Моментные функции решения стохастической системы дифференциальных уравнений в частных производных

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается задача Коши для линейной неоднородной системы дифференциальных уравнений в частных производных первого порядка с двумя случайными коэффициентами и случайной неоднородностью. Получены явные формулы для моментных функций решения: математическое ожидание, смешанные моментные функции и вторая моментная функция. В качестве приложений выведены явные формулы смешанных моментных функций и второй моментной функции решения уравнения с независимыми гауссовскими случайными коэффициентами.

Полный текст

1. Введение

Рассмотрим задачу Коши для системы дифференциальных уравнений первого порядка

ytε1t Ayz+ε2ty+bt,z                                                                                                                            (1)

yt0,z=y0z                                                                                                                                                          (2)

где tTt0,t1, t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@  задано, y : T × Y  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  искомое отображение, b : T × Y  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайный векторный процесс, A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  постоянный оператор, действующий в пространстве Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@ , Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  конечномерное пространство со скалярным произведением null, ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайные процессы, y0z  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  случайный векторный процесс.

Так как уравнение (1) содержит случайные процессы, то решение задачи Коши (1), (2) также является случайным процессом. Для приложений важны статистические характеристики решения MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  функция распределения, плотность распределения, характеристический функционал или моментные функции. Наиболее важным и одновременно простым является математическое ожидание. Метод сведения стохастической задачи к детерминированному дифференциальному уравнению с обычными и вариационными производными (см. [1-4, 7]) оказался эффективным для нахождения моментных функций решений линейных дифференциальных уравнений. В [2] получены явные формулы для математического ожидания решения мультипликативно возмущенного векторного дифференциального уравнения в частных производных с одним случайным коэффициентом и случайной неоднородностью.

В данной работе решается задача нахождения математического ожидания, смешанных моментных функций и второй моментной функции решения задачи (1), (2) с двумя случайными коэффициентами и случайной неоднородностью. Исследуемая задача сводится к детерминированной системе дифференциальных уравнений с частными и вариационными производными, для которой удается получить явную формулу решения. На основе полученной формулы выписать математическое ожидание, смешанные моментные функции и вторую моментную функцию решения стохастического уравнения с использованием характеристического функционала случайных коэффициентов и неоднородности. В качестве приложений выведены явные формулы смешанных моментных функций и второй моментной функции решения уравнения с независимыми гауссовскими случайными коэффициентами.

2. Математическое ожидание решения задачи (1), (2).

Пусть L1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  пространство суммируемых функций на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@329A@  с нормой

vTvtdt,

ψ : L1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  функционал, hL1T  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  приращение переменной v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@ .

 Определение 1. Если

ψv+hψvTφt,vhtdt+oh

где o(h)  бесконечно малая высшего порядка относительно и интеграл (Лебега) является линейным ограниченным функционалом по переменной h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@ , то отображение φ:T× L 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI6aGaamivaiabgEna0k aadYeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamivaiaaiMcacqGH sgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=j qidbaa@47AC@  называется вариационной производной функционала ψ в точке v и обозначается δψ(v)/δv(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqaHipqEcaaIOaGaamODai aaiMcacaaIVaGaeqiTdqMaamODaiaaiIcacaWG0bGaaGykaaaa@3D4B@ .

Вариационное дифференцирование аналогично обычному дифференцированию.

Пусть ε(t,ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaIOaGaamiDaiaaiYcacq aHjpWDcaaIPaaaaa@3849@  обозначает случайный процесс ( ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  случайное событие; см. [1]). В дальнейшем случайный процесс будем записывать просто как ε(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaIOaGaamiDaiaaiMcaaa a@35C6@ , а обозначение E[ε] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiabew7aLjaai2faaa a@35FE@  использовать для математического ожидания случайного процесса ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ .

Определение 2. (см. [1, с. 30]) Функционал

ψ(v)=E exp i T ε(s)v(s)ds , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODaiaaiMcaca aI9aGaamyramaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacaWG PbWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaeqyTduMaaGikai aadohacaaIPaGaamODaiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGa am4CaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaaiYcaaaa@4D76@

где v L 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4SaamitamaaBaaale aacaaIXaaabeaakiaaiIcacaWGubGaaGykaaaa@3840@ , i= 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypamaakaaabaGaeyOeI0 IaaGymaaWcbeaaaaa@3539@ , называется характеристическим функционалом случайного процесса ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3368@ .

Отметим, что с помощью характеристического функционала можно находить моментные функции случайного процесса, например (см. [1]),

δψ(v) δv(t) | v=0 =iE[ε(t)], δ 2 ψ(v) δv(t)δv(τ) | v=0 =E[ε(t)ε(τ)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKjabeI8a5jaaiI cacaWG2bGaaGykaaqaaiabes7aKjaadAhacaaIOaGaamiDaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bGaaGypaiaaicdaaeqaaOGaaGypai aadMgacaWGfbGaaG4waiabew7aLjaaiIcacaWG0bGaaGykaiaai2fa caaISaGaaGzbVpaalaaabaGaeqiTdq2aaWbaaSqabeaacaaIYaaaaO GaeqiYdKNaaGikaiaadAhacaaIPaaabaGaeqiTdqMaamODaiaaiIca caWG0bGaaGykaiabes7aKjaadAhacaaIOaGaeqiXdqNaaGykaaaaca aI8bWaaSbaaSqaaiaadAhacaaI9aGaaGimaaqabaGccaaI9aGaeyOe I0IaamyraiaaiUfacqaH1oqzcaaIOaGaamiDaiaaiMcacqaH1oqzca aIOaGaeqiXdqNaaGykaiaai2facaaIUaaaaa@6E1C@

2.1. Переход к детерминированной задаче.

Будем считать, что процессы ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  заданы характеристическим функционалом, т.е. считаем известным

ψ( v 1 , v 2 , v 3 )=E exp(i T ε 1 (s) v 1 (s)ds+i T ε 2 (s) v 2 (s)ds+i T <b( s 1 , s 2 ), v 3 ( s 1 , s 2 )>d s 2 d s 1 ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadw eadaWadaqaaiGacwgacaGG4bGaaiiCaiaaiIcacaWGPbWaa8quaeqa leaacaWGubaabeqdcqGHRiI8aOGaeqyTdu2aaSbaaSqaaiaaigdaae qaaOGaaGikaiaadohacaaIPaGaamODamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadM gadaWdrbqabSqaaiaadsfaaeqaniabgUIiYdGccqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaam4CaiaaiMcacaWG2bWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGjcVlaadsgacaWGZbGa ey4kaSIaamyAamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaape fabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaeqaniabgUIiYdGccaaI8aGaamOyaiaaiIcacaWGZbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaai6dacaWGKbGaam4CamaaBaaaleaaca aIYaaabeaakiaayIW7caWGKbGaam4CamaaBaaaleaacaaIXaaabeaa kiaaiMcaaiaawUfacaGLDbaacaaIUaaaaa@9153@

Здесь <,> MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8aGaeyyXICTaaGilaiabgwSixl aai6daaaa@3899@  обозначает скалярное произведение в Y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329F@ . Введем обозначение

w=exp i T ε 1 (s) v 1 (s)ds+i T ε 2 (s) v 2 (s)ds+i T <b( s 1 , s 2 ), v 3 ( s 1 , s 2 )>d s 2 d s 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiGacwgacaGG4bGaai iCamaabmaabaGaamyAamaapefabeWcbaGaamivaaqab0Gaey4kIipa kiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbGaaGykai aadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiMcacaaM i8UaamizaiaadohacqGHRaWkcaWGPbWaa8quaeqaleaacaWGubaabe qdcqGHRiI8aOGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dohacaaIPaGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZb GaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadMgadaWdrbqabSqa aiaadsfaaeqaniabgUIiYdGcdaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifabeqdcqGHRiI8aOGa aGipaiaadkgacaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiY cacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYcacaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaa qabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI +aGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaMi8Uaamizai aadohadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaIUaaa aa@8551@

Умножим уравнение (1) на w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  и возьмем математическое ожидание полученного равенства:

E y t w =E ε 1 (t)A y z w +E[ ε 2 (t)yw]+E[b(t,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaamWaaeaadaWcaaqaaiabgk Gi2kaadMhaaeaacqGHciITcaWG0baaaiaadEhaaiaawUfacaGLDbaa caaI9aGaamyramaadmaabaGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaamyqamaalaaabaGaeyOaIyRaamyEaaqa aiabgkGi2kaadQhaaaGaam4DaaGaay5waiaaw2faaiabgUcaRiaadw eacaaIBbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadsha caaIPaGaamyEaiaadEhacaaIDbGaey4kaSIaamyraiaaiUfacaWGIb GaaGikaiaadshacaaISaGaamOEaiaaiMcacaWG3bGaaGyxaiaai6ca aaa@5DEF@                                                                                            (3)

Введем обозначение

y ˜ (t,z, v 1 , v 2 , v 3 )=E[y(t,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadweacaaIBbGa amyEaiaaiIcacaWG0bGaaGilaiaadQhacaaIPaGaam4Daiaai2faca aIUaaaaa@499F@

Уравнение (3) (формально) можно записать с помощью y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaaaa@3381@ . Имеем

y ˜ t =iA δ p δ v 1 (t) y ˜ z i δ p δ v 2 (t) y ˜ i δ p ψ δ v 3 (t,z) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaGaaabaGaam yEaaGaay5adaaabaGaeyOaIyRaamiDaaaacaaI9aGaeyOeI0IaamyA aiaadgeadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaai abes7aKjaadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaa iMcaaaWaaSaaaeaacqGHciITdaaiaaqaaiaadMhaaiaawoWaaaqaai abgkGi2kaadQhaaaGaeyOeI0IaamyAamaalaaabaGaeqiTdq2aaSba aSqaaiaadchaaeqaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaaIYa aabeaakiaaiIcacaWG0bGaaGykaaaadaaiaaqaaiaadMhaaiaawoWa aiabgkHiTiaadMgadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabe aakiabeI8a5bqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGc caaIOaGaamiDaiaaiYcacaWG6bGaaGykaaaacaaISaaaaa@6478@                                                                                               (4)

где δ p ψ/δ v 3 (t,z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamiCaaqaba GccqaHipqEcaaIVaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa kiaaiIcacaWG0bGaaGilaiaadQhacaaIPaaaaa@3EBE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  частная вариационная производная по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ .

Будем считать, что случайный процесс y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaa aa@33A5@  не зависит от случайных процессов ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@ . Умножим начальные условие (2) на w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  и вычислим математическое ожидание полученного равенства:

E[y( t 0 ,z)w]=E[ y 0 (z)w]=E[ y 0 (z)]E[w]=E[ y 0 (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGykaiaadEha caaIDbGaaGypaiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabe aakiaaiIcacaWG6bGaaGykaiaadEhacaaIDbGaaGypaiaadweacaaI BbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykai aai2facaWGfbGaaG4waiaadEhacaaIDbGaaGypaiaadweacaaIBbGa amyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaai2 facqaHipqEcaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYca caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcba GaaG4maaqabaGccaaIPaGaaGOlaaaa@620D@

Перепишем последнее равенство в виде

y ˜ ( t 0 ,z, v 1 , v 2 , v 3 )=E[ y 0 (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGa amODamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaai aaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaGaaGypaiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaaki aaiIcacaWG6bGaaGykaiaai2facqaHipqEcaaIOaGaamODamaaBaaa leaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGOlaaaa @533A@                                                                                                                (5)

Определение 3. Математическим ожиданием E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи Коши (1), (2) называется y ˜ (t,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaaGimaiaaiYcacaaIWaGaaGil aiaaicdacaaIPaaaaa@3BE4@ , где y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  решение задачи (4), (5) в некоторой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

Таким образом, для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи (1), (2) достаточно найти решение y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  не случайной (детерминированной) задачи (4), (5) в малой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

2.2. Решение уравнения с обычной и вариационной производными

Пусть F z (g(z))(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikaiaadEgacaaIOaGaamOEaiaaiMcacaaIPaGaaGikaiabe67a 4jaaiMcaaaa@3B9E@  обозначает преобразование Фурье функции g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32AD@  по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (см. [6]):

F z (g(z))(ξ)= g(z) e iξz dz. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikaiaadEgacaaIOaGaamOEaiaaiMcacaaIPaGaaGikaiabe67a 4jaaiMcacaaI9aWaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEi sPa0Gaey4kIipakiaadEgacaaIOaGaamOEaiaaiMcacaWGLbWaaWba aSqabeaacaWGPbGaeqOVdGNaamOEaaaakiaayIW7caWGKbGaamOEai aai6caaaa@4EFA@

