξ | 2 τ dμ(ξ)max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaeqiXdqha aOGaaGjcVlaadsgacqaH8oqBcaaIOaGaeqOVdGNaaGykaiabgkziUk Gac2gacaGGHbGaaiiEaiaaiYcaaaa@55DB@                                                                                                           (21)

j=1 p λ ^ j + e 2|ξ | 2 t j dμ(ξ) j=1 p λ ^ j δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaGcdaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacqGHRaWk aeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaik dacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaa BaaabaGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEca aIPaGaeyizIm6aaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG WbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaai aadQgaaeqaaOGaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGilaaaa@67A5@                                                                                              (22)

где

dμ(ξ)= 1 2 2ν Γ 2 (ν+1) | F γ u 0 (ξ )| 2 ξ 2ν+1 dξ0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiVd0MaaGikaiabe67a4j aaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmamaaCaaaleqabaGa aGOmaiabe27aUbaakiabfo5ahnaaCaaaleqabaGaaGOmaaaakiaaiI cacqaH9oGBcqGHRaWkcaaIXaGaaGykaaaacaaMi8UaaGiFaiaadAea daWgaaWcbaGaeq4SdCgabeaakiaadwhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaeqOVdGNaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGc cqaH+oaEdaahaaWcbeqaaiaaikdacqaH9oGBcqGHRaWkcaaIXaaaaO GaaGjcVlaadsgacqaH+oaEcqGHLjYScaaIWaGaaGOlaaaa@5D60@

Функция Лагранжа этой задачи имеет вид

L 1 (dμ(),ν)= ν 0 + e 2|ξ | 2 τ dμ(ξ)+ ν 1 j=1 p λ ^ j + e 2|ξ | 2 t j dμ(ξ) j=1 p λ ^ j δ j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimnaaBaaaleaacaaIXaaabeaakiaaiIca caWGKbGaeqiVd0MaaGikaiabgwSixlaaiMcacaaISaGaeqyVd4MaaG ykaiaai2dacqaH9oGBdaWgaaWcbaGaaGimaaqabaGcdaWdrbqabSqa amrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacfaGae4xhHi 1aaSbaaeaacqGHRaWkaeqaaaqab0Gaey4kIipakiaayIW7caWGLbWa aWbaaSqabeaacqGHsislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaa qabeaacaaIYaaaaiabes8a0baakiaayIW7caWGKbGaeqiVd0MaaGik aiabe67a4jaaiMcacqGHRaWkcqaH9oGBdaWgaaWcbaGaaGymaaqaba GcdaqadaqaamaaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamiC aaqdcqGHris5aOWaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaaca WGQbaabeaakmaapefabeWcbaGae4xhHi1aaSbaaeaacqGHRaWkaeqa aaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaaikdaca aI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaamiDamaaBaaa baGaamOAaaqabaaaaOGaamizaiabeY7aTjaaiIcacqaH+oaEcaaIPa GaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGWbaa niabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaadQ gaaeqaaOGaeqiTdq2aa0baaSqaaiaadQgaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaaGilaaaa@9B91@

где множество ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@  множителей Лагранжа теперь имеет вид ν=( ν 0 , ν 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGikaiabe27aUn aaBaaaleaacaaIWaaabeaakiaaiYcacqaH9oGBdaWgaaWcbaGaaGym aaqabaGccaaIPaaaaa@3BAC@ . Из того, что мера d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@ , которая является решением проблемы (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19), допустимо в этой задаче, следует, что она также допустима в задаче (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Пусть ν 0 = ν ^ 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaaGimaaqaba GccaaI9aWaaecaaeaacqaH9oGBaiaawkWaamaaBaaaleaacaaIWaaa beaakiaai2dacqGHsislcaaIXaaaaa@3B09@ , ν 1 = ν ^ 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaWgaaWcbaGaaGymaaqaba GccaaI9aWaaecaaeaacqaH9oGBaiaawkWaamaaBaaaleaacaaIXaaa beaakiaai2dacaaIXaaaaa@3A1E@ . Тогда

mindμ0L1dμν^L1dμ^ν^Ldμ^λ^mindμ0Ldμλ^                                                                              (23)

где ν ^ =( ν ^ 0 , ν ^ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabe27aUbGaayPadaGaaG ypaiaaiIcadaqiaaqaaiabe27aUbGaayPadaWaaSbaaSqaaiaaicda aeqaaOGaaGilamaaHaaabaGaeqyVd4gacaGLcmaadaWgaaWcbaGaaG ymaaqabaGccaaIPaaaaa@3DF2@ ; с учетом (14), имеем

ν ^ 1 j=1 p λ ^ j + e 2|ξ | 2 t j d μ ^ (ξ) j=1 p λ ^ j δ j 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabe27aUbGaayPadaWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaadaaeWbqabSqaaiaadQgacaaI 9aGaaGymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgaca GLcmaadaWgaaWcbaGaamOAaaqabaGcdaWdrbqabSqaamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacq GHRaWkaeqaaaqab0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHi TiaaikdacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaam iDamaaBaaabaGaamOAaaqabaaaaOGaamizamaaHaaabaGaeqiVd0ga caGLcmaacaaIOaGaeqOVdGNaaGykaiabgkHiTmaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5aOWaaecaaeaacqaH 7oaBaiaawkWaamaaBaaaleaacaWGQbaabeaakiabes7aKnaaDaaale aacaWGQbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai2dacaaIWaGa aGOlaaaa@6E16@                                                                                              (24)

Это значит, что d μ ^ (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaecaaeaacqaH8oqBaiaawk WaaiaaiIcacqaH+oaEcaaIPaaaaa@384A@  является решением задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Следовательно, значение этой задачи равно значению задачи (21) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (22). Отсюда следует, что возведенное в квадрат значение задачи (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) равно решению задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Следовательно, значения задач (10) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (11) и (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19) совпадают.

