Формулы Грина для ΔB - оператора Киприянова в весовой линейной форме

Обложка

Цитировать

Полный текст

Аннотация

Для сингулярного дифференциального оператора Киприянова в евклидовом n - полупространстве получена общая формула Грина и две формулы Грина, отвечающие специальным значениям параметра.

Полный текст

1. Введение.

Обычно для Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператора Лапласа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Бесселя в евклидовом пространстве точек x=( x 1 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSba aSqaaiaad6gaaeqaaOGaaGykaaaa@3B8C@

Δ B = i=1 n B γ i , B γ i = 2 x i 2 + γ i x i x i , γ i 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba GccaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaa niabggHiLdGccaWGcbWaaSbaaSqaaiabeo7aNnaaBaaabaGaamyAaa qabaaabeaakiaaiYcacaaMf8UaamOqamaaBaaaleaacqaHZoWzdaWg aaqaaiaadMgaaeqaaaqabaGccaaI9aWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0baaSqaaiaadMga aeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeq4SdC2aaSbaaSqaai aadMgaaeqaaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaaaaGccaaI GaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaSbaaSqaaiaadM gaaeqaaaaakiaaiYcacaaMf8Uaeq4SdC2aaSbaaSqaaiaadMgaaeqa aOGaeyyzImRaaGimaiaaiYcaaaa@5F83@

соответствующая весовая линейная форма сопровождается степенным весом i=1 n x i γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadIhadaqhaaWcbaGaamyAaaqa aiabeo7aNnaaBaaabaGaamyAaaqabaaaaaaa@3C2E@  (см. книгу [1] и имеющиеся в ней многочисленные ссылки). И. А. Киприянов в начале 1980-х годов на научном семинаре в Воронежском государственном университете поставил задачу об исследовании подобных операторов с отрицательными показателями степенного веса. Оказалось, что оператор Бесселя B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3548@  с отрицательным параметром 1<γ<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaGipaiabgkHiTi abeo7aNjaaiYdacaaIWaaaaa@3843@  обладает рядом особенностей, отмеченных в [24]. В частности, при 1<γ<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiabgkHiTiabeo7aNj aaiYdacaaIWaaaaa@3756@  фундаментальное решение оператора B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3548@  необходимо искать в билинейной форме с весом, уже отличным от x γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqGHsislcq aHZoWzaaaaaa@357F@ . Более общие параметры операторов Бесселя приводят к необходимости исследовать операторы Киприянова в весовых линейных формах с весом i=1 n x i ω i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0Gaey4dIunakiaadIhadaqhaaWcbaGaamyAaaqa aiabeM8a3naaBaaabaGaamyAaaqabaaaaaaa@3C54@ , где ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  мультииндекс с произвольными действительными координатами.

Через n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D97@  будем обозначать евклидово пространство точек x=( x 1 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSba aSqaaiaad6gaaeqaaOGaaGykaaaa@3B8C@ , а через n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E7A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -полупространство, определенное неравенствами x i >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGOpaiaaicdaaaa@3564@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ . Пусть γ=( γ 1 ,, γ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHZoWzcaaI9aGaeyOeI0 IaaGikaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaeq4SdC2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaaa@3F64@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  мультииндекс с отрицательными дробными параметрами 1< γ i <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaGipaiabgkHiTi abeo7aNnaaBaaaleaacaWGPbaabeaakiaaiYdacaaIWaaaaa@3967@ . Следуя [4], будем называть Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператором Киприянова сингулярный дифференциальный оператор

Δ B γ = i=1 n B γ i , B γ i = 2 x i 2 γ i x i x i ,x n + ={x: x i >0}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGypamaaqahabeWcbaGa amyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOqamaaBa aaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqabaGccaaI SaGaaGzbVlaadkeadaWgaaWcbaGaeyOeI0Iaeq4SdC2aaSbaaeaaca WGPbaabeaaaeqaaOGaaGypamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaWGPbaabaGaaG OmaaaaaaGccqGHsisldaWcaaqaaiabeo7aNnaaBaaaleaacaWGPbaa beaaaOqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaaGiiamaala aabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaa aaGccaaISaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGa ey4kaScaaOGaaGypaiaaiUhacaWG4bGaaGOoaiaadIhadaWgaaWcba GaamyAaaqabaGccaaI+aGaaGimaiaai2hacaaISaaaaa@764D@                                                             (1)

отрицательный параметр которого удовлетворяет неравенству 0>γ>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGOpaiabgkHiTiabeo7aNj aai6dacqGHsislcaaIXaaaaa@3847@ . Оператор (1), как и любой оператор Бесселя, целесообразно применять к функциям, четным по каждой координате своего аргумента, так как в этом случае

lim x i 0 1 x i u x i = 2 u(x) x i 2 | x i =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadIhadaWgaaqaai aadMgaaeqaaiabgkziUkaaicdaaeqakeaaciGGSbGaaiyAaiaac2ga aaWaaSaaaeaacaaIXaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaa GccaaMi8+aaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiEamaa BaaaleaacaWGPbaabeaaaaGccaaI9aWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa IyRaamiEamaaDaaaleaacaWGPbaabaGaaGOmaaaaaaGccaaI8bWaaS baaSqaaiaadIhadaWgaaqaaiaadMgaaeqaaiaai2dacaaIWaaabeaa kiaai6caaaa@548D@

Пусть Ω + n + ={x=( x 1 ,, x n ): x i >0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiabgAOinprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac eaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaGccaaI9aGaaG 4EaiaadIhacaaI9aGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGc caaISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGcca aIPaGaaGOoaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaI+aGaaGim aiaai2haaaa@5431@ . Учитывая особенность операторов Бесселя, далее полагаем, что область Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  прилегает к сингулярным координатным гиперплоскостям x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ , оператора Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@ . Тогда граница области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  состоит из двух частей Γ + n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac eaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaaaaa@427F@  и Γ 0 n + ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa GccqGHiiIZdaqdaaqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbaceaGae8xhHi1aa0baaSqaaiaad6gaaeaacqGHRaWkaaaaaa aa@4268@ . Область Ω= Ω + Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaI9aGaeuyQdC1aaWbaaS qabeaacqGHRaWkaaGccqGHQicYcqqHPoWvdaahaaWcbeqaaiabgkHi Taaaaaa@3B05@  получена объединением Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  со своими зеркальными отражениями от координатных гиперплоскостей x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Граница Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3329@  области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334F@  предполагается гладкой в окрестности Γ Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcqGHPiYXcqqHtoWrdaahaa Wcbeqaaiaaicdaaaaaaa@3716@  (условие гладкости границы И. А. Киприянова; см. [1, § 3.1]). Это условие также предполагает, что рассматриваемые функции в области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  должны иметь гладкое четное продолжение через границу Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  по отношению к каждой координате x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@ . В связи с этим вводим следующее определение.