Применим преобразование Фурье по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  к уравнениям (4), (5):

t F z ( y ˜ )=ξA δ p δ v 1 (t) F z ( y ˜ )i δ p δ v 2 (t) F z ( y ˜ )i F z ( δ p ψ( v 1 , v 2 , v 3 ) δ v 3 (t,z) ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadshaaaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaaiaaqa aiaadMhaaiaawoWaaiaaiMcacaaI9aGaeyOeI0IaeqOVdGNaamyqam aalaaabaGaeqiTdq2aaSbaaSqaaiaadchaaeqaaaGcbaGaeqiTdqMa amODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaaaaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaaGaaabaGaamyEaaGa ay5adaGaaGykaiabgkHiTiaadMgadaWcaaqaaiabes7aKnaaBaaale aacaWGWbaabeaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiDaiaaiMcaaaGaamOramaaBaaaleaacaWG6baabe aakiaaiIcadaaiaaqaaiaadMhaaiaawoWaaiaaiMcacqGHsislcaWG PbGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaWcaaqaaiabes 7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqaba GccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH 0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaISa GaamOEaiaaiMcaaaGaaGykaiaaiYcaaaa@779E@                                                                     (6)

F z ( y ˜ )( t 0 ,ξ, v 1 , v 2 , v 3 )= F z (E[ y 0 (z)])(ξ)ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiabe67a4jaaiYcacaWG2bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacaaI9a GaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGfbGaaG4waiaa dMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDb GaaGykaiaaiIcacqaH+oaEcaaIPaGaeqiYdKNaaGikaiaadAhadaWg aaWcbaGaaGymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabe aakiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGykaiaai6ca aaa@5DF0@  (7)

Пусть χ( t 0 ,t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiaadohacaaIPaaaaa@3A23@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  функция переменной s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF4@ , определенная следующим образом:

χ( t 0 ,t,s)= sign(s t 0 ), s[min{ t 0 ,t},max{ t 0 ,t}], 0 в противном случае. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiaadohacaaIPaGaaGyp amaaceaabaqbaeqabiGaaaqaaiaadohacaWGPbGaam4zaiaad6gaca aIOaGaam4CaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaI PaGaaGilaaqaaiaadohacqGHiiIZcaaIBbGaciyBaiaacMgacaGGUb GaaG4EaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa i2hacaaISaGaciyBaiaacggacaGG4bGaaG4EaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiDaiaai2hacaaIDbGaaGilaaqaaiaa icdaaeaacaqGYqGaaeiiaiaab+dbcaqGarGaaeOpeiaabkebcaqG4q GaaeOmeiaab2dbcaqG+qGaaeipeiaabccacaqGbrGaae4oeiaaboeb caqGhrGaaeimeiaabwdbcaaIUaaaaaGaay5Eaaaaaa@6B49@

В [2] получена явная формула для решения уравнения,содержащего обычную и вариационные производные, с заданным начальным условием.

Теорема 1 (см. [2, теорема 7.3]). Пусть функционал ψ( v 1 , v 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGykaaaa@3983@  разлагается в ряд

ψ( v 1 , v 2 )= k=0 T T ψ k ( s 1 ,, s k , v 2 ) v 1 ( s 1 ) v 1 ( s k )d s 1 d s k , ψ 0 =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiabg6 HiLcqdcqGHris5aOWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGa eSOjGS0aa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaeqiYdK3aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqa baGccaaISaGaeSOjGSKaaGilaiaadohadaWgaaWcbaGaam4Aaaqaba GccaaISaGaamODamaaBaaaleaacaaIYaaabeaakiaaiMcacaWG2bWa aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaa qabaGccaaIPaGaeSOjGSKaamODamaaBaaaleaacaaIXaaabeaakiaa iIcacaWGZbWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaayIW7caWGKb Gaam4CamaaBaaaleaacaaIXaaabeaakiablAciljaadsgacaWGZbWa aSbaaSqaaiaadUgaaeqaaOGaaGilaiaaywW7cqaHipqEdaWgaaWcba GaaGimaaqabaGccaaI9aGaaGymaiaaiYcaaaa@7119@

где ψ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaam4Aaaqaba aaaa@34AB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  симметрические по любой паре переменных функции, имеющие вариационные производные по переменной v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaa aa@33A4@ . Тогда решение задачи Коши

t F z ( y ˜ )=ξA δ δ v 1 (t) F z ( y ˜ )i F z ( δψ( v 1 , v 2 ) δ v 2 (t,z) ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadshaaaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcadaaiaaqa aiaadMhaaiaawoWaaiaaiMcacaaI9aGaeyOeI0IaeqOVdGNaamyqam aalaaabaGaeqiTdqgabaGaeqiTdqMaamODamaaBaaaleaacaaIXaaa beaakiaaiIcacaWG0bGaaGykaaaacaWGgbWaaSbaaSqaaiaadQhaae qaaOGaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiabgkHiTiaa dMgacaWGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeq iTdqMaeqiYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaI SaGaamODamaaBaaaleaacaaIYaaabeaakiaaiMcaaeaacqaH0oazca WG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaISaGaamOE aiaaiMcaaaGaaGykaiaaiYcaaaa@62D3@

F z ( y ˜ )( t 0 ,ξ, v 1 , v 2 )= F z (E[ y 0 (z)])(ξ)ψ( v 1 , v 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiabe67a4jaaiYcacaWG2bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGypaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOa GaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaa dQhacaaIPaGaaGyxaiaaiMcacaaIOaGaeqOVdGNaaGykaiabeI8a5j aaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWg aaWcbaGaaGOmaaqabaGccaaIPaaaaa@57F0@

имеет вид

F z ( y ˜ )(t,ξ, v 1 , v 2 )= F z (E[ y 0 ])(ξ)ψ( v 1 Eξχ( t 0 ,t)A, v 2 )i t 0 t F z δ p ψ( v 1 Eξχ(s,t)A, v 2 ) δ v 2 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bGa aGilaiabe67a4jaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaadAea daWgaaWcbaGaamOEaaqabaGccaaIOaGaamyraiaaiUfacaWG5bWaaS baaSqaaiaaicdaaeqaaOGaaGyxaiaaiMcacaaIOaGaeqOVdGNaaGyk aiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamyrai abgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiabgkHiTiaadMgadaWdXbqabSqaaiaa dshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadA eadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiaadAhadaWgaaWcba GaaGymaaqabaGccaWGfbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaWGbbGaaGilaiaadAhadaWgaaWcba GaaGOmaaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaI YaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkai aawMcaaiaayIW7caWGKbGaam4Caiaai6caaaa@8AA8@

Полученную в теореме 1 формулу можно обобщить на случай задачи Коши вида (6), (7).

Теорема 2. Пусть функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в ряд

ψ( v 1 , v 2 , v 3 )= k=0 T T ψ 1k ( s 1 ,, s k , v 3 ) v 1 ( s 1 ) v 1 ( s k )d s 1 d s k × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypamaaqa habeWcbaGaam4Aaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGc daWdrbqabSqaaiaadsfaaeqaniabgUIiYdGccqWIMaYsdaWdrbqabS qaaiaadsfaaeqaniabgUIiYdGccqaHipqEdaWgaaWcbaGaaGymaiaa dUgaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISa GaeSOjGSKaaGilaiaadohadaWgaaWcbaGaam4AaaqabaGccaaISaGa amODamaaBaaaleaacaaIZaaabeaakiaaiMcacaWG2bWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaI PaGaeSOjGSKaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZb WaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaayIW7caWGKbGaam4Camaa BaaaleaacaaIXaaabeaakiablAciljaadsgacaWGZbWaaSbaaSqaai aadUgaaeqaaOGaey41aqlaaa@6F56@

× k=0 T T ψ 2k ( s 1 ,, s k , v 3 ) v 2 ( s 1 ) v 2 ( s k )d s 1 d s k , ψ 10 =1, ψ 20 =1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaaeWbqabSqaaiaadUgaca aI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOWaa8quaeqaleaacaWG ubaabeqdcqGHRiI8aOGaeSOjGS0aa8quaeqaleaacaWGubaabeqdcq GHRiI8aOGaeqiYdK3aaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIca caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcaca WGZbWaaSbaaSqaaiaadUgaaeqaaOGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaGaamODamaaBaaaleaacaaIYaaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiablAciljaadAha daWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaacaWGRb aabeaakiaaiMcacaaMi8UaamizaiaadohadaWgaaWcbaGaaGymaaqa baGccqWIMaYscaWGKbGaam4CamaaBaaaleaacaWGRbaabeaakiaaiY cacaaMf8UaeqiYdK3aaSbaaSqaaiaaigdacaaIWaaabeaakiaai2da caaIXaGaaGilaiabeI8a5naaBaaaleaacaaIYaGaaGimaaqabaGcca aI9aGaaGymaiaaiYcaaaa@71D3@                                                                                 (8)

где ψ ik MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamyAaiaadU gaaeqaaaaa@3599@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  симметрические по любой паре переменных функции, и имеющие вариационные производные по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ . Тогда

F z ( y ˜ )(t,ξ, v 1 , v 2 , v 3 )=ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) F z (E[ y 0 ])(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO GaaGikamaaGaaabaGaamyEaaGaay5adaGaaGykaiaaiIcacaWG0bGa aGilaiabe67a4jaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaa leaacaaIZaaabeaakiaaiMcacaaI9aGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHsisl caWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZaaabeaa kiaaiMcacaWGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikaiaadweaca aIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaai2facaaIPaGaaGik aiabe67a4jaaiMcacqGHsislaaa@6E58@

i t 0 t F z δ p ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaaSbaaSqaaiaadQhaaeqaaOWaaeWaaeaadaWcaaqaaiabes7aKn aaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqa aiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcaca WGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiI cacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkaiaawMcaaiaayIW7 caWGKbGaam4Caaaa@6668@                                                                                                               (9)

является решением задачи (6), (7).

Замечание 1. Характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  будет удовлетворять условию (8), если предположить независимость случайных процессов ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@ .

2.3. Нахождение математического ожидания решения задачи

Для нахождения среднего значения решения задачи (1), (2) нужно найти отображение y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@ . Это можно сделать вычислив обратное преобразование Фурье F ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaaaaa@3624@  выражения (9). Поскольку преобразование Фурье от произведения равно свертке преобразований Фурье сомножителей (см. [6, с. 154]), то для детерминированной задачи Коши (4), (5) можно получить явную формулу решения.

Теорема 3. Если характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в степенной ряд вида (8), то

y ˜ (t,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiaadAeadaqhaaWc baGaeqOVdGhabaGaeyOeI0IaaGymaaaakiabeI8a5jaaiIcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaaGyxaiabgkHiTaaa@6B62@

i t 0 t F ξ 1 F z δ p ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaae WaaeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaOWaaeWaaeaadaWcaaqa aiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2b WaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIca caWGZbGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaa beaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaadsgacaWGZbaaaa@6C57@                                                                                    (10)

является решением детерминированной задачи (4), (5). Здесь F ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaaaaa@3624@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  обратное преобразование Фурье, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxiIkaaa@32B0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  свертка по переменной z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ , I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbaaaa@328F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rbiaaa@3765@  единичный оператор.

Теорема 4. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z)]= F ξ 1 ψ(ξχ( t 0 ,t)A,iχ( t 0 ,t),0)E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2facaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiabgkHiTi abe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadshacaaIPaGaamyqaiaaiYcacqGHsislcaWGPbGaeq4Xdm MaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa iMcacaaISaGaaGimaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhada WgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOe I0caaa@5F72@

i t 0 t F ξ 1 F z δ p ψ(ξχ(s,t)A,iχ(s,t),0) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiabgkHiTiabe6 7a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaa iYcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaamiDai aaiMcacaaISaGaaGimaiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqa aiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaaca GLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohaaaa@64F2@                                                                                               (11)

является математическим ожиданием решения задачи (1), (2).

3. Смешанные моментные функции.

Формула (10) полезна не только для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  решения задачи (1),(2), но и может быть применена для нахождения других моментных функций решения задачи (1), (2). Из определения y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaaaa@3381@  следует, что

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 =iE[y(t,z) ε 1 (τ)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaa beaakiaai2dacaWGPbGaamyraiaaiUfacaWG5bGaaGikaiaadshaca aISaGaamOEaiaaiMcacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI OaGaeqiXdqNaaGykaiaai2facaaISaaaaa@62BF@

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 2 (τ) | v 1 = v 2 = v 3 =0 =iE[y(t,z) ε 2 (τ)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaa beaakiaai2dacaWGPbGaamyraiaaiUfacaWG5bGaaGikaiaadshaca aISaGaamOEaiaaiMcacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI OaGaeqiXdqNaaGykaiaai2facaaISaaaaa@62C1@

δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 =iE[y(t,z) b Т (τ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakmaaGaaabaGaamyEaaGaay5adaGaaGikaiaadshacaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaaaacaaI8bWa aSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaS baaeaacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGa aGypaiaaicdaaeqaaOGaaGypaiaadMgacaWGfbGaaG4waiaadMhaca aIOaGaamiDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaa bkcbaaGccaaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai6 caaaa@655C@

Таким образом, смешанные моментные функции может быть найдена из y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  с помощью вариационного дифференцирования.