5. Основной результат.

Теорема 1. Для любого τ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3508@  имеет место равенство

E(τ, δ ¯ )= e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaOGaaGOlaaaa@408E@

(i)      Если 0τ< t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaaGipai aadshadaWgaaWcbaGaaGymaaqabaaaaa@389B@ , то θ(τ)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaeqiXdqNaaGykai aai2dacqGHsislcqGHEisPaaa@39C6@ .

(ii)  Если τ= t s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaa@377A@ , j=1,,ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eiGae8x8depaaa@42B5@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой m ^ ( y ¯ ())()= y s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamyEamaaBaaaleaacaWGZbWaaSbaae aacaWGQbaabeaaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@44F9@ , является оптимальным.

(iii)  Если ϱ2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=f=aXlabgwMiZkaaikdaaaa@4038@ , τ( t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIOaGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F30@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой

m ^ ( y ¯ ())()=( Ψ s j y s j ) γ ()+ ( Ψ s j+1 y s j+1 ) γ (), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaaGikaiabfI6aznaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaey4fIOIaamyEamaaBaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykamaaBaaaleaacq aHZoWzaeqaaOGaaGikaiabgwSixlaaiMcacqGHRaWkcaaIOaGaeuiQ dK1aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabe aaaeqaaOGaey4fIOIaamyEamaaBaaaleaacaWGZbWaaSbaaeaacaWG QbGaey4kaSIaaGymaaqabaaabeaakiaaiMcadaWgaaWcbaGaeq4SdC gabeaakiaaiIcacqGHflY1caaIPaGaaGilaaaa@60B2@                                                                                  (25)

где Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@ , Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функции, образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя которых имеют вид

F γ Ψ s j (ξ)= ( t s j+1 τ) δ s j+1 2 e |ξ | 2 (τ t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaaGypamaalaaabaGaaGikaiaadshada WgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqa baGccqGHsislcqaHepaDcaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaaqabe aacaaIYaaaaiaaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaacaaIOaGaam iDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqa baaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqhaaWcbaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaaiaaikdaaaGc cqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKnaaDaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8bWaaWbaaeqa baGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGa am4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaakiaaiYcaaa a@87A9@                                                                      (26)

F γ Ψ s j+1 (ξ)= (τ t s j ) δ s j 2 e |ξ | 2 (τ+ t s j+1 2 t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaa igdaaeqaaaqabaGccaaIOaGaeqOVdGNaaGykaiaai2dadaWcaaqaai aaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaSqaaiaadohadaWgaaqa aiaadQgaaeqaaaqabaGccaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgaaeqaaaqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaa cqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaaG ikaiabes8a0jabgUcaRiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaaikdacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaa caaIOaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqh aaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaai aaikdaaaGccqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaa leaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKn aaDaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8b WaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaa kiaaiYcaaaa@8C69@                                                                    (27)

является оптимальным.

(iv)  Если τ> t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4281@ , то метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@ , определенный формулой m ^ ( y ¯ ())()= P τ t s ϱ y s ϱ () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamiuamaaBaaaleaacqaHepaDcqGHsi slcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaaaeqaaOGaam yEamaaBaaaleaacaWGZbWaaSbaaeaacqWFXpq8aeqaaaqabaGccaaI OaGaeyyXICTaaGykaaaa@5859@ , является оптимальным.

Доказательство. Пусть τ[ t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F63@ . Выше было показано, что можно было бы выбрать набор множителей Лагранжа, в котором только множители λ ^ s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaaaaa@366B@  и λ ^ s j+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeqa aaaa@3808@  не равны нулю. Следовательно, задача (15) принимает вид

λ ^ s j P t s j u 0 () y s j () L 2 γ ( + ) + λ ^ s j+1 P t s j+1 u 0 () y s j+1 () L 2 γ ( + ) min, u 0 () L 2 γ ( + ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaqeeuuDJXwAKbsr 4rNCHbaceaGccqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaai aadohadaWgaaqaaiaadQgaaeqaaaqabaaabeaakiaadwhadaWgaaWc baGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMhada WgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaakiaaiIcacqGH flY1caaIPaGae8xjIa1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaae aacqaHZoWzaaGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaO Gaey4kaSYaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWa aSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaakiab=vIiqjaadc fadaWgaaWcbaGaamiDamaaBaaabaGaam4CamaaBaaabaGaamOAaiab gUcaRiaaigdaaeqaaaqabaaabeaakiaadwhadaWgaaWcbaGaaGimaa qabaGccaaIOaGaeyyXICTaaGykaiabgkHiTiaadMhadaWgaaWcbaGa am4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOa GaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaI YaaabaGaeq4SdCgaaiaaiIcacqGFDeIudaWgaaqaaiabgUcaRaqaba GaaGykaaqabaGccqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzb VlaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykai abgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiabeo7aNbaakiaaiIca cqGFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcacaaIUaaaaa@9AB0@

Пусть u ^ 0 ()= u ^ 0 (,y()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcacaWG5bGaaGikaiabgwSixlaaiMcacaaIPaaaaa@44A1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  решение этой задачи. Тогда выполнено условие (20). В образах Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя это условие может быть записано в виде