Определение 1. Функцию f=f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiMcaaaa@36C0@ , определенную в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -полупространстве n + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E7A@ , будем называть n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -четной (по Киприянову), если она допускает четное продолжение по каждой координате x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  своего аргумента с сохранением класса функций своей принадлежности.

В частности, если u C k ( x i [0,)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaam4AaaaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3FB1@ , то u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AF@  -четная функция, если все её производные по x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  нечетного порядка lk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbGaeyizImQaam4Aaaaa@3557@  равны нулю при x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Такое определение четности введено И. А. Киприяновым (см. [1, с. 21]). В связи с этим функции, удовлетворяющие определению 1, принято называть четными по Kиприянову.

Из определения 1 вытекает, что каждую из областей Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ , как правило, удобно считать частично замкнутыми, т.е. считать границу Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  границей симметрии и, поэтому полагаем Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  и Ω = Ω Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgkHiTaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BDB@ . Точки, принадлежащие Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  или Ω = Ω Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgkHiTaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BDB@ , будем называть s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутренними. Аналогично, подобласть Ω * + = Ω * + Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaakiaai2dacqqHPoWvdaqhaaWcbaGaaGOkaaqaaiabgUca RaaakiabgQIiilabfo5ahnaaDaaaleaacaaIQaaabaGaaGimaaaaaa a@3DE1@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  с возможно общей границей Γ * 0 Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdaaaGccqGHckcZcqqHtoWrdaahaaWcbeqaaiaaicdaaaaaaa@3919@  будем называть s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -подобластью области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ . Это же касается и соответствующей подобласти области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgkHiTa aaaaa@3469@ .

2. Оператор ΔB в весовой линейной форме

Пусть u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -четные функции, принадлежащие классу функций C 2 ( Ω + ) C 1 ( Ω + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaiabgMIi hlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacqqHPo WvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaaaaa@3EFD@ .

Через ω=(ω,, ω n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaaGikaiabeM8a3j aaiYcacqWIMaYscaaISaGaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGa aGykaaaa@3D0B@  обозначим n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@  -мультииндекc, состоящий из произвольных действительных чисел. Введем весовую билинейную форму, в рамках которой сингулярный дифференциальный Δ B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqaaqaba aaaa@341A@  -оператор Киприянова может не совпадать со своим сопряжением, т.е. не является самосопряженным по Лангранжу (эрмитовым). Рассмотрим весовую билинейную форму следующего вида:

(u,v) ω = Ω n + u(x)v(x) x ω dx, x ω = i=1 n x i ω i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiYcacaWG2bGaaG ykamaaBaaaleaacqaHjpWDaeqaaOGaaGypamaapefabeWcbaGaeuyQ dC1aa0baaeaacaWGUbaabaGaey4kaScaaaqab0Gaey4kIipakiaadw hacaaIOaGaamiEaiaaiMcacaaMi8UaamODaiaaiIcacaWG4bGaaGyk aiaayIW7caWG4bWaaWbaaSqabeaacqaHjpWDaaGccaaMi8Uaamizai aadIhacaaISaGaaGzbVlaadIhadaahaaWcbeqaaiabeM8a3baakiaa i2dadaqeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaey 4dIunakiaadIhadaqhaaWcbaGaamyAaaqaaiabeM8a3naaBaaabaGa amyAaaqabaaaaOGaaGOlaaaa@6029@                                                                                       (2)

Дополнительно введем класс функций, соответствующим образом убывающих на границе Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaWgaaWcbaGaaGimaaqaba aaaa@340F@ . Именно, обозначим через

M ev γ = M ev γ ( Ω + )= C ev 2 ( Ω + ) C 1 ( Ω + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWGLbGaamODaaqaaiab eo7aNbaakiaai2dacqWFZestdaqhaaWcbaGaamyzaiaadAhaaeaacq aHZoWzaaGccaaIOaGaeuyQdC1aaWbaaSqabeaacqGHRaWkaaGccaaI PaGaaGypaiaadoeadaqhaaWcbaGaamyzaiaadAhaaeaacaaIYaaaaO GaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaiabgMIi hlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacqqHPo WvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaaaaa@59D7@

и положим

φ M ev,ω γ = M ev,ω γ ( Ω + )= C ev,ω 2 ( Ω + ) C 1 ( Ω + ¯ ),если  x i ω i φ(x)=O( x i ), x i +0,i= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZtuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWG LbGaamODaiaaiYcacqaHjpWDaeaacqaHZoWzaaGccaaI9aGae83mH0 0aa0baaSqaaiaadwgacaWG2bGaaGilaiabeM8a3bqaaiabeo7aNbaa kiaaiIcacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiaaiMcacaaI9a Gaam4qamaaDaaaleaacaWGLbGaamODaiaaiYcacqaHjpWDaeaacaaI YaaaaOGaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykai abgMIihlaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaa cqqHPoWvdaahaaWcbeqaaiabgUcaRaaaaaGccaaIPaGaaGilaiaayw W7caqG1qGaaeyqeiaabUdbcaqG4qGaaeiiaiaadIhadaqhaaWcbaGa amyAaaqaaiabeM8a3naaBaaabaGaamyAaaqabaaaaOGaeqOXdOMaaG ikaiaadIhacaaIPaGaaGypaiaad+eacaaIOaGaamiEamaaBaaaleaa caWGPbaabeaakiaaiMcacaaISaGaaGjbVlaadIhadaWgaaWcbaGaam yAaaqabaGccqGHsgIRcqGHRaWkcaaIWaGaaGilaiaaysW7caWGPbGa aGypamaanaaabaGaaGymaiaaiYcacaWGUbaaaiaai6caaaa@87DD@                  (3)

Введем обозначение

i=1 n B γ i +2 ω i + ( γ i + ω i )( ω i 1) x i 2 = Δ B γ+2ω + (γ+ω)(γ+ ω 0 ) x 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaadmaabaGaamOqamaaBaaaleaa cqaHZoWzdaWgaaqaaiaadMgaaeqaaiabgUcaRiaaikdacqaHjpWDda WgaaqaaiaadMgaaeqaaaqabaGccqGHRaWkdaWcaaqaaiaaiIcacqaH ZoWzdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHjpWDdaWgaaWcba GaamyAaaqabaGccaaIPaGaaGikaiabeM8a3naaBaaaleaacaWGPbaa beaakiabgkHiTiaaigdacaaIPaaabaGaamiEamaaDaaaleaacaWGPb aabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaaI9aGaeuiLdq0aaSba aSqaaiaadkeadaWgaaqaaiabeo7aNjabgUcaRiaaikdacqaHjpWDae qaaaqabaGccqGHRaWkdaWcaaqaaiaaiIcacqaHZoWzcqGHRaWkcqaH jpWDcaaIPaGaaGikaiabeo7aNjabgUcaRiabeM8a3naaBaaaleaaca aIWaaabeaakiaaiMcaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa kiaaiYcaaaa@6BBC@

где ω 0 =(1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGikaiaaigdacaaISaGaeSOjGSKaaGilaiaaigdacaaI Paaaaa@3AAE@ .