Теорема 5. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) ε 1 (τ)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaam OramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaaeWaaeaa daWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiI cacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a 4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilai aadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikdaae qaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqa baaakiaawIcacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0ca aa@81E1@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 1 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaeqiXdqNaaGykaiabes7aKjaadAhadaWgaaWcbaGaaG4maa qabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI8bWaaSba aSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaSbaae aacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGaaGyp aiaaicdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizai aadohacaaIUaaaaa@7BE2@                                                                                          (12)

Доказательство. Так как

E[y(t,z) ε 1 (τ)]=i δ p y ˜ (t,z, v 1 , v 2 , v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbWaaS aaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMha aiaawoWaaiaaiIcacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeq iTdqMaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaI PaaaaiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaG ypaiaadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaa caaIZaaabeaacaaI9aGaaGimaaqabaGccaaISaaaaa@63AC@

то справедливость формулы (12) можно легко установить, если вычислить вариационную производную от y ˜ (t,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadMhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3F7D@  по переменной v 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaa aa@33A3@ .

Теорема 6. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) ε 2 (τ)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 2 (τ) | v 1 = v 2 = v 3 =0 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaam OramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOWaaeWaaeaa daWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5jaaiI cacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiabgkHiTiabe67a 4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilai aadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIYa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikdaae qaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqa baaakiaawIcacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0ca aa@81E3@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 2 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaGOmaaqabaGc caaIOaGaeqiXdqNaaGykaiabes7aKjaadAhadaWgaaWcbaGaaG4maa qabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI8bWaaSba aSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaWG2bWaaSbaae aacaaIYaaabeaacaaI9aGaamODamaaBaaabaGaaG4maaqabaGaaGyp aiaaicdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizai aadohacaaIUaaaaa@7BE3@                                                                                           (13)

Теорема 7. Пусть выполнены условия теоремы 2. Тогда

E[y(t,z) b Т (τ,z)]=i F ξ 1 δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 E[ y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqGHsi slcaWGPbGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaa aOWaaeWaaeaadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaki abeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAha daWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGaamOEaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXaaabeaacaaI9a GaamODamaaBaaabaGaaGOmaaqabaGaaGypaiaadAhadaWgaaqaaiaa iodaaeqaaiaai2dacaaIWaaabeaaaOGaayjkaiaawMcaaiabgEHiQi aadweacaaIBbGaamyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaa iIcacaWG6bGaaGykaiaai2facqGHsislaaa@8526@

t 0 t F ξ 1 F z δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (τ,z)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadAeadaqh aaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaamOram aaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH0oazdaqh aaWcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaamODamaaBa aaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaae qaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaeqiTdqMaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaa aiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaGypai aadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaacaaI ZaaabeaacaaI9aGaaGimaaqabaaakiaawIcacaGLPaaaaiaawIcaca GLPaaacaWGKbGaam4Caiaai6caaaa@7D99@                                                                                            (14)

4. Вторая моментная функция.

Умножим уравнение (1) на y Т (τ,z)w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaWbaaSqabeaacaqGIqaaaO GaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhaaaa@397A@  и возьмем математическое ожидание полученного равенства

E y(t,z) t y Т (τ,z)w = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaamWaaeaadaWcaaqaaiabgk Gi2kaadMhacaaIOaGaamiDaiaaiYcacaWG6bGaaGykaaqaaiabgkGi 2kaadshaaaGaamyEamaaCaaaleqabaGaaeOieaaakiaaiIcacqaHep aDcaaISaGaamOEaiaaiMcacaWG3baacaGLBbGaayzxaaGaaGypaaaa @45E3@

=E ε 1 (t)A y(t,z) z y Т (τ,z)w +E[ ε 2 (t)y(t,z) y Т (τ,z)w]+E[b(t,z) y Т (τ,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyramaadmaabaGaeqyTdu 2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaamyqamaa laaabaGaeyOaIyRaamyEaiaaiIcacaWG0bGaaGilaiaadQhacaaIPa aabaGaeyOaIyRaamOEaaaacaWG5bWaaWbaaSqabeaacaqGIqaaaOGa aGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhaaiaawUfacaGLDb aacqGHRaWkcaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG0bGaaGykaiaadMhacaaIOaGaamiDaiaaiYcacaWG6b GaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGccaaIOaGaeqiXdqNa aGilaiaadQhacaaIPaGaam4Daiaai2facqGHRaWkcaWGfbGaaG4wai aadkgacaaIOaGaamiDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWc beqaaiaabkcbaaGccaaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaam 4Daiaai2facaaIUaaaaa@71C1@                                                                                                              (15)

Введем обозначение

ζ(t,τ,z, v 1 , v 2 , v 3 )=E[y(t,z) y Т (τ,z)w]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamyraiaaiUfacaWG 5bGaaGikaiaadshacaaISaGaamOEaiaaiMcacaWG5bWaaWbaaSqabe aacaqGIqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEha caaIDbGaaGOlaaaa@52D4@

Уравнение (15) (формально) можно записать с помощью ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEaaa@337E@  в виде

ζ(t,τ,z, v 1 , v 2 , v 3 ) t = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabeA7a6jaaiI cacaWG0bGaaGilaiabes8a0jaaiYcacaWG6bGaaGilaiaadAhadaWg aaWcbaGaaGymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabe aakiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGykaaqaaiab gkGi2kaadshaaaGaaGypaaaa@4691@

=iA δ p δ v 1 (t) ζ(t,τ,z, v 1 , v 2 , v 3 ) z i δ p δ v 2 (t) ζ(t,τ,z, v 1 , v 2 , v 3 )i δ p y ˜ (τ,z, v 1 , v 2 , v 3 ) δ v 3 (t,z) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyAaiaadgeada Wcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7aKjaa dAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaaWaaS aaaeaacqGHciITcqaH2oGEcaaIOaGaamiDaiaaiYcacqaHepaDcaaI SaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqGHciITcaWG6baaaiabgkHiTiaadM gadaWcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7a KjaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcaaa GaeqOTdONaaGikaiaadshacaaISaGaeqiXdqNaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaGaeyOeI0IaamyAamaalaaabaGaeqiTdq2aaSbaaSqaaiaadc haaeqaaOWaaacaaeaacaWG5baacaGLdmaacaaIOaGaeqiXdqNaaGil aiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcaca WG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGa aG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZa aabeaakiaaiIcacaWG0bGaaGilaiaadQhacaaIPaaaaiaai6caaaa@8887@                                                                             (16)

Умножим начальные условие (2) на y Т ( t 0 ,z)w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaWbaaSqabeaacaqGIqaaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamOEaiaa iMcacaWG3baaaa@399E@  и вычислим математическое ожидание полученного равенства, находим

E[y( t 0 ,z) y Т ( t 0 ,z)w]=E[ y 0 (z) y 0 Т (z)w]=E[ y 0 (z) y 0 Т ]E[w]=E[ y 0 (z) y 0 Т (z)]ψ( v 1 , v 2 , v 3 ); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGykaiaadMha daahaaWcbeqaaiaabkcbaaGccaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG6bGaaGykaiaadEhacaaIDbGaaGypaiaadwea caaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaG ykaiaadMhadaqhaaWcbaGaaGimaaqaaiaabkcbaaGccaaIOaGaamOE aiaaiMcacaWG3bGaaGyxaiaai2dacaWGfbGaaG4waiaadMhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaWG5bWaa0baaSqa aiaaicdaaeaacaqGIqaaaOGaaGyxaiaadweacaaIBbGaam4Daiaai2 facaaI9aGaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGa aGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaabaGaaeOiea aakiaaiIcacaWG6bGaaGykaiaai2facqaHipqEcaaIOaGaamODamaa BaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaae qaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaG4o aaaa@758B@

предполагаем, что случайный процесс y 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaa aa@33A5@  не зависит от случайных процессов ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@ . Перепишем последнее равенство в виде

ζ( t 0 , t 0 ,z, v 1 , v 2 , v 3 )=E[ y 0 (z) y 0 Т (z)]ψ( v 1 , v 2 , v 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaabeaakiaaiY cacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadAhadaWgaaWc baGaaG4maaqabaGccaaIPaGaaGypaiaadweacaaIBbGaamyEamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaadMhadaqhaaWc baGaaGimaaqaaiaabkcbaaGccaaIOaGaamOEaiaaiMcacaaIDbGaeq iYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOD amaaBaaaleaacaaIYaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGykaiaai6caaaa@5AD2@                                                                                                                          (17)

Определение 4. Второй моментной функцией E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  решения задачи Коши (1), (2) называется величина ζ(t,τ,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaaIWaGaaGilaiaaicdacaaISaGa aGimaiaaiMcaaaa@3E5C@ , где ζ(t,τ,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcaaaa@41F5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3787@  симметричное по переменным t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@ , τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  решение уравненияЁ(16), удовлетворяющее условию

ζ( t 0 ,τ,z, v 1 , v 2 , v 3 )=E[y( t 0 ,z) y Т (τ,z)w] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG OmaaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMca caaI9aGaamyraiaaiUfacaWG5bGaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamOEaiaaiMcacaWG5bWaaWbaaSqabeaacaqG IqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaadEhacaaIDb aaaa@53FC@

в некоторой окрестности точки v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@ .

Запишем уравнение (16) при τ= t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiDamaaBaaale aacaaIWaaabeaaaaa@362C@ :

ζ(t, t 0 ,z, v 1 , v 2 , v 3 ) t = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kabeA7a6jaaiI cacaWG0bGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGa amOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODamaaBaaaleaacaaI ZaaabeaakiaaiMcaaeaacqGHciITcaWG0baaaiaai2daaaa@46B5@

=iA δ p δ v 1 (t) ζ(t, t 0 ,z, v 1 , v 2 , v 3 ) z i δ p δ v 2 (t) ζ(t, t 0 ,z, v 1 , v 2 , v 3 )i δ p y ˜ ( t 0 ,z, v 1 , v 2 , v 3 ) δ v 3 (t,z) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyAaiaadgeada Wcaaqaaiabes7aKnaaBaaaleaacaWGWbaabeaaaOqaaiabes7aKjaa dAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaaWaaS aaaeaacqGHciITcqaH2oGEcaaIOaGaamiDaiaaiYcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeyOaIy RaamOEaaaacqGHsislcaWGPbWaaSaaaeaacqaH0oazdaWgaaWcbaGa amiCaaqabaaakeaacqaH0oazcaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaaaaiabeA7a6jaaiIcacaWG0bGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamOEaiaaiYcacaWG2b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacq GHsislcaWGPbWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGc daaiaaqaaiaadMhaaiaawoWaaiaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadA hadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdqMaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaGilaiaadQhacaaIPa aaaiaai6caaaa@88F3@                                                                (18)

Задача (18), (17) имеет вид задачи (4), (5). Найдем её решение по формуле (10):

ζ(t, t 0 ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaISaGaamOD amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaik daaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGa aGypaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki abeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaS baaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaaGilaiaadAha daWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfaca WG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyE amaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykai aai2facqGHsislaaa@72FA@

i t 0 t F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOWaaacaaeaacaWG5baacaGLdmaaca aIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG6bGaaGil aiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdG Naeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGil aiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGPbGaeq4Xdm MaaGikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaa leaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaai aaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaacaGL OaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacaaIUaaaaa@6FCB@

Так как ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEaaa@337E@ симметрична по двум первым переменным, то

ζ( t 0 ,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,τ)A, v 2 iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaaG OmaaqabaGccaaISaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMca caaI9aGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaO GaeqiYdKNaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGa eyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaa qabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaaBaaa leaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDam aaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaaGilaiaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyraiaaiU facaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGa amyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaG ykaiaai2facqGHsislaaa@755E@

i t 0 τ F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(s,τ)A, v 2 iχ(s,τ), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaaba GaamOramaaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH 0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMhaaiaawoWaai aaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+o aEcqaHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaa iYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE 8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaamODamaa BaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaS qaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaaa caGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacaaIUaaaaa@722F@                                                                                              (19)

Равенство (19) является начальным условием для уравнения (16). Задача (16), (19) имеет вид задачи (4), (5). Найдем её решение по формуле (10):

ζ(t,τ,z, v 1 , v 2 , v 3 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aaaaa@42BC@

= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhadaWgaaWc baGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaWG bbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHi TiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaa baGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsislaaa@76F3@

i t 0 τ F ξ 1 F z δ p y ˜ ( t 0 ,z, v 1 Iξχ(t, t 0 )Aξχ(s,τ)A, v 2 iχ(t, t 0 )iχ(s,τ), v 3 ) δ v 3 (s,z) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaaba GaamOramaaBaaaleaacaWG6baabeaakmaabmaabaWaaSaaaeaacqaH 0oazdaWgaaWcbaGaamiCaaqabaGcdaaiaaqaaiaadMhaaiaawoWaai aaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadQhacaaI SaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+o aEcqaHhpWycaaIOaGaamiDaiaaiYcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bGaaG ilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamyA aiabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaam ODamaaBaaaleaacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWa aSbaaSqaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiM caaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohacqGH sislaaa@851D@

i t 0 t F ξ 1 F z δ p y ˜ (τ,z, v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (s,z) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaai aadAeadaWgaaWcbaGaamOEaaqabaGcdaqadaqaamaalaaabaGaeqiT dq2aaSbaaSqaaiaadchaaeqaaOWaaacaaeaacaWG5baacaGLdmaaca aIOaGaeqiXdqNaaGilaiaadQhacaaISaGaamODamaaBaaaleaacaaI XaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4Cai aaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBaaaleaacaaI YaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGyk aaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam 4CaiaaiYcacaWG6bGaaGykaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaWGKbGaam4Caiaai6caaaa@6FA7@                                                                                                (20)