κ=j j+1 + ξ γ ( e |ξ | 2 t s κ F γ u ^ 0 (ξ) F γ y s κ (ξ)) e |ξ | 2 t s κ F γ u 0 (ξ)dξ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiabeQ7aRjaai2daca WGQbaabaGaamOAaiabgUcaRiaaigdaa0GaeyyeIuoakiaaysW7daWd rbqabSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae8xhHi1aaSbaaeaacqGHRaWkaeqaaaqab0Gaey4kIipakiabe67a 4naaCaaaleqabaGaeq4SdCgaaOGaaGikaiaadwgadaahaaWcbeqaai abgkHiTiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG 0bWaaSbaaeaacaWGZbWaaSbaaeaacqaH6oWAaeqaaaqabaaaaOGaam OramaaBaaaleaacqaHZoWzaeqaaOWaaecaaeaacaWG1baacaGLcmaa daWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTi aadAeadaWgaaWcbaGaeq4SdCgabeaakiaadMhadaWgaaWcbaGaam4C amaaBaaabaGaeqOUdSgabeaaaeqaaOGaaGikaiabe67a4jaaiMcaca aIPaGaamyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYha daahaaqabeaacaaIYaaaaiaadshadaWgaaqaaiaadohadaWgaaqaai abeQ7aRbqabaaabeaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGc caWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiMcaca aMi8Uaamizaiabe67a4jaai2dacaaIWaGaaGOlaaaa@854C@                                                               (28)

Пусть

F γ u ^ 0 (ξ)= λ ^ s j e |ξ | 2 t s j F γ y s j + λ ^ s j+1 e |ξ | 2 t s j+1 F γ y s j+1 λ ^ s j e 2|ξ | 2 t s j + λ ^ s j+1 e 2|ξ | 2 t s j+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GcdaqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqaH+oaEcaaIPaGaaGypamaalaaabaWaaecaaeaacqaH7oaBai aawkWaamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaa qabeaacaaIYaaaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaadQga aeqaaaqabaaaaOGaamOramaaBaaaleaacqaHZoWzaeqaaOGaamyEam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaey4kaSYa aecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWaaSbaaeaaca WGQbGaey4kaSIaaGymaaqabaaabeaakiaadwgadaahaaWcbeqaaiab gkHiTiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0b WaaSbaaeaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaa beaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGccaWG5bWaaSbaaS qaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeqaaaGc baWaaecaaeaacqaH7oaBaiaawkWaamaaBaaaleaacaWGZbWaaSbaae aacaWGQbaabeaaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaaGOm aiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaakiabgUcaRmaa HaaabaGaeq4UdWgacaGLcmaadaWgaaWcbaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGccaWGLbWaaWbaaSqabeaacqGH sislcaaIYaGaaGiFaiabe67a4jaaiYhadaahaaqabeaacaaIYaaaai aadshadaWgaaqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaa beaaaeqaaaaaaaGccaaIUaaaaa@8D25@                                                               (29)

Тогда равенство (28) выполняется для всех u 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMca aaa@497D@ . Пусть для множества y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  функции F γ y j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaaiMca aaa@3A3B@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны. Тогда функция (29) принадлежит пространству L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ . Тогда функция u ^ 0 ()= u ^ 0 (,y()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaHaaa baGaamyDaaGaayPadaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcacaWG5bGaaGikaiabgwSixlaaiMcacaaIPaaaaa@44A1@ , определенная формулой (29), также принадлежит пространству L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@  и является решением задачи (15). Финитные функции плотны в L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ . Следовательно, функции с финитными образами Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя являются плотными в L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaacq aHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaaiMcaaaa@4260@ .

Пусть функции u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@ , y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  удовлетворяют неравенствам

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Выберем последовательность y ¯ (k) ()=( y 1 (k) (),, y p (k) ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaWaaWbaaSqabe aacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaai2da caaIOaGaamyEamaaDaaaleaacaaIXaaabaGaaGikaiaadUgacaaIPa aaaOGaaGikaiabgwSixlaaiMcacaaISaGaeSOjGSKaaGilaiaadMha daqhaaWcbaGaamiCaaqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacq GHflY1caaIPaGaaGykaiabgIGiolaaiIcacaWGmbWaa0baaSqaaiaa ikdaaeaacqaHZoWzaaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPr ginfgDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4kaScabeaakiaa iMcacaaIPaWaaWbaaSqabeaacaWGWbaaaaaa@6291@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@ , для которой функции F γ y j (k) () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaa0baaSqaaiaadQgaaeaacaaIOaGaam4AaiaaiMcaaaGc caaIOaGaeyyXICTaaGykaaaa@3C91@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны и

y j () y j (k) () L 2 γ ( + ) 1 k ,j=1,,p,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgwSixlaaiMca cqGHsislcaWG5bWaa0baaSqaaiaadQgaaeaacaaIOaGaam4AaiaaiM caaaGccaaIOaGaeyyXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWa a0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaSca beaacaaIPaaabeaakiabgsMiJoaalaaabaGaaGymaaqaaiaadUgaaa GaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKaaGil aiaadchacaaISaGaaGzbVlaadUgacqGHiiIZcqGFveItcaaIUaaaaa@6A46@

Зафиксируем число k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@ . Существует решение u ^ 0 (, y (k) ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadwhaaiaawkWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISaGaamyEamaaCaaa leqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiMcaca aIPaaaaa@400B@  задачи (15). В силу неравенств

P t j u ˜ 0 () y j (k) () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc daaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiI cacqGHflY1caaIPaGaeyOeI0IaamyEamaaDaaaleaacaWGQbaabaGa aGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiMcacqWFLicuda WgaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWe fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFDeIuda WgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOaaa@5D78@