Теорема 1 (общая K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -формула Грина). Пусть весовая линейная форма определена равенством (2) и пусть γ i (0,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaamyAaaqaba GccqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@39A0@   ω i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba aaaa@34A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@  произвольные действительные числа, i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ . Тогда для всех функций u(x) M ev γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaIPaGaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF ZestdaqhaaWcbaGaamyzaiaadAhaaeaacqaHZoWzaaGccaaIOaGaeu yQdC1aaWbaaSqabeaacqGHRaWkaaGccaaIPaaaaa@491F@  и v(x) M ev,ω γ ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF ZestdaqhaaWcbaGaamyzaiaadAhacaaISaGaeqyYdChabaGaeq4SdC gaaOGaaGikaiabfM6axnaaCaaaleqabaGaey4kaScaaOGaaGykaaaa @4BA3@  справедливо равенство

( Δ B γ u,v) ω u, Δ B γ+2ω + (γ+ω)(ω1) x 2 v ω = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiabgkHiTmaabmaaba GaamyDaiaaiYcadaWadaqaaiabfs5aenaaBaaaleaacaWGcbWaaSba aeaacqaHZoWzcqGHRaWkcaaIYaGaeqyYdChabeaaaeqaaOGaey4kaS YaaSaaaeaacaaIOaGaeq4SdCMaey4kaSIaeqyYdCNaaGykaiaaiIca cqaHjpWDcqGHsislcaaIXaGaaGykaaqaaiaadIhadaahaaWcbeqaai aaikdaaaaaaOGaaGjcVdGaay5waiaaw2faaiaadAhaaiaawIcacaGL PaaadaWgaaWcbaGaeqyYdChabeaakiaai2daaaa@5D67@

= Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) ω i + γ i x i x ω dΓ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHtoWrda ahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaeWaaeaadaWcaaqa aiabgkGi2kaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqdaa qaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaGykaiabgkHiTiaa dwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaadAhacaaIOa GaamiEaiaaiMcaaeaacqGHciITdaqdaaqaaiabe27aUbaaaaGaeyOe I0YaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabgg HiLdGccaWG1bGaaGikaiaadIhacaaIPaGaamODaiaaiIcacaWG4bGa aGykamaalaaabaWaaeWaaeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawM caaiaadIhadaahaaWcbeqaaiabeM8a3baakiaayIW7caWGKbGaeu4K dCeaaa@6F0C@                                                              (4)

где ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabe27aUbaaaaa@338A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направление внешней нормали к части границы Γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aaaaa@3438@ .

Доказательство. Сингулярные операторы Бесселя рассмотрим в дивергентной форме:

Δ B γ = i=1 n B γ i = i=1 n x i γ i x i x i γ i x i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGypamaaqahabeWcbaGa amyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOqamaaBa aaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqabaGccaaI 9aWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabgg HiLdGccaWG4bWaa0baaSqaaiaadMgaaeaacqaHZoWzdaWgaaqaaiaa dMgaaeqaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBa aaleaacaWGPbaabeaaaaGccaWG4bWaa0baaSqaaiaadMgaaeaacqGH sislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaakmaalaaabaGaeyOaIy labaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaaIUaaa aa@5DB6@

Возьмем произвольную область Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  с кусочно гладкой границей, строго s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутреннюю в области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ . В этом случае обе функции u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  и v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  принадлежат C ev 2 ( Ω * + ¯ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaa0baaSqaaiaadwgacaWG2b aabaGaaGOmaaaakiaaiIcadaqdaaqaaiabfM6axnaaDaaaleaacaaI QaaabaGaey4kaScaaaaakiaaiMcaaaa@3A32@ . Исходное выражение имеет вид

( Δ B γ u,v) ω = Ω * + i=1 n x i γ i x i x i γ i x i u(x) v(x) x ω dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiaai2dadaWdrbqabS qaaiabfM6axnaaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIi YdGcdaqadaqaamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaam OBaaqdcqGHris5aOGaamiEamaaDaaaleaacaWGPbaabaGaeq4SdC2a aSbaaeaacaWGPbaabeaaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaacaWG PbaabaGaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaabeaaaaGcdaWcaa qaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aOGaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaiaawIcacaGLPaaaca WG2bGaaGikaiaadIhacaaIPaGaamiEamaaCaaaleqabaGaeqyYdCha aOGaaGjcVlaadsgacaWG4bGaaGypaaaa@6EA7@

= Ω * + i=1 n x i x i γ i u(x) x i v(x) x i ω i + γ i j=1, ji n x j ω j dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHPoWvda qhaaqaaiaaiQcaaeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaabCaeqa leaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWcaa qaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aOWaaeWaaeaacaWG4bWaa0baaSqaaiaadMgaaeaacqGHsislcqaHZo WzdaWgaaqaaiaadMgaaeqaaaaakmaalaaabaGaeyOaIyRaamyDaiaa iIcacaWG4bGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaa qabaaaaaGccaGLOaGaayzkaaGaamODaiaaiIcacaWG4bGaaGykaiaa dIhadaqhaaWcbaGaamyAaaqaaiabeM8a3naaBaaabaGaamyAaaqaba Gaey4kaSIaeq4SdC2aaSbaaeaacaWGPbaabeaaaaGcdaqeWbqabSqa aqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaaeaacaWGQbGaeyiyIK RaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG4bWaa0baaSqaaiaa dQgaaeaacqaHjpWDdaWgaaqaaiaadQgaaeqaaaaakiaayIW7caWGKb GaamiEaiaai6caaaa@719C@