Подставив (10) в (20), получим окончательное представление для решения задачи (16), (19):

ζ(t,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaam ODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykai abgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaaca aIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsisl aaa@8727@

i t 0 τ F ξ 1 ( F z ( δ p δ v 3 (s,z) { F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 )E[ y 0 (z)]}))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaaGcbaGaeqiTdqMaamODamaaBaaaleaaca aIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiUha caWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccqaHip qEcaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaadMeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaS baaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG 0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0 IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI SaGaamODamaaBaaaleaacaaIZaaabeaakiaaiMcacqGHxiIkcaWGfb GaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaa iMcacaaIDbGaaGyFaiaaiMcacaaIPaGaamizaiaadohacqGHsislaa a@8EDF@

i t 0 t F ξ 1 ( F z ( δ p δ v 3 (s,z) { F ξ 1 ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaa BaaaleaacaWGWbaabeaaaOqaaiabes7aKjaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI7bGa amOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdK NaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODamaaBa aaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaamiD amaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaeyOeI0 IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGil aiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaey4fIOIaamyrai aaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaI PaGaaGyxaiabgkHiTaaa@89C5@

i t 0 τ F ξ 1 ( F z ( δ p ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z) ))d}))ds= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikamaalaaabaGaeqiTdq2a aSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiaadAhadaWgaaWcba GaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiab eo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiabe67a4jabeE 8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacqaHdpWCcaaISaGaeqiXdqNaaGykaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaS qaaiaaiodaaeqaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGa aG4maaqabaGccaaIOaGaeq4WdmNaaGilaiaadQhacaaIPaaaaiaaiM cacaaIPaGaamizaiaai2hacaaIPaGaaGykaiaadsgacaWGZbGaaGyp aaaa@843E@

= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhadaWgaaWc baGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikai aadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaWG bbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHi TiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqa baGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaacaaIWaaa baGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsislaaa@76F3@

i t 0 τ F ξ 1 ( F z B( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) )E[ y 0 (z)]))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaamOqaiaaiIcacaWGgbWaa0ba aSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacq aH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaa BaaaleaacaaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWyca aIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGyk aiaadgeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacq aHepaDcaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaa iIcacaWGZbGaaGilaiabes8a0jaaiMcacaaISaGaamODamaaBaaale aacaaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaa iodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykai abgEHiQiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaa iIcacaWG6bGaaGykaiaai2facaaIPaGaaGykaiaadsgacaWGZbGaey OeI0caaa@8EFF@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) )E[ y 0 (z)]))ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacqaH0oazda WgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaaBaaaleaa caaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZa aabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqa aOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykaiabgEHiQi aadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 6bGaaGykaiaai2facaaIPaGaaGykaiaadsgacaWGZbGaeyOeI0caaa@8D6C@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) ))))dσds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaI OaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaS qaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaamOramaaBaaa leaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacqaHdp WCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODam aaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGa eq4WdmNaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabeo8aZjaaiYcacaWG6bGaaGykaiabes7aKjaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6b GaaGykaaaacaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8aZjaa dsgacaWGZbGaaGOlaaaa@9971@

Таким образом, решение задачи (16), (19) задается следующей формулой

ζ(t,τ,z, v 1 , v 2 , v 3 )= F ξ 1 ψ( v 1 Iξχ( t 0 ,t)Aξχ( t 0 ,τ)A, v 2 iχ( t 0 ,t)iχ( t 0 ,τ), v 3 )E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcacaaI9aGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaeqiYdKNaaGikaiaadAhada WgaaWcbaGaaGymaaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaam ODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykai abgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacqaHepaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG 4maaqabaGccaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaamyEamaaDaaaleaaca aIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaGykaiaai2facqGHsisl aaa@8727@

i t 0 τ F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,t)Aξχ(s,τ)A, v 2 iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey4kIipakiaa dAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcaca WGgbWaaSbaaSqaaiaadQhaaeqaaOGaaGikaiaadAeadaqhaaWcbaGa eqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcadaWcaaqaaiabes7aKn aaBaaaleaacaWGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqa aiaaigdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiabes8a0j aaiMcacaWGbbGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaeqiXdqNaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqa baGccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaIPaGaaGykai aaiMcacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamOEaiaaiMcacaaIDbGaamizaiaadohacqGHsislaa a@8E38@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ( v 1 Iξχ( t 0 ,τ)Aξχ(s,t)A, v 2 iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGccaWG gbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaam OramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacqaH0oazda WgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaamODamaaBaaaleaa caaIXaaabeaakiaadMeacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPaGaamyq aiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaa dohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaacaaIZa aabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqa aOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGykaiaaiMcaca aIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadQhacaaIPaGaaGyxaiaadsgacaWGZbGaeyOeI0caaa@8D6C@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ( v 1 Iξχ(σ,τ)Aξχ(s,t)A, v 2 iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) ))))dσds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaI OaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0baaS qaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaamOramaaBaaa leaacaWG6baabeaakiaaiIcadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacqaHdp WCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsislcqaH+oaEcqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaamODam aaBaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGa eq4WdmNaaGilaiabes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaaISaGaamODamaaBaaaleaa caaIZaaabeaakiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaio daaeqaaOGaaGikaiabeo8aZjaaiYcacaWG6bGaaGykaiabes7aKjaa dAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam4CaiaaiYcacaWG6b GaaGykaaaacaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8aZjaa dsgacaWGZbGaaGOlaaaa@9971@                                                                    (21)

Отметим, что функция ζ(t,τ,z, v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiDaiaaiYcacq aHepaDcaaISaGaamOEaiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamODam aaBaaaleaacaaIZaaabeaakiaaiMcaaaa@41F5@ , определяемая формулой (21), симметрична по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32BA@  и τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@ .

Теорема 8. Если характеристический функционал ψ( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@3C27@  разлагается в степенной ряд вида (8) имеет вариационную производную второго порядка по переменной v 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaa aa@33A5@ , то

E[y(t,z) y Т (τ,z)]= F ξ 1 ψ(ξχ( t 0 ,t)Aξχ( t 0 ,τ)A,iχ( t 0 ,t)iχ( t 0 ,τ),0)E[ y 0 (z) y 0 Т (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacaWGgb Waa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccqaHipqEcaaI OaGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaeq iXdqNaaGykaiaadgeacaaISaGaeyOeI0IaamyAaiabeE8aJjaaiIca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiabes8a0jaaiMcacaaISaGaaGimaiaaiMcacqGHxiIkca WGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOE aiaaiMcacaWG5bWaa0baaSqaaiaaicdaaeaacaqGIqaaaOGaaGikai aadQhacaaIPaGaaGyxaiabgkHiTaaa@7F7C@

i t 0 τ F ξ 1 ( F z ( F ξ 1 ( δ p ψ(ξχ( t 0 ,t)Aξχ(s,τ)A,iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) | v 3 =0 )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIi YdGccaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGcca aIOaGaamOramaaBaaaleaacaWG6baabeaakiaaiIcacaWGgbWaa0ba aSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaWaaSaaaeaacq aH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEcaaIOaGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGik aiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaISaGaeyOeI0Iaam yAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGil aiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiabes8a0jaaiMcacaaISaGaamODamaaBaaaleaacaaIZaaabeaa kiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaG ikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG 2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqabaGccaaIPaGaaG ykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaamizaiaadohacqGHsi slaaa@8FB1@

i t 0 t F ξ 1 ( F z ( F ξ 1 ( δ p ψ(ξχ( t 0 ,τ)Aξχ(s,t)A,iχ( t 0 ,τ)iχ(s,t), v 3 ) δ v 3 (s,z) | v 3 =0 )))E[ y 0 (z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaG ikaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOaGaamOramaaDaaa leaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikamaalaaabaGaeq iTdq2aaSbaaSqaaiaadchaaeqaaOGaeqiYdKNaaGikaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaG ilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGik aiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGilaiabgkHiTiaadM gacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYca cqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGc caaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiI cacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaG4maaqabaGaaGypaiaaicdaaeqaaOGaaGykaiaaiM cacaaIPaGaey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicda aeqaaOGaaGikaiaadQhacaaIPaGaaGyxaiaadsgacaWGZbGaeyOeI0 caaa@8EE5@

t 0 t t 0 τ F ξ 1 ( F z ( F ξ 1 ( F z ( δ p 2 ψ(ξχ(σ,τ)Aξχ(s,t)A,iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) | v 3 =0 ))))dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaaygW7daWd XbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcq GHRiI8aOGaamOramaaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaa aOGaaGikaiaadAeadaWgaaWcbaGaamOEaaqabaGccaaIOaGaamOram aaDaaaleaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikaiaadAea daWgaaWcbaGaamOEaaqabaGccaaIOaWaaSaaaeaacqaH0oazdaqhaa WcbaGaamiCaaqaaiaaikdaaaGccqaHipqEcaaIOaGaeyOeI0IaeqOV dGNaeq4XdmMaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqai abgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaI PaGaamyqaiaaiYcacqGHsislcaWGPbGaeq4XdmMaaGikaiabeo8aZj aaiYcacqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG ZbGaaGilaiaadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maa qabaGccaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaa kiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacqaH0oazcaWG2bWaaS baaSqaaiaaiodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMca aaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9a GaaGimaaqabaGccaaIPaGaaGykaiaaiMcacaaIPaGaamizaiabeo8a ZjaadsgacaWGZbaaaa@9A32@                                                                     (22)

является второй моментной функцией решения задачи (1), (2).

Доказательство. Согласно определению E[y(t,z) y Т (τ,z)]=ζ(t,τ,z,0,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaH2o GEcaaIOaGaamiDaiaaiYcacqaHepaDcaaISaGaamOEaiaaiYcacaaI WaGaaGilaiaaicdacaaISaGaaGimaiaaiMcaaaa@4D87@ . Подставляя v 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@352E@ , v 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ , v 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaaicdaaaa@3530@  в формулу (21), находим, что E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  определяется формулой (22).

5. Случай независимых случайных процессов ε1, ε2 и b.

Если процессы ε 1 , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaISaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaa@379E@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  независимы, то

ψ( v 1 , v 2 , v 3 )= ψ ε 1 ( v 1 ) ψ ε 2 ( v 2 ) ψ b ( v 3 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamODamaaBaaale aacaaIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypaiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaI OaGaamODamaaBaaaleaacaaIXaaabeaakiaaiMcacqaHipqEdaWgaa WcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaeqiYdK3aaSbaaSqaaiaadk gaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaGa aGilaaaa@5394@

где ψ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaaaa@363E@ , ψ ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaaaa@363F@ , ψ b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOyaaqaba aaaa@34A2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  характеристические функционалы для ε1, ε2 и b соответственно.

Теорема 9. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z)]= ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[ y 0 (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2facaaI9aGaeqiYdK3aaSbaaSqa aiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislca WGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaI SaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacq GHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWg aaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaa iMcacaWGbbGaaGykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMhada WgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaey4k aScaaa@674C@

+ t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiabeI8a5naa BaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa aGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki aaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaa aeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaamyqaiaaiMcacaaIPaGaey4fIOIaamyraiaa iUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcacaaIDbGaam izaiaadohaaaa@64C5@                                                                                                               (23)

является математическим ожиданием решения задачи (1), (2).

Доказательство. Поскольку

δ p ψ(ξχ(s,t)A,iχ(s,t),0) δ v 3 (s,z) = ψ ε 1 (ξχ(s,t)A) ψ ε 2 (iχ(s,t)) δ p ψ b (0) δ v 3 (s,z) = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacqGHsislcqaH+oaEcqaHhpWycaaI OaGaam4CaiaaiYcacaWG0bGaaGykaiaadgeacaaISaGaeyOeI0Iaam yAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGilaiaa icdacaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaaki aaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaai2dacqaHipqEdaWg aaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGikaiabgk HiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa amyqaiaaiMcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYa aabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4C aiaaiYcacaWG0bGaaGykaiaaiMcadaWcaaqaaiabes7aKnaaBaaale aacaWGWbaabeaakiabeI8a5naaBaaaleaacaWGIbaabeaakiaaiIca caaIWaGaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqaba GccaaIOaGaam4CaiaaiYcacaWG6bGaaGykaaaacaaI9aaaaa@8043@

=i ψ ε 1 (ξχ(s,t)A) ψ ε 2 (iχ(s,t))E[b(s,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0Ia eqOVdGNaeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbb GaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqa aaqabaGccaaIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaaGykaiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaaGyxaiaai6caaaa@586D@

Подставив найденные выражения в формулу (11) и вычислив прямое и обратное преобразования Фурье, получаем формулу (23).

Замечание 2. Отметим, что для нахождения математического ожидания E[y(t,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaai2faaaa@3968@  нужно знать характеристические функционалы процессов ε1, ε2, и только математическое ожидание процесса b.