P t j u ˜ 0 () y j () L 2 γ ( + ) + y j () y j (k) () L 2 γ ( + ) δ j + 1 k ,j=1,,p, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqa aaqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabe aakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaaleaacaWG QbaabeaakiaaiIcacqGHflY1caaIPaGae8xjIa1aaSbaaSqaaiaadY eadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaGikamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xhHi1aaSbaaeaacqGHRa WkaeqaaiaaiMcaaeqaaOGaey4kaSIae8xjIaLaamyEamaaBaaaleaa caWGQbaabeaakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaDa aaleaacaWGQbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSi xlaaiMcacqWFLicudaWgaaWcbaGaamitamaaDaaabaGaaGOmaaqaai abeo7aNbaacaaIOaGae4xhHi1aaSbaaeaacqGHRaWkaeqaaiaaiMca aeqaaOGaeyizImQaeqiTdq2aaSbaaSqaaiaadQgaaeqaaOGaey4kaS YaaSaaaeaacaaIXaaabaGaam4AaaaacaaISaGaaGzbVlaadQgacaaI 9aGaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcaaaa@8435@

функция u ˜ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@  допустима в задаче (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) с σ j = σ j (k)= δ j +1/k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaaqaba GccaaI9aGaeq4Wdm3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadUga caaIPaGaaGypaiabes7aKnaaBaaaleaacaWGQbaabeaakiabgUcaRi aaigdacaaIVaGaam4Aaaaa@4184@ . Пусть

a(k)= j=1 p λ ^ j σ j 2 (k)/ j=1 p λ ^ j δ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaGaaG ypamaakaaabaWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG WbaaniabggHiLdGcdaqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaai aadQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGa aGikaiaadUgacaaIPaGaaG4lamaaqahabeWcbaGaamOAaiaai2daca aIXaaabaGaamiCaaqdcqGHris5aOWaaecaaeaacqaH7oaBaiaawkWa amaaBaaaleaacaWGQbaabeaakiabes7aKnaaDaaaleaacaWGQbaaba GaaGOmaaaaaeqaaOGaaGOlaaaa@5361@

В силу леммы 2 значение задачи (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17) не превышает значения задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19).

Произведем замену функции u 0 ()=a(k) v 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgwSixlaaiMcacaaI9aGaamyyaiaaiIcacaWGRbGaaGyk aiaadAhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGykaa aa@40F6@  для задачи (18) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (19). Эта задача примет вид

a(k) P τ v 0 () P τ u ^ 0 () L 2 γ ( + ) 2 max, u 0 () L 2 γ ( + ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaqeeu uDJXwAKbsr4rNCHbaceaGae8xjIaLaamiuamaaBaaaleaacqaHepaD aeqaaOGaamODamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaecaaeaa caWG1baacaGLcmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXIC TaaGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGa eq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabaGaaGOm aaaakiabgkziUkGac2gacaGGHbGaaiiEaiaaiYcacaaMf8UaamyDam aaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Sa amitamaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikaiab+1risn aaBaaaleaacqGHRaWkaeqaaOGaaGykaiaaiYcaaaa@758D@                                                                    (30)

j=1 p λ ^ j P t j v 0 () L 2 γ ( + ) 2 j=1 p λ ^ j σ j 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG ymaaqaaiaadchaa0GaeyyeIuoakmaaHaaabaGaeq4UdWgacaGLcmaa daWgaaWcbaGaamOAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadQgaaeqaaaqabaGc caWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacq WFLicudaqhaaWcbaGaamitamaaDaaabaGaaGOmaaqaaiabeo7aNbaa caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqaaiaaikdaaaGccqGH KjYOdaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadchaa0Gaey yeIuoakiaayIW7daqiaaqaaiabeU7aSbGaayPadaWaaSbaaSqaaiaa dQgaaeqaaOGaeq4Wdm3aa0baaSqaaiaadQgaaeaacaaIYaaaaOGaaG Olaaaa@6CE9@                                                                                                (31)

Значение задачи (30) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (31) совпадает со значением задачи (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (7), умноженным на a(k) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaaaaa@34FC@ , и оно равно a(k) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadUgacaaIPaGaam yzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMca aaaaaa@3BE0@ . Поскольку функция u ˜ 0 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaaaaa@381C@  допустимо в задаче (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (17), имеем

P τ u ˜ 0 () P τ u ^ 0 (, y (k) ()) L 2 γ ( + ) a(k) e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaecaaeaacaWG1baa caGLcmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXICTaaGilai aadMhadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqGH flY1caaIPaGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaaca aIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPa aabeaakiabgsMiJkaadggacaaIOaGaam4AaiaaiMcacaWGLbWaaWba aSqabeaacqGHsislcqaH4oqCcaaIOaGaeqiXdqNaaGykaaaakiaai6 caaaa@7107@                                                                                    (32)

Пусть Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@ , Φ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3AC5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  функции, образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя которых имеют следующий вид в соответствии с (26) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (27):

F γ Ψ s j (ξ)= ( t s j+1 τ) δ s j+1 2 e |ξ | 2 (τ t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaaGypamaalaaabaGaaGikaiaadshada WgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqa baGccqGHsislcqaHepaDcaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgacqGHRaWkcaaIXaaabeaaaeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaaqabe aacaaIYaaaaiaaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaacaaIOaGaam iDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqa baaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqhaaWcbaGaam 4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaaiaaikdaaaGc cqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKnaaDaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8bWaaWbaaeqa baGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4CamaaBaaabaGaam OAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDamaaBaaabaGa am4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaakiaaiYcaaa a@87A9@