Интегрируя по частям, получим

( Δ B γ u,v) ω = Γ * + Γ * 0 i=1 n u(x) ν ¯ v(x) x i ω i j=1, ji n x j ω j dΓ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakiaai2dadaWdrbqabS qaaiabfo5ahnaaDaaabaGaaGOkaaqaaiabgUcaRaaacqGHQicYcqqH toWrdaqhaaqaaiaaiQcaaeaacaaIWaaaaaqab0Gaey4kIipakmaaqa habeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWa aSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy 7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiMcacaWG 4bWaa0baaSqaaiaadMgaaeaacqaHjpWDdaWgaaqaaiaadMgaaeqaaa aakmaarahabeWcbaabaiqabaGaamOAaiaai2dacaaIXaGaaGilaaqa aiaadQgacqGHGjsUcaWGPbaaaaqaaiaad6gaa0Gaey4dIunakiaadI hadaqhaaWcbaGaamOAaaqaaiabeM8a3naaBaaabaGaamOAaaqabaaa aOGaaGjcVlaadsgacqqHtoWrcqGHsislaaa@719E@

Ω * + i=1 n u(x) x i v(x) x i x i ω i +v(x) ω i + γ i x i ω i 1 j=1, ji n x j ω j dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdrbqabSqaaiabfM6axn aaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGcdaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakmaabmaabaWaaSaaae aacqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi 2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaaca WGPbaabaGaeqyYdC3aaSbaaeaacaWGPbaabeaaaaGccqGHRaWkcaWG 2bGaaGikaiaadIhacaaIPaWaaeWaaeaacqaHjpWDdaWgaaWcbaGaam yAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaacaWG4bWaa0baaSqaaiaadMgaaeaacqaHjpWDdaWgaa qaaiaadMgaaeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaadaqe WbqabSqaaqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaaeaacaWGQb GaeyiyIKRaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG4bWaa0ba aSqaaiaadQgaaeaacqaHjpWDdaWgaaqaaiaadQgaaeqaaaaakiaayI W7caWGKbGaamiEaiaaiYcaaaa@7E91@

где ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  направление внешней нормали к границе Γ * + Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai abgUcaRaaakiabgQIiilabfo5ahnaaDaaaleaacaaIQaaabaGaaGim aaaaaaa@3999@ . Применяя формулу интегрирования по частям второй раз, имеем

Ω * + i=1 n B γ i u(x) v(x) x ω dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaDaaaba GaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaamaaqaha beWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaam OqamaaBaaaleaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaqa baGccaWG1bGaaGikaiaadIhacaaIPaaacaGLOaGaayzkaaGaamODai aaiIcacaWG4bGaaGykaiaadIhadaahaaWcbeqaaiabeM8a3baakiaa yIW7caWGKbGaamiEaiaai2daaaa@512D@

= Γ * + Γ * 0 u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) ω i + γ i x i x ω dΓ+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacqqHtoWrda qhaaqaaiaaiQcaaeaacqGHRaWkaaGaeyOkIGSaeu4KdC0aa0baaeaa caaIQaaabaGaaGimaaaaaeqaniabgUIiYdGcdaqadaqaamaalaaaba GaeyOaIyRaamyDaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2oaanaaa baGaeqyVd4gaaaaacaWG2bGaaGikaiaadIhacaaIPaGaeyOeI0Iaam yDaiaaiIcacaWG4bGaaGykamaalaaabaGaeyOaIyRaamODaiaaiIca caWG4bGaaGykaaqaaiabgkGi2oaanaaabaGaeqyVd4gaaaaacqGHsi sldaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0Gaeyye IuoakiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhaca aIPaWaaSaaaeaadaqadaqaaiabeM8a3naaBaaaleaacaWGPbaabeaa kiabgUcaRiabeo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaaqaaiaadIhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzk aaGaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacqqHto WrcqGHRaWkaaa@753A@

+ Ω * + u(x) i=1 n B γ i +2 ω i + ( γ i + ω i )( ω i 1) x i 2 v(x) x ω dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdrbqabSqaaiabfM6axn aaDaaabaGaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaWG1bGa aGikaiaadIhacaaIPaWaaeWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6gaa0GaeyyeIuoakmaadmaabaGaamOqamaaBaaa leaacqaHZoWzdaWgaaqaaiaadMgaaeqaaiabgUcaRiaaikdacqaHjp WDdaWgaaqaaiaadMgaaeqaaaqabaGccqGHRaWkdaWcaaqaaiaaiIca cqaHZoWzdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHjpWDdaWgaa WcbaGaamyAaaqabaGccaaIPaGaaGikaiabeM8a3naaBaaaleaacaWG PbaabeaakiabgkHiTiaaigdacaaIPaaabaGaamiEamaaDaaaleaaca WGPbaabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaWG2bGaaGikaiaa dIhacaaIPaaacaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeqyYdC haaOGaaGjcVlaadsgacaWG4bGaaGOlaaaa@6950@                                                                           (5)

Учтем, что в (5) участок границы Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  состоит из соответствующих кусков координатных плоскостей x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Поэтому на части границы Γ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdaaaaaaa@34C4@  направление нормали ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@  совпадает с соответствующим направлением оси O x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEamaaBaaaleaacaWGPb aabeaaaaa@34AC@ . Интеграл по Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@  представляет собой набор интегралов по каждой такой части границы, заданной уравнением x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ , которую обозначим Γ * 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdacaaISaGaamyAaaaaaaa@3668@ . Имеем

Γ * 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaDaaaba GaaGOkaaqaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaam iEaiaaiMcacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaa cqGHciITcaWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEam aaBaaaleaacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIha caaIPaGaamODaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaacq aHjpWDdaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaai aadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiab eM8a3baakiaaiccacaWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaaaaO GaaGypaaaa@71E3@

= i=1 n Γ * 0,i u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaDaaabaGaaGOkaaqaaiaaicdacaaISaGaamyAaaaaaeqaniabgU IiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaam ODaiaaiIcacaWG4bGaaGykaiabgkHiTiaadwhacaaIOaGaamiEaiaa iMcadaWcaaqaaiabgkGi2kaadAhacaaIOaGaamiEaiaaiMcaaeaacq GHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTiaadwha caaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhacaaIPaWaaSaaae aadaqadaqaaiabeM8a3naaBaaaleaacaWGPbaabeaakiabgUcaRiab eo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadI hadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamiEamaa CaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacqqHtoWrdaahaaWcbe qaaiaaicdaaaGccaaIUaaaaa@7395@