Теорема 10. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) ε 1 (τ)]=i ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 )E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaeq iYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaa iIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaG imaaqabaGccaaISaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikamaalaaabaGaeqiTdq 2aaSbaaSqaaiaadchaaeqaaOGaeqiYdK3aaSbaaSqaaiabew7aLnaa BaaabaGaaGymaaqabaaabeaakiaaiIcacaWG2bWaaSbaaSqaaiaaig daaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiM caaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiab es8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaaGimaaqabaGccaaIPaGaey4fIOIaamyraiaaiUfa caWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGaaG yxaiabgkHiTaaa@7FDD@

i t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 )E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbGaaGzaVpaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabe aakiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacqGHsi slcaaIXaaaaOGaaGikamaalaaabaGaeqiTdq2aaSbaaSqaaiaadcha aeqaaOGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqaba aabeaakiaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamysaiab gkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPa GaamyqaiaaiMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaS baaeaacaaIXaaabeaacaaI9aGaaGimaaqabaGccaaIPaGaey4fIOIa amyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcaca aIDbGaamizaiaadohaaaa@7831@                                                                                               (24)

является смешанной моментной функцией решения задачи (1), (2).

Доказательство. Вычислим значение вариационных производных входящих в формулу (12) в предположение, что случайные процессы ε1, ε2 и b независимы:

δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 1 (τ) | v 1 = v 2 = v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdq MaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaIPaaa aiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGymaaqabaGaaGypai aadAhadaWgaaqaaiaaikdaaeqaaiaai2dacaWG2bWaaSbaaeaacaaI ZaaabeaacaaI9aGaaGimaaqabaGccaaI9aaaaa@63E3@

= ψ ε 2 (iχ( t 0 ,t)) δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 ψ b (0)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacaaIPaWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqa baGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaae qaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8b WaaSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaa beaakiabeI8a5naaBaaaleaacaWGIbaabeaakiaaiIcacaaIWaGaaG ykaiaai2daaaa@67D4@

= ψ ε 2 (iχ( t 0 ,t)) δ p ψ ε 1 ( v 1 Iξχ( t 0 ,t)A) δ v 1 (τ) | v 1 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacaaIPaWaaSaaaeaacqaH0oazdaWgaaWcbaGaamiCaaqa baGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaae qaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaWGjbGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAha daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8b WaaSbaaSqaaiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaa beaakiaaiYcaaaa@62B9@

δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 1 (τ)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacq aHepaDcaaIPaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaa iIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaam ODamaaBaaabaGaaGymaaqabaGaaGypaiaadAhadaWgaaqaaiaaikda aeqaaiaai2dacaWG2bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaa qabaGccaaI9aaaaa@6A63@

= δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 ψ ε 2 (iχ(s,t)) δ ψ b ( v 3 ) δ v 3 (τ,z) | v 3 =0 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH0oazdaWgaa WcbaGaamiCaaqabaGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaa caaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqaba GccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAhadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8bWaaSbaaSqa aiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaI OaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaaGykamaalaaabaGaeqiTdqMaeqiYdK3aaSbaaSqaaiaadkga aeqaaOGaaGikaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaaba GaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaD caaISaGaamOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaae aacaaIZaaabeaacaaI9aGaaGimaaqabaGccaaI9aaaaa@75E3@

= δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 ψ ε 2 (iχ(s,t))E[b(s,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH0oazdaWgaa WcbaGaamiCaaqabaGccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaa caaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGymaaqaba GccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohacaaISaGa amiDaiaaiMcacaWGbbGaaGykaaqaaiabes7aKjaadAhadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaaaacaaI8bWaaSbaaSqa aiaadAhadaWgaaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiabeI 8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaI OaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshaca aIPaGaaGykaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaa dQhacaaIPaGaaGyxaiaai6caaaa@6868@

Подставив найденные выражения в формулу (12) и вычислив прямое и обратное преобразования Фурье, получаем формулу (24).

Теорема 11. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) ε 2 (τ)]=i δ p ψ ε 2 ( v 2 iχ( t 0 ,t)) δ v 2 (τ) | v 2 =0 F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbWaaS aaaeaacqaH0oazdaWgaaWcbaGaamiCaaqabaGccqaHipqEdaWgaaWc baGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhada WgaaWcbaGaaGOmaaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaIPa aabaGaeqiTdqMaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH epaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamODamaaBaaabaGaaGOmaa qabaGaaGypaiaaicdaaeqaaOGaamOramaaDaaaleaacqaH+oaEaeaa cqGHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzda WgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4X dmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDai aaiMcacaWGbbGaaGykaiaaiMcacqGHxiIkcaWGfbGaaG4waiaadMha daWgaaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaey OeI0caaa@7F13@

i t 0 t δ p ψ ε 2 ( v 2 iχ(s,t)) δ v 2 (τ) | v 2 =0 F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaWc aaqaaiabes7aKnaaBaaaleaacaWGWbaabeaakiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaamODamaa BaaaleaacaaIYaaabeaakiabgkHiTiaadMgacqaHhpWycaaIOaGaam 4CaiaaiYcacaWG0bGaaGykaiaaiMcaaeaacqaH0oazcaWG2bWaaSba aSqaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiMcaaaGaaGiFamaaBa aaleaacaWG2bWaaSbaaeaacaaIYaaabeaacaaI9aGaaGimaaqabaGc caWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOa GaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaa kiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaiaadgeacaaIPaGaaGykaiabgEHiQiaadweacaaIBbGa amOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyxaiaadsgaca WGZbaaaa@75DC@                                                                              (25)

является смешанной моментной функцией решения задачи (1), (2).

Теорема 11 доказывается аналогично теореме 10.

Теорема 12. Если случайные процессы ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  независимы, то

E[y(t,z) b Т (τ,z)]= ψ ε 2 (iχ( t 0 ,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)A))E[b(s,z)]E[ y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaHip qEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGik aiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGykaiaaiMcacaWGgbWaa0baaSqaaiab e67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3aaSbaaSqaai abew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacqGHsislcqaH +oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bGaaGykaiaadgeacaaIPaGaaGykaiaadweacaaIBbGaamOy aiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyxaiabgEHiQiaadw eacaaIBbGaamyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIca caWG6bGaaGykaiaai2facqGHRaWkaaa@762B@

+ t 0 t ψ ε 2 (iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(s,t)A))E[b(s,z) b Т (τ,z)]ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiabeI8a5naa BaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGa aGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaaki aaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaa aeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaG ilaiaadshacaaIPaGaamyqaiaaiMcacaaIPaGaey4fIOIaamyraiaa iUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcacaWGIbWaaW baaSqabeaacaqGIqaaaOGaaGikaiabes8a0jaaiYcacaWG6bGaaGyk aiaai2facaWGKbGaam4Caaaa@6B6B@                                                                                                        (26)

является смешанной моментной функцией решения задачи (1), (2).

Доказательство. Вычислим значения вариационных производных, входящих в формулу (14), в предположении, что случайные процессы ε1, ε2 и b независимы:

δ p ψ( v 1 Iξχ( t 0 ,t)A, v 2 iχ( t 0 ,t), v 3 ) δ v 3 (τ,z) | v 1 = v 2 = v 3 =0 =i ψ ε 2 (iχ( t 0 ,t)) ψ ε 1 (ξχ( t 0 ,t)A)E[b(τ,z)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa aGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPaaabaGaeqiTdq MaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacqaHepaDcaaISaGa amOEaiaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaamODamaaBaaabaGaaGOmaaqabaGaaGypaiaadAha daWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaabeaakiaai2dacaWGPb GaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaa kiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaIPaGaeqiYdK3aaSba aSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacqGHsi slcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaa kiaaiYcacaWG0bGaaGykaiaadgeacaaIPaGaamyraiaaiUfacaWGIb GaaGikaiabes8a0jaaiYcacaWG6bGaaGykaiaai2facaaISaaaaa@8E2C@

δ p 2 ψ( v 1 Iξχ(s,t)A, v 2 iχ(s,t), v 3 ) δ v 3 (τ,z)δ v 3 (s,z) | v 1 = v 2 = v 3 =0 = ψ ε 2 (iχ(s,t)) ψ ε 1 (ξχ(s,t)A)E[b(s,z) b Т (τ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaDaaaleaaca WGWbaabaGaaGOmaaaakiabeI8a5jaaiIcacaWG2bWaaSbaaSqaaiaa igdaaeqaaOGaamysaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiaadshacaaIPaGaamyqaiaaiYcacaWG2bWaaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaI PaaabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacq aHepaDcaaISaGaamOEaiaaiMcacqaH0oazcaWG2bWaaSbaaSqaaiaa iodaaeqaaOGaaGikaiaadohacaaISaGaamOEaiaaiMcaaaGaaGiFam aaBaaaleaacaWG2bWaaSbaaeaacaaIXaaabeaacaaI9aGaamODamaa BaaabaGaaGOmaaqabaGaaGypaiaadAhadaWgaaqaaiaaiodaaeqaai aai2dacaaIWaaabeaakiaai2dacqGHsislcqaHipqEdaWgaaWcbaGa eqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadM gacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcacqaH ipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaG ikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadsha caaIPaGaamyqaiaaiMcacaWGfbGaaG4waiaadkgacaaIOaGaam4Cai aaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGccaaI OaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai6caaaa@98A4@

Подставив найденные выражения в формулу (14) и вычислив прямое и обратное преобразования Фурье, получаем формулу (26).

Теорема 13. Если случайные процессы ε1, ε2 и b независимы, то

E[y(t,z) y Т (τ,z)]= ψ ε 2 (iχ( t 0 ,t)iχ( t 0 ,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ( t 0 ,τ)A))E[ y 0 (z) y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2dacqaHip qEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGik aiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bGaaGykaiabgkHiTiaadMgacqaHhpWycaaI OaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaDcaaIPa GaaGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaa kiaaiIcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabe aaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGaamyqaiabgk HiTiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiabes8a0jaaiMcacaWGbbGaaGykaiaaiMcacqGHxiIkca WGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamOE aiaaiMcacaWG5bWaa0baaSqaaiaaicdaaeaacaqGIqaaaOGaaGikai aadQhacaaIPaGaaGyxaiabgUcaRaaa@8756@

+ t 0 τ { ψ ε 2 (iχ( t 0 ,t)iχ(s,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)]E[ y 0 (z)]}ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOGaaG4Eaiab eI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGcca aIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIPaGaamOramaaDaaa leaacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGikaiabeI8a5naaBa aaleaacqaH1oqzdaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOe I0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaIPaGaaGykai aadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGa aGyxaiabgEHiQiaadweacaaIBbGaamyEamaaBaaaleaacaaIWaaabe aakiaaiIcacaWG6bGaaGykaiaai2facaaI9bGaamizaiaadohacqGH RaWkaaa@83B8@

+ t 0 t { ψ ε 2 (iχ( t 0 ,τ)iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,τ)Aξχ(s,t)A))E[b(s,z)]E[ y 0 (z)]}ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaaiUhacqaH ipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaG ikaiabgkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiYcacqaHepaDcaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiaadshacaaIPaGaaGykaiaadAeadaqhaaWc baGaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaiIcacqaHipqEdaWgaa WcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHi Tiabe67a4jabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMa aGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykaiaaiMcaca WGfbGaaG4waiaadkgacaaIOaGaam4CaiaaiYcacaWG6bGaaGykaiaa i2facqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaamOEaiaaiMcacaaIDbGaaGyFaiaadsgacaWGZbGaey4k aScaaa@82EC@

+ t 0 t t 0 τ ψ ε 2 (iχ(σ,τ)iχ(s,t)) F ξ 1 ( ψ ε 1 (ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GccqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqa aOGaaGikaiabgkHiTiaadMgacqaHhpWycaaIOaGaeq4WdmNaaGilai abes8a0jaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaI SaGaamiDaiaaiMcacaaIPaGaamOramaaDaaaleaacqaH+oaEaeaacq GHsislcaaIXaaaaOGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWg aaqaaiaaigdaaeqaaaqabaGccaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqai aaiMcacaaIPaGaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaG ikaiabeo8aZjaaiYcacaWG6bGaaGykaiaai2facaWGKbGaeq4WdmNa amizaiaadohaaaa@8827@                                                                  (27)

является второй моментной функцией решения задачи (1), (2).