F γ Ψ s j+1 (ξ)= (τ t s j ) δ s j 2 e |ξ | 2 (τ+ t s j+1 2 t s j ) ( t s j+1 τ) δ s j+1 2 +(τ t s j ) δ s j 2 e 2|ξ | 2 ( t s j+1 t s j ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaa igdaaeqaaaqabaGccaaIOaGaeqOVdGNaaGykaiaai2dadaWcaaqaai aaiIcacqaHepaDcqGHsislcaWG0bWaaSbaaSqaaiaadohadaWgaaqa aiaadQgaaeqaaaqabaGccaaIPaGaeqiTdq2aa0baaSqaaiaadohada WgaaqaaiaadQgaaeqaaaqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaa cqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaaG ikaiabes8a0jabgUcaRiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgacqGHRaWkcaaIXaaabeaaaeqaaiabgkHiTiaaikdacaWG0bWaaS baaeaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaiaaiMcaaaaakeaa caaIOaGaamiDamaaBaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaS IaaGymaaqabaaabeaakiabgkHiTiabes8a0jaaiMcacqaH0oazdaqh aaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqaai aaikdaaaGccqGHRaWkcaaIOaGaeqiXdqNaeyOeI0IaamiDamaaBaaa leaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykaiabes7aKn aaDaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeaacaaIYaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiYhacqaH+oaEcaaI8b WaaWbaaeqabaGaaGOmaaaacaaIOaGaamiDamaaBaaabaGaam4Camaa BaaabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGaeyOeI0IaamiDam aaBaaabaGaam4CamaaBaaabaGaamOAaaqabaaabeaacaaIPaaaaaaa kiaai6caaaa@8C6B@

Пусть τ( t s j , t s j+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIOaGaamiDam aaBaaaleaacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaam4CamaaBaaabaGaamOAaiabgUcaRiaaigdaae qaaaqabaGccaaIPaaaaa@3F30@ . Образы Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя (26) и (27) функций Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@  и Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@  принадлежат пространству четных бесконечно дифференцируемых быстро убывающих функций. Следовательно, функции Ψ s j () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaaqabaaabeaakiaaiIcacqGHflY1caaIPaaaaa@393D@  и Ψ s j+1 () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwdaWgaaWcbaGaam4CamaaBa aabaGaamOAaiabgUcaRiaaigdaaeqaaaqabaGccaaIOaGaeyyXICTa aGykaaaa@3ADA@  принадлежат этому пространству. В рассматриваемом случае мы определяем метод восстановления с использованием обобщенной свертки в соответствии с (25):

m ^ ( y ¯ ())()=( Ψ s j y s j ) γ ()+ ( Ψ s j+1 y s j+1 ) γ (). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaaGikaiabfI6aznaaBaaaleaacaWGZb WaaSbaaeaacaWGQbaabeaaaeqaaOGaey4fIOIaamyEamaaBaaaleaa caWGZbWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGykamaaBaaaleaacq aHZoWzaeqaaOGaaGikaiabgwSixlaaiMcacqGHRaWkcaaIOaGaeuiQ dK1aaSbaaSqaaiaadohadaWgaaqaaiaadQgacqGHRaWkcaaIXaaabe aaaeqaaOGaey4fIOIaamyEamaaBaaaleaacaWGZbWaaSbaaeaacaWG QbGaey4kaSIaaGymaaqabaaabeaakiaaiMcadaWgaaWcbaGaeq4SdC gabeaakiaaiIcacqGHflY1caaIPaGaaGOlaaaa@60B4@

Тогда

F γ m ^ ( y ¯ (k) ())(ξ)= F γ Ψ s j (ξ) F γ y s j (k) (ξ)+ F γ Ψ s j+1 (ξ) F γ y s j+1 (k) (ξ)= e |ξ | 2 τ F γ u ˜ 0 (, y ¯ (k) ())(ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGgbWaaSbaaSqa aiabeo7aNbqabaGccqqHOoqwdaWgaaWcbaGaam4CamaaBaaabaGaam OAaaqabaaabeaakiaaiIcacqaH+oaEcaaIPaGaamOramaaBaaaleaa cqaHZoWzaeqaaOGaamyEamaaDaaaleaacaWGZbWaaSbaaeaacaWGQb aabeaaaeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeqOVdGNaaGyk aiabgUcaRiaadAeadaWgaaWcbaGaeq4SdCgabeaakiabfI6aznaaBa aaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaabeaa kiaaiIcacqaH+oaEcaaIPaGaamOramaaBaaaleaacqaHZoWzaeqaaO GaamyEamaaDaaaleaacaWGZbWaaSbaaeaacaWGQbGaey4kaSIaaGym aaqabaaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabe67a4jaaiM cacaaI9aGaamyzamaaCaaaleqabaGaeyOeI0IaaGiFaiabe67a4jaa iYhadaahaaqabeaacaaIYaaaaiabes8a0baakiaadAeadaWgaaWcba Gaeq4SdCgabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiabgwSixlaaiYcadaqdaaqaaiaadMhaaaWaaW baaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGyk aiaaiMcacaaIOaGaeqOVdGNaaGykaiaai6caaaa@8EFF@                                          (33)

Это значит, что

m ^ ( y ¯ (k) ())()= P τ u ˜ 0 (, y ¯ (k) ())(). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOaGaam4AaiaaiMca aaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykai aai2dacaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwha aiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISa Waa0aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaa aOGaaGikaiabgwSixlaaiMcacaaIPaGaaGikaiabgwSixlaaiMcaca aIUaaaaa@562C@                                                                                                             (34)