При условии принадлежности функций v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@  функциональному классу M ev,ω γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinnaaDaaaleaacaWGLbGaamODaiaaiYca cqaHjpWDaeaacqaHZoWzaaaaaa@42AC@  (см. (3)) все интегралы по Γ * 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqhaaWcbaGaaGOkaaqaai aaicdacaaISaGaamyAaaaaaaa@3668@  исчезнут. Поэтому

Γ * 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaDaaaba GaaGOkaaqaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaala aabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaam iEaiaaiMcacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaa cqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaaaaOGaeyOeI0IaamyDaiaaiIca caWG4bGaaGykaiaadAhacaaIOaGaamiEaiaaiMcadaWcaaqaamaabm aabaGaeqyYdC3aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeq4SdC2a aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiEamaaBa aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacaWG4bWaaWbaaSqa beaacqaHjpWDaaGccaaMi8Uaamizaiabfo5ahnaaCaaaleqabaGaaG imaaaakiaai2dacaaIWaGaaGOlaaaa@75CD@

Устремляя в полученном равенстве Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  к Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  и учитывая непрерывность функций u/ ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2o aanaaabaGaeqyVd4gaaaaa@3809@  и v/ ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG2bGaaG4laiabgkGi2o aanaaabaGaeqyVd4gaaaaa@380A@  в Ω + ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabfM6axnaaCaaaleqaba Gaey4kaScaaaaaaaa@346F@ , получим

Γ 0 i=1 n u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqabSqaaiaa dMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalaaabaGaey OaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITcaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaamiEaiaaiM cacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciIT caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaale aacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIhacaaIPaGa amODaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaacqaHjpWDda WgaaWcbaGaamyAaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaaiaadMgaae qaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiabeM8a3baa kiaayIW7caWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaaaaOGaaGypaa aa@7216@

= i=1 n Γ 0,i u(x) x i v(x)u(x) v(x) x i u(x)v(x) ω i + γ i x i x ω d Γ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaCaaabeqaaiaaicdacaaISaGaamyAaaaaaeqaniabgUIiYdGcda qadaqaamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGaaGykaaqa aiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamODaiaaiI cacaWG4bGaaGykaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWc aaqaaiabgkGi2kaadAhacaaIOaGaamiEaiaaiMcaaeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTiaadwhacaaIOaGa amiEaiaaiMcacaWG2bGaaGikaiaadIhacaaIPaWaaSaaaeaadaqada qaaiabeM8a3naaBaaaleaacaWGPbaabeaakiabgUcaRiabeo7aNnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamiEamaaCaaaleqa baGaeqyYdChaaOGaaGjcVlaadsgacqqHtoWrdaahaaWcbeqaaiaaic daaaGccaaI9aGaaGimaaaa@73AA@                                                     (6)

Из равенств (5) и (6) равенство (4) вытекает с очевидностью. Доказательство закончено.

3. Формулы Грина для оператора Киприянова

Равенство (4) будем называть общей K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формулой Грина для Δ B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaaaa@36CF@  -оператора Киприянова.

Наиболее употребительными при исследовании уравнений с Δ B γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaaaa@36CF@  -оператором Киприянова (1) оказываются формулы, полученные из (4) при совпадении мультииндексов весовой билинейной формы (2) с параметрами операторов Бесселя, входящих в оператор Киприянова (1), т.е. ω=γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeyOeI0Iaeq4SdC gaaa@36E9@ ; если мультииндекс билинейной формы (2) ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@  состоит из единиц, т.е. ω= ω 0 =(1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiablAciljaa iYcacaaIXaGaaGykaaaa@3D42@  (см. [2, 3]). В этих случаях из (4) получим две формулы, которые будем называть первой и второй основными K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формулами Грина для оператора Киприянова.

Первая основная K-γ -формула Грина.

Пусть мультииндексы ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@  и γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3368@  совпадают: ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35EB@ , и пусть u C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaDaaale aacaWGLbGaamODaaqaaiaaikdaaaGccaaIOaGaeuyQdC1aaWbaaSqa beaacqGHRaWkaaGccaaIPaaaaa@3BEB@  и v C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaDaaale aacaWGLbGaamODaaqaaiaaikdaaaGccaaIOaGaeuyQdC1aaWbaaSqa beaacqGHRaWkaaGccaaIPaaaaa@3BEC@ . Тогда

( Δ B γ u,v) ω u, Δ B γ v γ = Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ x γ dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaayIW7caWG1bGa aGilaiaadAhacaaIPaWaaSbaaSqaaiabeM8a3bqabaGccqGHsislda qadaqaaiaadwhacaaISaGaeuiLdq0aaSbaaSqaaiaadkeadaWgaaqa aiabgkHiTiabeo7aNbqabaaabeaakiaaiccacaWG2baacaGLOaGaay zkaaWaaSbaaSqaaiabgkHiTiabeo7aNbqabaGccaaI9aWaa8quaeqa leaacqqHtoWrdaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaae WaaeaadaWcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiMcaaeaa cqGHciITdaqdaaqaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaG ykaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi 2kaadAhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqdaaqaaiabe2 7aUbaaaaaacaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeyOeI0Ia eq4SdCgaaOGaaGjcVlaadsgacqqHtoWrcaaIUaaaaa@7346@                                                      (7)

Доказательство. Равенство (7) вытекает из общей формулы (4), если в ней положить ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@ . Остается проверить его справедливость при условии, что u,v C ev 2 ( Ω + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGilaiaadAhacqGHiiIZca WGdbWaa0baaSqaaiaadwgacaWG2baabaGaaGOmaaaakiaaiIcacqqH PoWvdaahaaWcbeqaaiabgUcaRaaakiaaiMcaaaa@3D9C@ . Для этого вернемся к равенству (6), правая часть которого при ω=γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeyOeI0Iaeq4SdC gaaa@36E9@  примет следующий вид:

i=1 n Γ 0,i u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaapefabeWcbaGaeu4KdC0aaWba aeqabaGaaGimaiaaiYcacaWGPbaaaaqab0Gaey4kIipakmaabmaaba WaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa IyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccaWG2bGaaGikaiaadI hacaaIPaGaamiEamaaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC2a aSbaaeaacaWGPbaabeaaaaGccqGHsislcaWG1bGaaGikaiaadIhaca aIPaWaaSaaaeaacqGHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGyk aaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaOGaamiEam aaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaa beaaaaaakiaawIcacaGLPaaadaqeWbqabSqaaqaaceqaaiaadQgaca aI9aGaaGymaiaaiYcaaeaacaWGQbGaeyiyIKRaamyAaaaaaeaacaWG Ubaaniabg+GivdGccaWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzda WgaaqaaiaadQgaaeqaaaaakiaayIW7caWGKbGaeu4KdC0aaWbaaSqa beaacaaIWaGaaGilaiaadMgaaaGccaaISaaaaa@7AB3@                                                                        (8)