Доказательство. Поскольку

F ξ 1 ψ(ξχ( t 0 ,t)Aξχ( t 0 ,τ)A,iχ( t 0 ,t)iχ( t 0 ,τ),0)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccqaHipqEcaaIOaGaeyOeI0IaeqOVdGNaeq4X dmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDai aaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaadgeacaaISa GaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabes8a0jaaiMca caaISaGaaGimaiaaiMcacaaI9aaaaa@6358@

= ψ ε 2 (iχ( t 0 ,t)iχ( t 0 ,τ)) F ξ 1 ( ψ ε 1 (ξχ( t 0 ,t)Aξχ( t 0 ,τ)A)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiabew 7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaiIcacqGHsislcaWGPbGa eq4XdmMaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDaiaaiMcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccaaISaGaeqiXdqNaaGykaiaaiMcacaWGgbWaa0 baaSqaaiabe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3a aSbaaSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaiIcacq GHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhp WycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHepaD caaIPaGaamyqaiaaiMcacaaIPaaaaa@6B3D@

и

F ξ 1 '( F z '( F ξ 1 '( δ p ψ'(ξχ( t 0 ,t)Aξχ(s,τ)A,iχ( t 0 ,t)iχ(s,τ), v 3 ) δ v 3 (s,z) | v 3 =0 )))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWgaaWcbaGaamOE aaqabaGccaaIGbGaaGikaiaadAeadaqhaaWcbaGaeqOVdGhabaGaey OeI0IaaGymaaaakiaaicgacaaIOaWaaSaaaeaacqaH0oazdaWgaaWc baGaamiCaaqabaGccqaHipqEcaaIGbGaaGikaiabgkHiTiabe67a4j abeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaa dshacaaIPaGaamyqaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZb GaaGilaiabes8a0jaaiMcacaWGbbGaaGilaiabgkHiTiaadMgacqaH hpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0b GaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGilaiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIPa aabaGaeqiTdqMaamODamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaaaaiaaiYhadaWgaaWcbaGaamODamaaBa aabaGaaG4maaqabaGaaGypaiaaicdaaeqaaOGaaGykaiaaiMcacaaI PaGaaGypaaaa@8009@

=i F ξ 1 '( F z '( F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A) ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ))E[b(s,z)])))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaamOramaa BaaaleaacaWG6baabeaakiaaicgacaaIOaGaamOramaaDaaaleaacq aH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEdaWg aaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaaiI cacqGHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcq aHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiMca cqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaO GaaGiyaiaaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacqGHsislcaWGPb Gaeq4XdmMaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiMcacaWG fbGaaG4waiaadkgacaaIOaGaam4CaiaaiYcacaWG6bGaaGykaiaai2 facaaIPaGaaGykaiaaiMcacaaI9aaaaa@8068@

=i F ξ 1 '( F z '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ))E[b(s,z)] F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaamOramaa BaaaleaacaWG6baabeaakiaaicgacaaIOaGaeqiYdK3aaSbaaSqaai abew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaeyOe I0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcacaaIPaGaamyraiaaiUfacaWGIbGaaG ikaiaadohacaaISaGaamOEaiaaiMcacaaIDbGaamOramaaDaaaleaa cqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEda WgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaa iIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaE cqaHhpWycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiM cacaaIPaGaaGykaiaaiMcacaaI9aaaaa@8068@

=i F ξ 1 '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) F z '( F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiaadAeadaqhaaWcba GaeqOVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaeqiYdK3a aSbaaSqaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgaca aIOaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshacaaIPaGaeyOeI0IaamyAaiabeE8aJj aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIPaGaamOramaaBaaa leaacaWG6baabeaakiaaicgacaaIOaGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqEdaWgaaWc baGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaOGaaGiyaiaaiIcacq GHsislcqaH+oaEcqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bGaaGykaiaadgeacqGHsislcqaH+oaEcqaHhp WycaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamyqaiaaiMcacaaI PaGaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiM cacaaIDbGaaGykaiaaiMcacaaI9aaaaa@8068@

= i 2π F ξ 1 '( ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A) F z (E[b(s,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWGPbaabaGaaG Omaiabec8aWbaacaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaa igdaaaGccaaIGbGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWgaa qaaiaaikdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiaadMgacqaH hpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0b GaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaai aaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshaca aIPaGaamyqaiabgkHiTiabe67a4jabeE8aJjaaiIcacaWGZbGaaGil aiabes8a0jaaiMcacaWGbbGaaGykaiabgEHiQiaadAeadaWgaaWcba GaamOEaaqabaGccaaIOaGaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaaIDbGaaGykaiaaiMcacaaI9aaaaa@7C3A@

=i ψ ε 2 '(iχ( t 0 ,t)iχ(s,τ)) F ξ 1 '( ψ ε 1 '(ξχ( t 0 ,t)Aξχ(s,τ)A))E[b(s,z)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyAaiabeI8a5naaBaaale aacqaH1oqzdaWgaaqaaiaaikdaaeqaaaqabaGccaaIGbGaaGikaiab gkHiTiaadMgacqaHhpWycaaIOaGaamiDamaaBaaaleaacaaIWaaabe aakiaaiYcacaWG0bGaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGa am4CaiaaiYcacqaHepaDcaaIPaGaaGykaiaadAeadaqhaaWcbaGaeq OVdGhabaGaeyOeI0IaaGymaaaakiaaicgacaaIOaGaeqiYdK3aaSba aSqaaiabew7aLnaaBaaabaGaaGymaaqabaaabeaakiaaicgacaaIOa GaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadshadaWgaaWcbaGaaGim aaqabaGccaaISaGaamiDaiaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq 4XdmMaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadgeacaaIPaGa aGykaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhaca aIPaGaaGyxaiaaiYcaaaa@754C@

преобразуя последнее подинтегральное выражение, получаем

F ξ 1 '( F z '( F ξ 1 '( F z '( δ p 2 ψ'(ξχ(σ,τ)Aξχ(s,t)A,iχ(σ,τ)iχ(s,t), v 3 ) δ v 3 (σ,z)δ v 3 (s,z) | v 3 =0 ))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiabe67a4bqaai abgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWgaaWcbaGaamOE aaqabaGccaaIGbGaaGikaiaadAeadaqhaaWcbaGaeqOVdGhabaGaey OeI0IaaGymaaaakiaaicgacaaIOaGaamOramaaBaaaleaacaWG6baa beaakiaaicgacaaIOaWaaSaaaeaacqaH0oazdaqhaaWcbaGaamiCaa qaaiaaikdaaaGccqaHipqEcaaIGbGaaGikaiabgkHiTiabe67a4jab eE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsi slcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaa dgeacaaISaGaeyOeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISa GaeqiXdqNaaGykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4Caiaa iYcacaWG0bGaaGykaiaaiYcacaWG2bWaaSbaaSqaaiaaiodaaeqaaO GaaGykaaqaaiabes7aKjaadAhadaWgaaWcbaGaaG4maaqabaGccaaI OaGaeq4WdmNaaGilaiaadQhacaaIPaGaeqiTdqMaamODamaaBaaale aacaaIZaaabeaakiaaiIcacaWGZbGaaGilaiaadQhacaaIPaaaaiaa iYhadaWgaaWcbaGaamODamaaBaaabaGaaG4maaqabaGaaGypaiaaic daaeqaaOGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8D39@

= F ξ 1 '( F z '( F ξ 1 '( F z ( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A)E[b(s,z) b Т (σ,z)]))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacaWGgbWaa0baaSqaai abe67a4bqaaiabgkHiTiaaigdaaaGccaaIGbGaaGikaiaadAeadaWg aaWcbaGaamOEaaqabaGccaaIOaGaeqiYdK3aaSbaaSqaaiabew7aLn aaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaeyOeI0IaamyA aiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiabgkHiTi aadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMca cqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaabeaaaeqaaO GaaGiyaiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOaGaeq4WdmNa aGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNaeq4XdmMaaG ikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykaiaadweacaaI BbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaamOyamaaCa aaleqabaGaaeOieaaakiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMca caaIDbGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8A24@

= F ξ 1 '( F z '( F ξ 1 ( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A) F z '(E[b(s,z) b Т (σ,z)]))))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacaWGgbWaa0baaSqaai abe67a4bqaaiabgkHiTiaaigdaaaGccaaIOaGaeqiYdK3aaSbaaSqa aiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGaey OeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGyk aiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaG ykaiaaiMcacqaHipqEdaWgaaWcbaGaeqyTdu2aaSbaaeaacaaIXaaa beaaaeqaaOGaaGiyaiaaiIcacqGHsislcqaH+oaEcqaHhpWycaaIOa Gaeq4WdmNaaGilaiabes8a0jaaiMcacaWGbbGaeyOeI0IaeqOVdGNa eq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaWGbbGaaGykai aadAeadaWgaaWcbaGaamOEaaqabaGccaaIGbGaaGikaiaadweacaaI BbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaamOyamaaCa aaleqabaGaaeOieaaakiaaiIcacqaHdpWCcaaISaGaamOEaiaaiMca caaIDbGaaGykaiaaiMcacaaIPaGaaGykaiaai2daaaa@8A24@

= F ξ 1 '( F z '( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) F ξ 1 '( ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacaWGgbWa aSbaaSqaaiaadQhaaeqaaOGaaGiyaiaaiIcacqaHipqEdaWgaaWcba GaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGiyaiaaiIcacqGH sislcaWGPbGaeq4XdmMaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPa GaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaI PaGaaGykaiaadAeadaqhaaWcbaGaeqOVdGhabaGaeyOeI0IaaGymaa aakiaaicgacaaIOaGaeqiYdK3aaSbaaSqaaiabew7aLnaaBaaabaGa aGymaaqabaaabeaakiaaicgacaaIOaGaeyOeI0IaeqOVdGNaeq4Xdm MaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaGaamyqaiabgkHiTiab e67a4jabeE8aJjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqai aaiMcacaaIPaGaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadoha caaISaGaamOEaiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaG ikaiabeo8aZjaaiYcacaWG6bGaaGykaiaai2facaaIPaGaaGykaiaa i2daaaa@87AE@

= F ξ 1 '( ψ ε 2 '(iχ(σ,τ)iχ(s,t)) ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A) F z '(E[b(s,z) b Т (σ,z)]))= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamOramaaDaaale aacqaH+oaEaeaacqGHsislcaaIXaaaaOGaaGiyaiaaiIcacqaHipqE daWgaaWcbaGaeqyTdu2aaSbaaeaacaaIYaaabeaaaeqaaOGaaGiyai aaiIcacqGHsislcaWGPbGaeq4XdmMaaGikaiabeo8aZjaaiYcacqaH epaDcaaIPaGaeyOeI0IaamyAaiabeE8aJjaaiIcacaWGZbGaaGilai aadshacaaIPaGaaGykaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqa aiaaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE 8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadg eacaaIPaGaamOramaaBaaaleaacaWG6baabeaakiaaicgacaaIOaGa amyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOEaiaaiMcaca WGIbWaaWbaaSqabeaacaqGIqaaaOGaaGikaiabeo8aZjaaiYcacaWG 6bGaaGykaiaai2facaaIPaGaaGykaiaai2daaaa@8003@

= ψ ε 2 '(iχ(σ,τ)iχ(s,t)) F ξ 1 '( ψ ε 1 '(ξχ(σ,τ)Aξχ(s,t)A))E[b(s,z) b Т (σ,z)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaeqiYdK3aaSbaaS qaaiabew7aLnaaBaaabaGaaGOmaaqabaaabeaakiaaicgacaaIOaGa eyOeI0IaamyAaiabeE8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaG ykaiabgkHiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaaiMcacaWGgbWaa0baaSqaaiabe67a4bqaaiabgkHiTiaaig daaaGccaaIGbGaaGikaiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqa aiaaigdaaeqaaaqabaGccaaIGbGaaGikaiabgkHiTiabe67a4jabeE 8aJjaaiIcacqaHdpWCcaaISaGaeqiXdqNaaGykaiaadgeacqGHsisl cqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaadg eacaaIPaGaaGykaiabgEHiQiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaamOyamaaCaaaleqabaGaaeOieaaaki aaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacaaIDbGaaGOlaaaa@7C94@

Подставляя полученные выражения в формулу (22), получаем вторую моментную функцию (27) для независимых случайных процессов ε1, ε2 и b.

Замечание 3. Отметим, что для нахождения второй моментной функции E[y(t,z) y Т (τ,z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaaaa@4025@  нужно знать характеристические функционалы процессов ε1, ε2 и только математическое ожидание и вторую моментную функцию процесса b.

6. Частные случаи.

Рассмотрим задачу (1), (2) с гауссовскими случайными процессами ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@ , ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@ , заданными характеристическими функционалами

ψ ε k ( v k )=exp i T E[ ε k (s)] v k (s)ds 1 2 T T b k ( s 1 , s 2 ) v k ( s 1 ) v k ( s 2 )d s 1 d s 2 ,k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaWGRbaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaam4A aaqabaGccaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabmaabaGaam yAamaapefabeWcbaGaamivaaqab0Gaey4kIipakiaadweacaaIBbGa eqyTdu2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadohacaaIPaGaaG yxaiaadAhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CaiaaiMca caWGKbGaam4CaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8 quaeqaleaacaWGubaabeqdcqGHRiI8aOWaa8quaeqaleaacaWGubaa beqdcqGHRiI8aOGaamOyamaaBaaaleaacaWGRbaabeaakiaaiIcaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGa aGOmaaqabaGccaaIPaGaamODamaaBaaaleaacaWGRbaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadAhadaWgaaWc baGaam4AaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIYaaabeaaki aaiMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWG ZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGilaiaayw W7caWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaaa@7996@                                                        (28)

где b k ( s 1 , s 2 )=E[ ε k ( s 1 ) ε k ( s 2 )]E[ ε k ( s 1 )]E[ ε k ( s 2 )] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaamyraiaaiUfacqaH1o qzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiMcacqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIDbGaeyOeI0Ia amyraiaaiUfacqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam 4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIDbGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaaIOaGaam4CamaaBaaale aacaaIYaaabeaakiaaiMcacaaIDbaaaa@5BA0@ , k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A5@ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbuaqa aaaaaaaaWdbiaa=rbiaaa@3785@  ковариационные функции случайных процессов ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@  и ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@  соответственно, и независимым с ε1, ε2 и случайным процессом b.