Если τ= t s j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaacaWGQbaabeaaaeqaaaaa@377A@ , включая случай τ= t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4280@ , то

F γ m ^ ( y ¯ (k) ())(ξ)= F γ y s j (k) (ξ)= e |ξ | 2 τ F γ u ˜ 0 (, y ¯ (k) ())(ξ)= F γ ( P τ u ˜ 0 (, y ¯ (k) ()))(ξ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGgbWaaSbaaSqa aiabeo7aNbqabaGccaWG5bWaa0baaSqaaiaadohadaWgaaqaaiaadQ gaaeqaaaqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqaH+oaEcaaI PaGaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiaaiYhacqaH+oaEca aI8bWaaWbaaeqabaGaaGOmaaaacqaHepaDaaGccaWGgbWaaSbaaSqa aiabeo7aNbqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaaca aIWaaabeaakiaaiIcacqGHflY1caaISaWaa0aaaeaacaWG5baaamaa CaaaleqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixlaaiM cacaaIPaGaaGikaiabe67a4jaaiMcacaaI9aGaamOramaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadcfadaWgaaWcbaGaeqiXdqhabeaakm aaGaaabaGaamyDaaGaay5adaWaaSbaaSqaaiaaicdaaeqaaOGaaGik aiabgwSixlaaiYcadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOa Gaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIPaGa aGikaiabe67a4jaaiMcacaaISaaaaa@856C@

так что в этом случае (34) тоже верно.

Пусть снова функции u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@ , y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  удовлетворяют неравенствам

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Тогда для любого k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EE0@

P τ u ˜ 0 () m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGa amyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaG ykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4S dCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMi Jcaa@6223@

P τ u ˜ 0 () m ^ ( y ¯ (k) ())() L 2 γ ( + ) + m ^ ( y ¯ (k) ())() m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaa dwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaa naaabaGaamyEaaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaaki aaiIcacqGHflY1caaIPaGaaGykaiaaiIcacqGHflY1caaIPaGae8xj Ia1aaSbaaSqaaiaadYeadaqhaaqaaiaaikdaaeaacqaHZoWzaaGaaG ikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae4xh Hi1aaSbaaeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaey4kaSIae8xjIa 1aaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGaamyE aaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaakiaaiIcacqGHfl Y1caaIPaGaaGykaiaaiIcacqGHflY1caaIPaGaeyOeI0Yaaecaaeaa caWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGaamyEaaaacaaIOa GaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykaiab=vIiqnaa BaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcacq GFDeIudaWgaaqaaiabgUcaRaqabaGaaGykaaqabaGccqGHKjYOaaa@8E2D@

P τ u ˜ 0 () P τ u ˜ 0 (, y ¯ (k) ()) L 2 γ ( + ) + m ^ ( y ¯ (k) ())() m ^ ( y ¯ ())() L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOrqqr1ngBPrgifHhDYfgaiq aacqWFLicucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaa dwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1ca aIPaGaeyOeI0IaamiuamaaBaaaleaacqaHepaDaeqaaOWaaacaaeaa caWG1baacaGLdmaadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyyXIC TaaGilamaanaaabaGaamyEaaaadaahaaWcbeqaaiaaiIcacaWGRbGa aGykaaaakiaaiIcacqGHflY1caaIPaGaaGykaiab=vIiqnaaBaaale aacaWGmbWaa0baaeaacaaIYaaabaGaeq4SdCgaaiaaiIcatuuDJXwA K1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaBaaaba Gaey4kaScabeaacaaIPaaabeaakiabgUcaRiab=vIiqnaaHaaabaGa amyBaaGaayPadaGaaGjcVlaaiIcadaqdaaqaaiaadMhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaGykaiaa iMcacaaIOaGaeyyXICTaaGykaiabgkHiTmaaHaaabaGaamyBaaGaay PadaGaaGjcVlaaiIcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaa iMcacaaIPaGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaam itamaaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaGae4xhHi1aaSba aeaacqGHRaWkaeqaaiaaiMcaaeqaaOGaeyizImkaaa@8FB5@

a(k) e θ(τ) + m ^ ( y ¯ (k) () y ¯ ())() L 2 γ ( + ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaWGHbGaaGikaiaadUgaca aIPaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikaiabes8a 0jaaiMcaaaGccqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicuda qiaaqaaiaad2gaaiaawkWaaiaayIW7caaIOaWaa0aaaeaacaWG5baa amaaCaaaleqabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiabgwSixl aaiMcacqGHsisldaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMca caaIPaGaaGikaiabgwSixlaaiMcacqWFLicudaWgaaWcbaGaamitam aaDaaabaGaaGOmaaqaaiabeo7aNbaacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqGFDeIudaWgaaqaaiabgUcaRa qabaGaaGykaaqabaGccaaIUaaaaa@6C05@

Переходя в этом неравенстве к пределу в k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyOKH4QaeyOhIukaaa@360F@ , получаем

P τ u ˜ 0 () m ^ ( y ¯ ())() L 2 γ ( + ) e θ(τ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaaiaaqaaiaadwhaaiaa woWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaey OeI0YaaecaaeaacaWGTbaacaGLcmaacaaMi8UaaGikamaanaaabaGa amyEaaaacaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaG ykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq4S dCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaG qbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaakiabgsMi JkaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaiIcacqaHepaDca aIPaaaaOGaaGOlaaaa@69C9@

В этом неравенстве перейдем к верхней грани по всем u ˜ 0 () L 2 γ ( + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaeyicI4Saamit amaaDaaaleaacaaIYaaabaGaeq4SdCgaaOGaaGikamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaSqaaiab gUcaRaqabaGccaaIPaaaaa@4A3F@  и y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@ , для которых