где Γ 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaca aISaGaamyAaaaaaaa@35B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  соответствующий участок границы области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ , уравнение которого x i =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaicdaaaa@3563@ . Напомним, что в силу естественных причин, связанных с симметрией, область Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  мы считаем частично замкнутой, т.е. Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@ . Это означает, что рассматриваемые функции непрерывно дифференцируемы в окрестности каждого участка Γ 0,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaca aISaGaamyAaaaaaaa@35B4@  границы Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiaaicdaaa aaaa@3410@ . Из x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaa aa@33D8@  -четности этих функций вытекают неравенства

u(x) x i =O( x i )при x i 0; v(x) x i =O( x i )при x i 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaayIW7caWG1b GaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaaaaGccaaI9aGaam4taiaaiIcacaWG4bWaaSbaaSqaaiaadM gaaeqaaOGaaGykaiaaykW7caaMc8Uaae4peiaabcebcaqG4qGaaGPa VlaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOKH4QaaGimai aaiUdacaaMf8+aaSaaaeaacqGHciITcaaMi8UaamODaiaaiIcacaWG 4bGaaGykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaaaO GaaGypaiaad+eacaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaa iMcacaaMc8UaaGPaVlaab+dbcaqGarGaaeioeiaaykW7caaMc8Uaam iEamaaBaaaleaacaWGPbaabeaakiabgkziUkaaicdacaaIUaaaaa@6D63@                                                                  (9)

Отсюда, учитывая, что 0< γ i <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeo7aNnaaBaaale aacaWGPbaabeaakiaaiYdacaaIXaaaaa@378D@ , получим

lim x i +0 x i γ i u(x) x i =0, lim x i +0 x i γ i v(x) x i =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadIhadaWgaaqaai aadMgaaeqaaiabgkziUkabgUcaRiaaicdaaeqakeaaciGGSbGaaiyA aiaac2gaaaGaamiEamaaDaaaleaacaWGPbaabaGaeyOeI0Iaeq4SdC 2aaSbaaeaacaWGPbaabeaaaaGcdaWcaaqaaiabgkGi2kaayIW7caWG 1bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaaaaGccaaI9aGaaGimaiaaiYcacaaMf8+aaybuaeqaleaa caWG4bWaaSbaaeaacaWGPbaabeaacqGHsgIRcqGHRaWkcaaIWaaabe GcbaGaciiBaiaacMgacaGGTbaaaiaadIhadaqhaaWcbaGaamyAaaqa aiabgkHiTiabeo7aNnaaBaaabaGaamyAaaqabaaaaOWaaSaaaeaacq GHciITcaaMi8UaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaa dIhadaWgaaWcbaGaamyAaaqabaaaaOGaaGypaiaaicdacaaIUaaaaa@68F0@

Следовательно, каждое слагаемое в сумме (8)

u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i | Γ 0,i =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaaG jcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITcaWG4bWaaSba aSqaaiaadMgaaeqaaaaakiaadAhacaaIOaGaamiEaiaaiMcacaWG4b Waa0baaSqaaiaadMgaaeaacqGHsislcqaHZoWzdaWgaaqaaiaadMga aeqaaaaakiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcadaWcaaqaai abgkGi2kaayIW7caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIyRa amiEamaaBaaaleaacaWGPbaabeaaaaGccaWG4bWaa0baaSqaaiaadM gaaeaacqGHsislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaaaOGaayjk aiaawMcaaiaaiYhadaWgaaWcbaGaeu4KdC0aaWbaaeqabaGaaGimai aaiYcacaWGPbaaaaqabaGccaaI9aGaaGimaiaai6caaaa@61AC@

Тогда

Γ 0 i=1 n u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaabCaeqaleaacaWGPbGaaGyp aiaaigdaaeaacaWGUbaaniabggHiLdGcdaqadaqaamaalaaabaGaey OaIyRaamyDaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaadIhadaWg aaWcbaGaamyAaaqabaaaaOGaamODaiaaiIcacaWG4bGaaGykaiaadI hadaqhaaWcbaGaamyAaaqaaiabgkHiTiabeo7aNnaaBaaabaGaamyA aaqabaaaaOGaeyOeI0IaamyDaiaaiIcacaWG4bGaaGykamaalaaaba GaeyOaIyRaamODaiaaiIcacaWG4bGaaGykaaqaaiabgkGi2kaadIha daWgaaWcbaGaamyAaaqabaaaaOGaamiEamaaDaaaleaacaWGPbaaba GaeyOeI0Iaeq4SdC2aaSbaaeaacaWGPbaabeaaaaaakiaawIcacaGL PaaadaqeWbqabSqaaqaaceqaaiaadQgacaaI9aGaaGymaiaaiYcaae aacaWGQbGaeyiyIKRaamyAaaaaaeaacaWGUbaaniabg+GivdGccaWG 4bWaaWbaaSqabeaacqGHsislcqaHZoWzdaWgaaqaaiaadQgaaeqaaa aakiaayIW7caWGKbGaeu4KdC0aaWbaaSqabeaacaaIWaGaaGilaiaa dMgaaaGccaaI9aaaaa@778F@

= i=1 n Γ 0,i u(x) x i v(x) x i γ i u(x) v(x) x i x i γ i j=1, ji n x γ j d Γ 0,i =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGPbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGcdaWdrbqabSqaaiabfo5a hnaaCaaabeqaaiaaicdacaaISaGaamyAaaaaaeqaniabgUIiYdGcda qadaqaamaalaaabaGaeyOaIyRaaGjcVlaadwhacaaIOaGaamiEaiaa iMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaadA hacaaIOaGaamiEaiaaiMcacaWG4bWaa0baaSqaaiaadMgaaeaacqGH sislcqaHZoWzdaWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadwhaca aIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaayIW7caWG2bGaaGik aiaadIhacaaIPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabe aaaaGccaWG4bWaa0baaSqaaiaadMgaaeaacqGHsislcqaHZoWzdaWg aaqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaamaarahabeWcbaabai qabaGaamOAaiaai2dacaaIXaGaaGilaaqaaiaadQgacqGHGjsUcaWG Pbaaaaqaaiaad6gaa0Gaey4dIunakiaadIhadaahaaWcbeqaaiabgk HiTiabeo7aNnaaBaaabaGaamOAaaqabaaaaOGaaGiiaiaadsgacqqH toWrdaahaaWcbeqaaiaaicdacaaISaGaamyAaaaakiaai2dacaaIWa GaaGilaaaa@7DA5@

Равенство (7) доказано.