Теорема 14. Пусть в задаче (1), (2) случайные процессы ε1, ε2 заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) ε 1 (τ)]=iexp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaci yzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaaqa aiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG 0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaae qaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZb WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaacqGHxdaTaaa@72DD@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey41aqlacaGLOaaa aaa@72F8@

× iE[ ε 1 (τ)]I+ξ t 0 t b 1 (τ,s)Ads E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgEna0oaabmaabaGaam yAaiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGik aiabes8a0jaaiMcacaaIDbGaamysaiabgUcaRiabe67a4naapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8 aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaISa Gaam4CaiaaiMcacaWGbbGaaGjcVlaadsgacaWGZbaacaGLOaGaayzk aaaacaGLPaaacqGHxiIkcaWGfbGaaG4waiaadMhadaWgaaWcbaGaaG imaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbGaeyOeI0caaa@5BCF@

i t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaGa baqaaiGacwgacaGG4bGaaiiCamaabmaabaWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq 4WdmNaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqa aiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBa aaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaGaey41aqlacaGL7baaaaa@6879@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaam4Caa qaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqa aiaaigdaaeqaaOGaaGikaiabeo8aZjaaiMcacaaIDbGaamyqaiaayI W7caWGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa cqaH+oaEdaahaaWcbeqaaiaaikdaaaGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaaeaacaWG0baa niabgUIiYdGccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaado hadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaI YaaabeaakiaaiMcacaWGbbWaaWbaaSqabeaacaaIYaaaaOGaamizai aadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaaGaayjkaaGaey41aqlaaa@71FA@

× iE[ ε 1 (τ)]I+ξ s t b 1 (τ, s 1 )Ad s 1 E[b(s,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaGaey41aq7aae WaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaai2facaWGjbGaey4kaSIaeqOVdG 3aa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaa BaaaleaacaaIXaaabeaakiaaiIcacqaHepaDcaaISaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiMcacaWGbbGaamizaiaadohadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaaaiaawMcaaiabgEHiQiaadw eacaaIBbGaamOyaiaaiIcacaWGZbGaaGilaiaadQhacaaIPaGaaGyx aaGaayzFaaGaamizaiaadohaaaa@5DFC@                                                                                             (29)

является смешанной моментной функцией решения этой задачи.

Доказательство. Выпишем ψ ε 1 ( v 1 Iξχ(s,t)A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGym aaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohaca aISaGaamiDaiaaiMcacaWGbbGaaGykaaaa@43A0@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 1 ( v 1 Iξχ(s,t)A)=exp i T E[ ε 1 (σ)] v 1 (σ)Idσiξ s t E[ ε 1 (σ)]Adσ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGym aaqabaGccaWGjbGaeyOeI0IaeqOVdGNaeq4XdmMaaGikaiaadohaca aISaGaamiDaiaaiMcacaWGbbGaaGykaiaai2daciGGLbGaaiiEaiaa cchadaqabaqaaiaadMgadaWdrbqabSqaaiaadsfaaeqaniabgUIiYd GccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIca cqaHdpWCcaaIPaGaaGyxaiaadAhadaWgaaWcbaGaaGymaaqabaGcca aIOaGaeq4WdmNaaGykaiaadMeacaaMi8Uaamizaiabeo8aZjabgkHi TiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaaeaacaWG0baaniabgU IiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaa iIcacqaHdpWCcaaIPaGaaGyxaiaadgeacaaMi8Uaamizaiabeo8aZj abgkHiTaGaayjkaaaaaa@74E2@

1 2 T T b 1 ( s 1 , s 2 ) v 1 ( s 1 ) v 1 ( s 2 )d s 1 d s 2 I+ 1 2 ξ s t T b 1 ( s 1 , s 2 ) v 1 ( s 1 )Ad s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaapefabeWc baGaamivaaqab0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqaba GccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaadAhadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGc caWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiaadMeacqGHRaWkda WcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naapehabeWcbaGaam4C aaqaaiaadshaa0Gaey4kIipakmaapefabeWcbaGaamivaaqab0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4C amaaBaaaleaacaaIXaaabeaakiaaiMcacaWGbbGaaGjcVlaadsgaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkaaa@74DC@

+ 1 2 ξ T s t b 1 ( s 1 , s 2 ) v 1 ( s 2 )Ad s 1 d s 2 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaGaeqOVdG3aa8quaeqaleaacaWGubaabeqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamODamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaadgeacaaMi8UaamizaiaadohadaWgaa WcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaa kiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaS qabeaacaaIYaaaaOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamyqamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawMcaaiaai6caaaa@7115@

Тогда

δ p ψ ε 1 ( v 1 Iξχ(s,t)A) δ v 1 (τ) | v 1 =0 =exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaigda aeqaaaqabaGccaaIOaGaamODamaaBaaaleaacaaIXaaabeaakiaadM eacqGHsislcqaH+oaEcqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaadgeacaaIPaaabaGaeqiTdqMaamODamaaBaaaleaacaaIXa aabeaakiaaiIcacqaHepaDcaaIPaaaaiaaiYhadaWgaaWcbaGaamOD amaaBaaabaGaaGymaaqabaGaaGypaiaaicdaaeqaaOGaaGypaiGacw gacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyAaiabe67a4naapeha beWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabeo8aZjaaiMcacaaI DbGaamyqaiaayIW7caWGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaacqaH+oaEdaahaaWcbeqaaiaaikdaaaGcdaWdXbqa bSqaaiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaado haaeaacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Cam aaBaaaleaacaaIYaaabeaakiaaiMcacaWGbbWaaWbaaSqabeaacaaI YaaaaOGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam 4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgEna0caa @8B85@

× iE[ ε 1 (τ)]I T b 1 ( s 1 ,τ) v 1 ( s 1 )Id s 1 + 1 2 ξ s t b 1 (τ, s 2 )Ad s 2 + 1 2 ξ s t b 1 ( s 1 ,τ)Ad s 1 v 1 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabcaqaamaadiaabaGaey41aq7aam qaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaeqiXdqNaaGykaiaai2facaWGjbGaaGzbVdGaay5waa GaeyOeI0Yaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaamOyamaa BaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaae qaaOGaaGilaiabes8a0jaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaIPaGaamysai aayIW7caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiabgUcaRmaa laaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaa kiaaiIcacqaHepaDcaaISaGaam4CamaaBaaaleaacaaIYaaabeaaki aaiMcacaWGbbGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGH RaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGym aaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacq aHepaDcaaIPaGaamyqaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqa aaGccaGLDbaaaiaawIa7amaaBaaaleaacaWG2bWaaSbaaeaacaaIXa aabeaacaaI9aGaaGimaaqabaGccaaIUaaaaa@850C@

Учитывая, что функция b 1 ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcaaaa@3987@  симметрична, окончательно получаем выражение

exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 iE[ ε 1 (τ)]I+ξ s t b 1 (τ, s 2 )Ad s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaaeaacaWG0baa niabgUIiYdGccaaMb8UaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaG ymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGbbGaaGjcVlaa dsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe6 7a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaa dshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4C amaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaWaamWaaeaacaWGPbGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeqiXdqNaaGykai aai2facaWGjbGaey4kaSIaeqOVdG3aa8qCaeqaleaacaWGZbaabaGa amiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiI cacqaHepaDcaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMca caWGbbGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawUfaca GLDbaacaaIUaaaaa@8926@

Выпишем ψ ε 2 (iχ(s,t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcaaaa@3F4C@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 2 (iχ(s,t))=exp i T E[ ε 2 (σ)](iχ(s,t))dσ 1 2 T T b 2 ( s 1 , s 2 )(iχ(s,t))(iχ(s,t))d s 1 d s 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiabgkHiTiaadMgacqaHhpWy caaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcacaaI9aGaciyzai aacIhacaGGWbWaaeWaaeaacaWGPbWaa8quaeqaleaacaWGubaabeqd cqGHRiI8aOGaaGzaVlaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaik daaeqaaOGaaGikaiabeo8aZjaaiMcacaaIDbGaaGikaiabgkHiTiaa dMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaaiMcaca WGKbGaeq4WdmNaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWd rbqabSqaaiaadsfaaeqaniabgUIiYdGcdaWdrbqabSqaaiaadsfaae qaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaaca aIYaaabeaakiaaiMcacaaIOaGaeyOeI0IaamyAaiabeE8aJjaaiIca caWGZbGaaGilaiaadshacaaIPaGaaGykaiaaiIcacqGHsislcaWGPb Gaeq4XdmMaaGikaiaadohacaaISaGaamiDaiaaiMcacaaIPaGaamiz aiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2daaaa@872C@

=exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaciyzaiaacIhacaGGWbWaae WaaeaadaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGccaaM b8UaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOa Gaeq4WdmNaaGykaiaai2facaWGKbGaeq4WdmNaey4kaSYaaSaaaeaa caaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG0baani abgUIiYdGcdaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGc caWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcba GaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaa iMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGOlaaaa@6135@

Подставим эти выражения в (24), получаем формулу (29).

Теорема 15. Пусть в задаче (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) ε 2 (τ)]=iexp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i t 0 t b 2 (τ,s)ds × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiabew7aLnaaBaaaleaacaaIYaaabeaa kiaaiIcacqaHepaDcaaIPaGaaGyxaiaai2dacqGHsislcaWGPbGaci yzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaaqa aiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadweacaaIBbGaeq yTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaIPaGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG 0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaae qaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZb WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaadaGadaqaaiaadMgacaWGfbGaaG4waiabew7aLnaa BaaaleaacaaIYaaabeaakiaaiIcacqaHepaDcaaIPaGaaGyxaiabgU caRiaadMgadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaeqiXdqNaaGilaiaadohacaaIPaGaamizaiaadohaaiaawUha caGL9baacqGHxdaTaaa@8DF9@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[ y 0 (z)] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGa ey4fIOIaamyraiaaiUfacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiaadQhacaaIPaGaaGyxaiabgkHiTaaa@7A68@

i t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i s t b 2 (τ, s 2 )d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGPbWaa8qCaeqaleaaca WG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaGa baqaaiGacwgacaGG4bGaaiiCamaabmaabaWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq 4WdmNaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqa aiaadohaaeaacaWG0baaniabgUIiYdGcdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBa aaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaWaamWaaeaacaWGPbGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2facqGHRaWkca WGPbWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOy amaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaDcaaISaGaam4Cam aaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBaaaleaa caaIYaaabeaaaOGaay5waiaaw2faaiabgEna0cGaay5Eaaaaaa@845D@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaGacaqaaiaadAeadaqhaa WcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3aa8qCaeqale aacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqz daWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2faca WGbbGaaGjcVlaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaa caaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSba aSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaa GccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOE aiaaiMcacaaIDbaacaGL9baacaWGKbGaam4Caaaa@7C22@                                                                (30)

является смешанной моментной функций решения этой задачи.