P t s j u ˜ 0 () y s j () L 2 γ ( + ) δ j ,j=1,,p. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaaiaa dQgaaeqaaaqabaaabeaakmaaGaaabaGaamyDaaGaay5adaWaaSbaaS qaaiaaicdaaeqaaOGaaGikaiabgwSixlaaiMcacqGHsislcaWG5bWa aSbaaSqaaiaadohadaWgaaqaaiaadQgaaeqaaaqabaGccaaIOaGaey yXICTaaGykaiab=vIiqnaaBaaaleaacaWGmbWaa0baaeaacaaIYaaa baGaeq4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab+1risnaaBaaabaGaey4kaScabeaacaaIPaaabeaa kiabgsMiJkabes7aKnaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8 UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGOl aaaa@690E@

Тогда получим e(τ, δ ¯ , m ^ ) e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaISaWaaecaaeaacaWGTbaacaGLcmaacaaI PaGaeyizImQaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGikai abes8a0jaaiMcaaaaaaa@4344@ . Учитывая нижнюю оценку, доказанную ранее, получаем

e θ(τ) E(τ, δ ¯ )e(τ, δ ¯ , m ^ ) e θ(τ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq aH4oqCcaaIOaGaeqiXdqNaaGykaaaakiabgsMiJkaadweacaaIOaGa eqiXdqNaaGilamaanaaabaGaeqiTdqgaaiaaiMcacqGHKjYOcaWGLb GaaGikaiabes8a0jaaiYcadaqdaaqaaiabes7aKbaacaaISaWaaeca aeaacaWGTbaacaGLcmaacaaIPaGaeyizImQaamyzamaaCaaaleqaba GaeyOeI0IaeqiUdeNaaGikaiabes8a0jaaiMcaaaGccaaISaaaaa@54BC@

откуда следует, что E(τ, δ ¯ )= e θ(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabes8a0jaaiYcada qdaaqaaiabes7aKbaacaaIPaGaaGypaiaadwgadaahaaWcbeqaaiab gkHiTiabeI7aXjaaiIcacqaHepaDcaaIPaaaaaaa@3FCC@  и что m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  оптимальный метод.

Пусть τ> t s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaamiDamaaBaaale aacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=f=aXdqabaaabeaaaaa@4281@ . Тогда λ ^ s ϱ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeU7aSbGaayPadaWaaS baaSqaaiaadohadaWgaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbaceiGae8x8depabeaaaeqaaOGaaGypaiaaigdaaaa@42FD@ , а остальные множители Лагранжа равны нулю. Задача (15) примет вид

P t s ϱ u ˜ 0 () y s ϱ () L 2 γ ( + ) 2 min. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGqbWaaSbaaSqaaiaadshadaWgaaqaaiaadohadaWgaaqaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae4x8depabe aaaeqaaaqabaGcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaI WaaabeaakiaaiIcacqGHflY1caaIPaGaeyOeI0IaamyEamaaBaaale aacaWGZbWaaSbaaeaacqGFXpq8aeqaaaqabaGccaaIOaGaeyyXICTa aGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIYaaabaGaeq 4SdCgaaiaaiIcatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3B aGGbaiab91risnaaBaaabaGaey4kaScabeaacaaIPaaabaGaaGOmaa aakiabgkziUkGac2gacaGGPbGaaiOBaiaai6caaaa@6E54@

Пусть для заданного множества y ¯ ()=( y 1 (),, y p ()) ( L 2 γ ( + )) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadMhaaaGaaGikaiabgw SixlaaiMcacaaI9aGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeyyXICTaaGykaiaaiYcacqWIMaYscaaISaGaamyEamaaBa aaleaacaWGWbaabeaakiaaiIcacqGHflY1caaIPaGaaGykaiabgIGi olaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacqaHZoWzaaGccaaIOa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIu daWgaaWcbaGaey4kaScabeaakiaaiMcacaaIPaWaaWbaaSqabeaaca WGWbaaaaaa@5B59@  функции F γ y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GccaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa@3682@ , j=1,,p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadchaaaa@37B5@ , финитны. Тогда решение u ˜ 0 ()= u ˜ 0 (, y ¯ ()) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaamaaBa aaleaacaaIWaaabeaakiaaiIcacqGHflY1caaIPaGaaGypamaaGaaa baGaamyDaaGaay5adaWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgw SixlaaiYcadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaI Paaaaa@44B2@  этой задачи существует и F γ u ˜ 0 (ξ)= e |ξ | 2 t s ϱ F γ y s ϱ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba GcdaaiaaqaaiaadwhaaiaawoWaamaaBaaaleaacaaIWaaabeaakiaa iIcacqaH+oaEcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiaaiYhacq aH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaWG0bWaaSbaaeaacaWG ZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaG abciab=f=aXdqabaaabeaaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqa baGccaWG5bWaaSbaaSqaaiaadohadaWgaaqaaiab=f=aXdqabaaabe aaaaa@564F@ . Неравенство (32) в этом случае доказывается по-прежнему. Теперь определяем метод m ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaaaa@3375@  посредством равенства

m ^ ( y ¯ ())()= P τ t s ϱ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaGaaGikaiabgwSixlaaiMcacaaIPaGaaGik aiabgwSixlaaiMcacaaI9aGaamiuamaaBaaaleaacqaHepaDcqGHsi slcaWG0bWaaSbaaeaacaWGZbWaaSbaaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=f=aXdqabaaabeaaaeqaaOGaaG Olaaaa@50AB@                                                                                                                      (35)