Из формулы (7) вытекают важные для приложений следствия (см. также [3], где рассматривался только случай ω i = γ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaeyOeI0Iaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaaa@3927@  ).

1. Пусть в (7) u=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhaaaa@347D@ ; тогда

Ω + Δ B γ u u x ω dx= Ω + u Δ B γ u x γ dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaaiabfs5aenaaBaaa leaacaWGcbWaaSbaaeaacqGHsislcqaHZoWzaeqaaaqabaGccaaMi8 UaamyDaaGaayjkaiaawMcaaiaadwhacaaMi8UaamiEamaaCaaaleqa baGaeqyYdChaaOGaaGjcVlaadsgacaWG4bGaaGypamaapefabeWcba GaeuyQdC1aaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakiaadwha cqqHuoardaWgaaWcbaGaamOqamaaBaaabaGaeyOeI0Iaeq4SdCgabe aaaeqaaOGaaGjcVlaadwhacaaMi8UaamiEamaaCaaaleqabaGaeyOe I0Iaeq4SdCgaaOGaaGjcVlaadsgacaWG4bGaaGOlaaaa@60AA@

2. Если в (7) v=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaaigdaaaa@343E@ , то

Ω + Δ B γ u x ω dx= Γ + u(x) ν ¯ x γ dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWcbaGaamOq amaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVlaadwhaca aMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacaWG 4bGaaGypamaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakmaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2oaanaaabaGaeqyVd4gaaaaacaaMi8UaamiEam aaCaaaleqabaGaeyOeI0Iaeq4SdCgaaOGaaGjcVlaadsgacqqHtoWr caaIUaaaaa@5DD0@

3. Условием K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -гармоничности функции u=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiMcaaaa@36DE@  в области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  является равенство

Γ + u(x) ν ¯ x γ dΓ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaayIW7 caWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiaayIW7caWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGc caaIGaGaamizaiabfo5ahjaai2dacaaIWaGaaGOlaaaa@4AA1@

Вторая основная K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabgkHiTiabeo 7aNbqabaaaaa@3551@  -формула Грина Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и

u M ev γ ,v M ev, ω 0 γ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFZestdaqhaaWcbaGaamyz aiaadAhaaeaacqaHZoWzaaGccaaISaGaaGzbVlaadAhacqGHiiIZcq WFZestdaqhaaWcbaGaamyzaiaadAhacaaISaGaeqyYdC3aaSbaaeaa caaIWaaabeaaaeaacqaHZoWzaaGccaaIUaaaaa@5073@                                                                                                  (10)

Тогда

( Δ B γ u,v) ω u, Δ B γ+2 v ω 0 = Γ + u(x) ν ¯ v(x)u(x) v(x) ν ¯ i=1 n u(x)v(x) 1+ γ i x i x ω 0 dΓ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdq0aaSbaaSqaaiaadk eadaWgaaqaaiabgkHiTiabeo7aNbqabaaabeaakiaadwhacaaISaGa amODaiaaiMcadaWgaaWcbaGaeqyYdChabeaakmaabmaabaGaamyDai aaiYcacqqHuoardaWgaaWcbaGaamOqamaaBaaabaGaeq4SdCMaey4k aSIaaGOmaaqabaaabeaakiaadAhaaiaawIcacaGLPaaadaWgaaWcba GaeqyYdC3aaSbaaeaacaaIWaaabeaaaeqaaOGaaGypamaapefabeWc baGaeu4KdC0aaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakmaabm aabaWaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGa eyOaIy7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiM cacqGHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciIT caWG2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiabgkHiTmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGa amOBaaqdcqGHris5aOGaamyDaiaaiIcacaWG4bGaaGykaiaayIW7ca WG2bGaaGikaiaadIhacaaIPaGaaGjcVpaalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGL PaaacaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaaqaaiaaicdaaeqaaa aakiaayIW7caWGKbGaeu4KdCKaaGilaaaa@898F@                     (11)

где ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGikaiaaigdacaaISaGaaGymaiaaiYcacqWIMaYscaaI SaGaaGymaiaaiMcaaaa@3C1F@ .

Доказательство. Равенство (11) вытекает также из общей формулы (4), если положить ω i =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaaqaba GccaaI9aGaaGymaaaa@3634@ . Остается проверить его справедливость при условии (10). Для этого вернемся к равенству (6), правая часть которого при ω= ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaaaa@3708@  примет следующий вид:

i=1 n Γ 0,i u(x) ν ¯ v(x)u(x) v(x) ν ¯ u(x)v(x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakmaapefabeWcbaGaeu4KdC0aaWba aeqabaGaaGimaiaaiYcacaWGPbaaaaqab0Gaey4kIipakmaabmaaba WaaSaaaeaacqGHciITcaWG1bGaaGikaiaadIhacaaIPaaabaGaeyOa Iy7aa0aaaeaacqaH9oGBaaaaaiaadAhacaaIOaGaamiEaiaaiMcacq GHsislcaWG1bGaaGikaiaadIhacaaIPaWaaSaaaeaacqGHciITcaWG 2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaa aaaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaa dIhacaaIPaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcqaHZoWzda WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSba aSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbe qaaiabeM8a3naaBaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacqqH toWrcaaIUaaaaa@6F1E@                                                              (12)

Первые два слагаемых в правой части равенства (12) равны нулю по причине выполнения условий (9). Равенство нулю третьего слагаемого в (12) есть следствие требования (10). Следовательно,

Γ 0 i=1 n u(x) ν ¯ v(x)u(x) v(x) ν ¯ u(x)v(x) 1+ γ i x i x ω 0 dΓ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiaaicdaaaaabeqdcqGHRiI8aOWaaeWaaeaadaaeWbqabSqaaiaa dMgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalaaabaGaey OaIyRaaGjcVlaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciITdaqd aaqaaiabe27aUbaaaaGaamODaiaaiIcacaWG4bGaaGykaiabgkHiTi aadwhacaaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaayIW7caWG 2bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaa aaaiabgkHiTiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaa dIhacaaIPaWaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcqaHZoWzda WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWG4bWaaSba aSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbe qaaiabeM8a3naaBaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacqqH toWrcaaI9aGaaGimaiaai6caaaa@721D@

Из формулы (11) вытекают следующие результаты.

1. Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и u=v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhaaaa@347D@  в (11). Тогда

Ω + Δ B γ u u x ω dx Ω + u Δ B γ+2 u x ω 0 dx= Γ + i=1 n u 2 (x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaqadaqaaiabfs5aenaaBaaa leaacaWGcbWaaSbaaeaacqGHsislcqaHZoWzaeqaaaqabaGccaaMi8 UaamyDaaGaayjkaiaawMcaaiaadwhacaWG4bWaaWbaaSqabeaacqaH jpWDaaGccaaMi8UaamizaiaadIhacqGHsisldaWdrbqabSqaaiabfM 6axnaaCaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaWG1bGaeuiL dq0aaSbaaSqaaiaadkeadaWgaaqaaiabeo7aNjabgUcaRiaaikdaae qaaaqabaGccaWG1bGaaGjcVlaadIhadaahaaWcbeqaaiabeM8a3naa BaaabaGaaGimaaqabaaaaOGaaGjcVlaadsgacaWG4bGaaGypaiabgk HiTmaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaaqab0Ga ey4kIipakmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHris5aOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGykamaalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeq4SdC2aaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamiEamaaBaaa leaacaWGPbaabeaaaaGccaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaa qaaiaaicdaaeqaaaaakiaayIW7caWGKbGaeu4KdCKaaGOlaaaa@7EC7@

2. Пусть ω= ω 0 =(1,1,,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOGaaGypaiaaiIcacaaIXaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaigdacaaIPaaaaa@3EB3@  и v=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaaigdaaaa@343E@  в (11). Тогда

Ω + Δ B γ u x ω dx= Γ + u(x) ν ¯ i=1 n u(x) 1+ γ i x i x ω 0 dΓ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWcbaGaamOq amaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVlaadwhaca aMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaadsgacaWG 4bGaaGypamaapefabeWcbaGaeu4KdC0aaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakmaabmaabaWaaSaaaeaacqGHciITcaWG1bGaaGik aiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9oGBaaaaaiabgk HiTmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGH ris5aOGaamyDaiaaiIcacaWG4bGaaGykamaalaaabaWaaeWaaeaaca aIXaGaey4kaSIaeq4SdC2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaabaGaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcaca GLPaaacaWG4bWaaWbaaSqabeaacqaHjpWDdaWgaaqaaiaaicdaaeqa aaaakiaayIW7caWGKbGaeu4KdCKaaGOlaaaa@6FF7@                                                                         (13)

3. Условием K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  - гармоничности функции u=u(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiMcaaaa@36DE@  в области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@  является равенство

Γ + u(x) ν ¯ x γ dΓ= Γ + i=1 n u(x) 1+ γ i x i x ω 0 dΓ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfo5ahnaaCaaabe qaaiabgUcaRaaaaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaayIW7 caWG1bGaaGikaiaadIhacaaIPaaabaGaeyOaIy7aa0aaaeaacqaH9o GBaaaaaiaayIW7caWG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGc caaMi8Uaamizaiabfo5ahjaai2dadaWdrbqabSqaaiabfo5ahnaaCa aabeqaaiabgUcaRaaaaeqaniabgUIiYdGcdaaeWbqabSqaaiaadMga caaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadwhacaaIOaGaam iEaiaaiMcadaWcaaqaamaabmaabaGaaGymaiabgUcaRiabeo7aNnaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaOGaamiEamaaCaaaleqabaGaeqyYdC3aaSba aeaacaaIWaaabeaaaaGccaaMi8Uaamizaiabfo5ahjaaiYcaaaa@6879@            (14)

которое выполняется в любой s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -внутренней (симметрично внутренней, см. введение) подобласти Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ .

Доказательство. Действительно, если функция u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@  является K γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3464@  -гармонической, то равенство (14) непосредственно следует из (13). Напротив, пусть в каждой внутренней s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B9@  -подобласти Ω * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaaGOkaaqaai abgUcaRaaaaaa@3512@  области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@  выполняется (14). Тогда из (13) вытекает, что равенство

Ω * + Δ B γ u x ω dx=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabfM6axnaaDaaaba GaaGOkaaqaaiabgUcaRaaaaeqaniabgUIiYdGccqqHuoardaWgaaWc baGaamOqamaaBaaabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaaGjcVl aadwhacaaMi8UaamiEamaaCaaaleqabaGaeqyYdChaaOGaaGjcVlaa dsgacaWG4bGaaGypaiaaicdaaaa@4889@

выполняется в любой подобласти области Ω + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aaaaa@345E@ , что возможно лишь в случае, когда Δ B γ u(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOqamaaBa aabaGaeyOeI0Iaeq4SdCgabeaaaeqaaOGaamyDaiaaiIcacaWG4bGa aGykaiaai2dacaaIWaaaaa@3BB6@  в любой точке x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BE@  области Ω + = Ω + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaahaaWcbeqaaiabgUcaRa aakiaai2dacqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiabgQIiilab fo5ahnaaCaaaleqabaGaaGimaaaaaaa@3BC5@ .

×

Об авторах

Лев Николаевич Ляхов

Воронежский государственный университет; Елецкий государственный университет им. И. А. Бунина; Липецкий государственный педагогический университет им. П. П. Семенова-Тян-Шанского

Автор, ответственный за переписку.
Email: levnlya@mail.ru
Россия, Воронеж; Елецк; Липецк

Юрий Николаевич Булатов

Елецкий государственный университет им. И. А. Бунина

Email: y.bulatov@bk.ru
Россия, Елецк

Список литературы

  1. Киприянов И. А. Сингулярные эллиптические краевые задачи. — М.: Наука, 1997.
  2. Ляхов Л. Н., Булатов Ю. Н., Рощупкин С. А., Санина Е. Л. Псевдосдвиг и фундаментальное решение ∆B-оператора Киприянова// Диффер. уравн. — 2022. — 58, № 12. — С. 1654–1665.
  3. Ляхов Л. Н., Булатов Ю. Н., Рощупкин С. А., Санина Е. Л. Единственность решения задач Дирихле для уравнения Пуассона с сингулярным ∆B-оператором Киприянова// Диффер. уравн. — 2023. — 59, № 4. — С. 483–493.
  4. Ляхов Л. Н., Санина Е. Л. Оператор Киприянова—Бельтрами с отрицательной размерностью операторов Бесселя и сингулярная задача Дирихле для B-гармонического уравнения// Диффер. уравн. — 2020. — 56, № 12. — С. 1610–1620.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ляхов Л.Н., Булатов Ю.Н., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».