Тогда

F γ m ^ ( y ¯ (k) ())(ξ)= e |ξ | 2 (τ t s ϱ ) F γ y s ϱ (ξ)= e |ξ | 2 τ F γ u ^ 0 (, y ¯ (k) ()). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiabeo7aNbqaba Gcdaqiaaqaaiaad2gaaiaawkWaaiaaiIcadaqdaaqaaiaadMhaaaWa aWbaaSqabeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTaaG ykaiaaiMcacaaIOaGaeqOVdGNaaGykaiaai2dacaWGLbWaaWbaaSqa beaacqGHsislcaaI8bGaeqOVdGNaaGiFamaaCaaabeqaaiaaikdaaa GaaGikaiabes8a0jabgkHiTiaadshadaWgaaqaaiaadohadaWgaaqa amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x8de pabeaaaeqaaiaaiMcaaaGccaWGgbWaaSbaaSqaaiabeo7aNbqabaGc caWG5bWaaSbaaSqaaiaadohadaWgaaqaaiab=f=aXdqabaaabeaaki aaiIcacqaH+oaEcaaIPaGaaGypaiaadwgadaahaaWcbeqaaiabgkHi TiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacqaHepaDaa GccaWGgbWaaSbaaSqaaiabeo7aNbqabaGcdaqiaaqaaiaadwhaaiaa wkWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISaWaa0 aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaaaOGa aGikaiabgwSixlaaiMcacaaIPaGaaGOlaaaa@813E@

Это означает, что

m ^ ( y ¯ (k) ())()= P τ u ^ 0 (, y ¯ (k) ()). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaad2gaaiaawkWaaiaaiI cadaqdaaqaaiaadMhaaaWaaWbaaSqabeaacaaIOaGaam4AaiaaiMca aaGccaaIOaGaeyyXICTaaGykaiaaiMcacaaIOaGaeyyXICTaaGykai aai2dacaWGqbWaaSbaaSqaaiabes8a0bqabaGcdaqiaaqaaiaadwha aiaawkWaamaaBaaaleaacaaIWaaabeaakiaaiIcacqGHflY1caaISa Waa0aaaeaacaWG5baaamaaCaaaleqabaGaaGikaiaadUgacaaIPaaa aOGaaGikaiabgwSixlaaiMcacaaIPaGaaGOlaaaa@527D@

Дальнейшие рассуждения повторяют рассуждения предыдущего случая.

Основные результаты, изложенные выше в настоящей статье, анонсированы в [16].

×

Об авторах

М. В. Половинкина

Воронежский государственный университет инженерных технологий

Автор, ответственный за переписку.
Email: polovinkina-marina@yandex.ru
Россия, Воронеж

Список литературы

  1. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. — М.: ГИФМЛ, 1963.
  2. Житомирский Я. И. Задача Коши для систем линейных уравнений в частных производных с дифференциальными операторами типа Бесселя// Мат. сб. — 1955. — 36 (78), № 2. — С. 299–310.
  3. Катрахов В. В., Ситник С. М. Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений// Совр. мат. Фундам. напр. — 2018. — 64, № 2. — С. 211–426.
  4. Киприянов И. А. Сингулярные эллиптические краевые задачи. — М.: Наука, 1997.
  5. Киприянов И. А. Преобразование Фурье—Бесселя и теоремы вложения для весовых классов// Тр. Мат. ин-та им. В. А. Стеклова РАН. — 1967. — 89. — С. 130–213.
  6. Киприянов И. А., Засорин Ю. В. О фундаментальном решении волнового уравнения с многими особенностями// Диффер. уравн. — 1992. — 28, № 3. — С. 452–462.
  7. Киприянов И. А., Куликов А. А. Теорема Пэли—Винера—Шварца для преобразования Фурье— Бесселя// Докл. АН СССР. — 1988. — 298, № 1. — С. 13–17. 8. Левитан Б. М. Разложение в ряды и интегралы Фурье по функциям Бесселя// Усп. мат. наук. — 1951. — 6, № 2. — С. 102–143.
  8. Ляхов Л. Н. Гиперсингулярные интегралы и их приложения к описанию функциональных классов Киприянова и к интегральным уравнениям с потенциальными ядрами. — Липецк: ЛГПУ, 2007.
  9. Магарил-Ильяев Г. Г., Осипенко К. Ю. Оптимальное восстановление решения уравнения теплопроводности по неточным измерениям// Мат. сб. — 2009. — 200, № 5. — С. 37–54.
  10. Магарил-Ильяев Г. Г., Сивкова Е. О. Наилучшее восстановление оператора Лапласа функции по ее неточно заданному спектру// Мат. сб. — 2012. — 203, № 4. — С. 119–130.
  11. Сивкова Е. О. Об оптимальном восстановлении лапласиана функции по ее неточно заданному преобразованию Фурье// Владикавказ. мат. ж. — 2012. — 14, № 4. — С. 63–72.
  12. Ситник С. М., Шишкина Э. Л. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. — М.: Физматлит, 2019.
  13. Muravnik A. B. Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations// Funct. Differ. Equations. — 2001. — 8, № 3–4. — P. 353–363.
  14. Muravnik A. B. Functional differential parabolic equations: Integral transformations and qualitative properties of solutions of the Cauchy problem// J. Math. Sci. — 2016. — 216, № 3. — P. 345–496
  15. Polovinkina M. V., Polovinkin I. P. Recovery of the solution of the singular heat equation from measurement data// Bol. Soc. Mat. Mex. — 2023. — 29. — 41.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Половинкина М.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».