Доказательство. Выпишем ψ ε 2 ( v 2 iχ(s,t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGOm aaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaam iDaiaaiMcacaaIPaaaaa@4139@  для гауссовского процесса, используя определение функции χ(s,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaIOaGaam4CaiaaiYcaca WG0bGaaGykaaaa@3784@ :

ψ ε 2 ( v 2 iχ(s,t))=exp i T E[ ε 2 (σ)] v 2 (σ)dσ+ s t E[ ε 2 (σ)]dσ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIYaaabeaaaeqaaOGaaGikaiaadAhadaWgaaWcbaGaaGOm aaqabaGccqGHsislcaWGPbGaeq4XdmMaaGikaiaadohacaaISaGaam iDaiaaiMcacaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabeaabaGa amyAamaapefabeWcbaGaamivaaqab0Gaey4kIipakiaadweacaaIBb GaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabeo8aZjaaiMca caaIDbGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacqaHdpWCca aIPaGaamizaiabeo8aZjabgUcaRmaapehabeWcbaGaam4Caaqaaiaa dshaa0Gaey4kIipakiaaygW7caWGfbGaaG4waiabew7aLnaaBaaale aacaaIYaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaH dpWCcqGHsislaiaawIcaaaaa@6C96@

1 2 T T b 2 ( s 1 , s 2 ) v 2 ( s 1 ) v 2 ( s 2 )d s 1 d s 2 + i 2 s t T b 2 ( s 1 , s 2 ) v 2 ( s 1 )d s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaapefabeWcbaGaamivaaqab0Gaey4kIipakmaapefabeWc baGaamivaaqab0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaadAhadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiMcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGc caWGKbGaam4CamaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaaba GaamyAaaqaaiaaikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqd cqGHRiI8aOWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOGaamOyam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigda aeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaam ODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaO GaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkaaa@702C@

+ i 2 T s t b 2 ( s 1 , s 2 ) v 2 ( s 2 )d s 1 d s 2 + 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaqacaqaamaalaaabaGaam yAaaqaaiaaikdaaaWaa8quaeqaleaacaWGubaabeqdcqGHRiI8aOWa a8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBa aaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamODam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikda aeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaam izaiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaa dkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohada WgaaWcbaGaaGOmaaqabaaakiaawMcaaiaai6caaaa@68B7@

Тогда

δ p ψ ε 2 ( v 2 iχ(s,t)) δ v 2 (τ) | v 2 =0 =exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabes7aKnaaBaaaleaaca WGWbaabeaakiabeI8a5naaBaaaleaacqaH1oqzdaWgaaqaaiaaikda aeqaaaqabaGccaaIOaGaamODamaaBaaaleaacaaIYaaabeaakiabgk HiTiaadMgacqaHhpWycaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaa iMcaaeaacqaH0oazcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai abes8a0jaaiMcaaaGaaGiFamaaBaaaleaacaWG2bWaaSbaaeaacaaI YaaabeaacaaI9aGaaGimaaqabaGccaaI9aGaciyzaiaacIhacaGGWb WaaeWaaeaadaWdXbqabSqaaiaadohaaeaacaWG0baaniabgUIiYdGc caWGfbGaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiIcacq aHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWCcqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey 4kIipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaa dkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHxdaTaaa@7EB3@

× iE[ ε 2 (τ)] T b 2 ( s 1 ,τ) v 2 ( s 1 )d s 1 + i 2 s t b 2 (τ, s 2 )d s 2 + i 2 s t b 2 ( s 1 ,τ)d s 1 | v 2 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaWadaqaaiaadMgacaWGfb GaaG4waiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiIcacqaHepaD caaIPaGaaGyxaiabgkHiTmaapefabeWcbaGaamivaaqab0Gaey4kIi pakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaa leaacaaIXaaabeaakiaaiYcacqaHepaDcaaIPaGaamODamaaBaaale aacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGa aGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaS aaaeaacaWGPbaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG 0baaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikai abes8a0jaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa dsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaaca WGPbaabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacaWG0baaniab gUIiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohada WgaaWcbaGaaGymaaqabaGccaaISaGaeqiXdqNaaGykaiaadsgacaWG ZbWaaSbaaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaGaaGiFamaaBa aaleaacaWG2bWaaSbaaeaacaaIYaaabeaacaaI9aGaaGimaaqabaGc caaIUaaaaa@7B14@

Учитывая, что функция b 2 ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4Camaa BaaaleaacaaIYaaabeaakiaaiMcaaaa@3988@  симметрична, окончательно получаем выражение

exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 iE[ ε 2 (τ)]+i s t b 2 (τ, s 2 )d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchadaqadaqaam aapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweacaaI BbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabeo8aZjaaiM cacaaIDbGaamizaiabeo8aZjabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOWaa8 qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaa leaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamizaiaa dohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaaca aIYaaabeaaaOGaayjkaiaawMcaamaadmaabaGaamyAaiaadweacaaI BbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiabes8a0jaaiM cacaaIDbGaey4kaSIaamyAamaapehabeWcbaGaam4Caaqaaiaadsha a0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq iXdqNaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamiz aiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacaaIUa aaaa@7AC8@

Характеристический функционал ψ ε 1 (ξχ(s,t)A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiMcaaaa@40E6@  для гауссовского процесса имеет вид

ψ ε 1 (ξχ(s,t)A)=exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaeqyTdu2aaS baaeaacaaIXaaabeaaaeqaaOGaaGikaiabgkHiTiabe67a4jabeE8a JjaaiIcacaWGZbGaaGilaiaadshacaaIPaGaamyqaiaaiMcacaaI9a GaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3a a8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiU facqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGyk aiaai2facaWGbbGaamizaiabeo8aZjabgkHiTmaalaaabaGaaGymaa qaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8qCaeqa leaacaWGZbaabaGaamiDaaqdcqGHRiI8aOWaa8qCaeqaleaacaWGZb aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohada WgaaWcbaGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOm aaaakiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaado hadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@77AC@

Подставляя эти выражения в (25), получаем формулу (30).

Теорема 16. Пусть в задачe (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) b Т (τ,z)]=exp t 0 t E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadkgadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2daciGGLb GaaiiEaiaacchadaqadaqaamaapehabeWcbaGaamiDamaaBaaabaGa aGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1o qzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CaiaaiMcacaaIDbGa aGjcVlaadsgacaWGZbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa aadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsha a0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqaba aabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIYaaabeaa kiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohada WgaaWcbaGaaGOmaaqabaGccaaIPaGaamizaiaadohadaWgaaWcbaGa aGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiabgEna0caa@71E6@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Ads 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(τ,z)]E[ y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaIYaaaaOWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniab gUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaai aadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaaGc caWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGa amyraiaaiUfacaWGIbGaaGikaiabes8a0jaaiYcacaWG6bGaaGykai aai2facqGHxiIkcaWGfbGaaG4waiaadMhadaqhaaWcbaGaaGimaaqa aiaabkcbaaGccaaIOaGaamOEaiaaiMcacaaIDbGaey4kaScaaa@8363@

+ t 0 t exp s t E[ ε 2 (σ)]dσ+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaaceaabaGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadohaaeaaca WG0baaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWCcq GHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaam4C aaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqaaiaads haa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa am4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaai aaikdaaeqaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqa aOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacqGHxdaTaiaawUhaaaaa@6780@

× F ξ 1 exp iξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z) b Т (τ,z)] ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaaiabgEna0kaadAeadaqhaa WcbaGaeqOVdGhabaGaeyOeI0IaaGymaaaakmaabmaabaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsislcaWGPbGaeqOVdG3aa8qCaeqale aacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqz daWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2faca WGbbGaaGjcVlaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaigdaaeaa caaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWcba Gaam4Caaqaaiaadshaa0Gaey4kIipakmaapehabeWcbaGaam4Caaqa aiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaaqabaGcca aIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSba aSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaaiaaikdaaa GccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsgacaWGZbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4fIOIaamyraiaaiUfacaWGIbGaaGikaiaadohacaaISaGaamOE aiaaiMcacaWGIbWaaWbaaSqabeaacaqGIqaaaOGaaGikaiabes8a0j aaiYcacaWG6bGaaGykaiaai2faaiaaw2haaiaadsgacaWGZbaaaa@82C8@

является смешанной моментной функций решения этой задачи.

Теорема 16 доказывается по аналогии с предыдущей теоремой.

Теорема 17. Пусть в задаче (1), (2) случайные процессы ε1, ε2 и заданы характеристическими функционалами (28) и не зависят от случайного процесса b. Тогда

E[y(t,z) y Т (τ,z)]= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4waiaadMhacaaIOaGaam iDaiaaiYcacaWG6bGaaGykaiaadMhadaahaaWcbeqaaiaabkcbaaGc caaIOaGaeqiXdqNaaGilaiaadQhacaaIPaGaaGyxaiaai2daaaa@40EC@

=exp t 0 t E[ ε 2 (s)]ds+ t 0 τ E[ ε 2 (s)]ds+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 t 0 τ t 0 τ b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaciyzaiaacIhacaGGWbWaae WaaeaadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaa dshaa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaey4k aSYaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHep aDa0Gaey4kIipakiaadweacaaIBbGaeqyTdu2aaSbaaSqaaiaaikda aeqaaOGaaGikaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaadshadaWg aaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGa amOyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Cam aaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacq aHepaDa0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGim aaqabaaabaGaeqiXdqhaniabgUIiYdGccaWGIbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaISaGa am4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaWGKbGaam4CamaaBa aaleaacaaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqa aaGccaGLOaGaayzkaaGaey41aqlaaa@8E53@

× F ξ 1 exp iξ t 0 t E[ ε 1 (s)]Adsiξ t 0 τ E[ ε 1 (s)]Ads MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CaiaaiM cacaaIDbGaamyqaiaayIW7caWGKbGaam4CaiabgkHiTiaadMgacqaH +oaEdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes 8a0bqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGym aaqabaGccaaIOaGaam4CaiaaiMcacaaIDbGaamyqaiaayIW7caWGKb Gaam4CaiabgkHiTaGaayjkaaaacaGLOaaaaaa@67A9@

1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 1 2 ξ 2 t 0 τ t 0 τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[ y 0 (z) y 0 Т (z)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaamaabiaabaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaacqaH+oaEdaahaaWcbeqaaiaaikda aaGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaads haa0Gaey4kIipakmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqa baaabaGaamiDaaqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabe aakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadoha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaG OmaaaakiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaa dohadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaaigdaae aacaaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabes8a 0bqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiIcaca WGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGa aGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOmaaaakiaads gacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWc baGaaGOmaaqabaaakiaawMcaaaGaayzkaaGaey4fIOIaamyraiaaiU facaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadQhacaaIPaGa amyEamaaDaaaleaacaaIWaaabaGaaeOieaaakiaaiIcacaWG6bGaaG ykaiaai2facqGHRaWkaaa@803E@

+ t 0 τ exp t 0 t E[ ε 2 (σ)]dσ+ s τ E[ ε 2 (σ)]dσ+ 1 2 t 0 t t 0 t b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 s τ s τ b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOWaaiqaaeaa ciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGaamiDamaaBa aabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykai aai2facaWGKbGaeq4WdmNaey4kaSYaa8qCaeqaleaacaWGZbaabaGa eqiXdqhaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaaca aIYaaabeaakiaaiIcacqaHdpWCcaaIPaGaaGyxaiaadsgacqaHdpWC cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOWaa8qC aeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baaniabgU IiYdGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWg aaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabe aakiaaiMcacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsga caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaaIXa aabaGaaGOmaaaadaWdXbqabSqaaiaadohaaeaacqaHepaDa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiabes8a0bqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgEna0cGaay5Eaa aaaa@962D@

× F ξ 1 exp iξ t 0 t E[ ε 1 (σ)]Adσiξ s τ E[ ε 1 (σ)]Adσ 1 2 ξ 2 t 0 t t 0 t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyraiaa iUfacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4WdmNaaG ykaiaai2facaWGbbGaaGjcVlaadsgacqaHdpWCcqGHsislcaWGPbGa eqOVdG3aa8qCaeqaleaacaWGZbaabaGaeqiXdqhaniabgUIiYdGcca WGfbGaaG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacqaH dpWCcaaIPaGaaGyxaiaadgeacaaMi8Uaamizaiabeo8aZjabgkHiTm aalaaabaGaaGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaSqabeaacaaI YaaaaOWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaaca WG0baaniabgUIiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicda aeqaaaqaaiaadshaa0Gaey4kIipakiaadkgadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG ZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadgeadaahaaWcbeqaai aaikdaaaGccaWGKbGaam4CamaaBaaaleaacaaIXaaabeaakiaadsga caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0cacaGLOaaaaiaawI caaaaa@88C9@

1 2 ξ 2 s τ s τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)]E[ y 0 (z)] ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiabes8a0bqdcqGHRi I8aOWaa8qCaeqaleaacaWGZbaabaGaeqiXdqhaniabgUIiYdGccaWG IbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG ymaaqabaGccaaISaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMca caWGbbWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadohadaWgaaWcba GaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabeaaaOGa ayzkaaaacaGLPaaacaWGfbGaaG4waiaadkgacaaIOaGaam4CaiaaiY cacaWG6bGaaGykaiaai2facqGHxiIkcaWGfbGaaG4waiaadMhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaamOEaiaaiMcacaaIDbaacaGL9b aacaWGKbGaam4CaiabgUcaRaaa@6547@

+ t 0 t exp t 0 τ E[ ε 2 (σ)]dσ+ s t E[ ε 2 (σ)]dσ+ 1 2 t 0 τ t 0 τ b 2 ( s 1 , s 2 )d s 1 d s 2 + 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaaceaabaGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaaiaadshadaWgaa qaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOGaamyraiaaiUfa cqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4WdmNaaGykai aai2facaWGKbGaeq4WdmNaey4kaSYaa8qCaeqaleaacaWGZbaabaGa amiDaaqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaG OmaaqabaGccaaIOaGaeq4WdmNaaGykaiaai2facaWGKbGaeq4WdmNa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaads hadaWgaaqaaiaaicdaaeqaaaqaaiabes8a0bqdcqGHRiI8aOWaa8qC aeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqaHepaDa0Gaey 4kIipakiaadkgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4Camaa BaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamiz aiaadohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaaaamaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadk gadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykai aadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHxdaTaiaawUhaaa aa@9561@

× F ξ 1 exp iξ t 0 τ E[ ε 1 (σ)]Adσiξ s t E[ ε 1 (σ)]Adσ 1 2 ξ 2 t 0 τ t 0 τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaWGgbWaa0baaSqaaiabe6 7a4bqaaiabgkHiTiaaigdaaaGcdaqabaqaaiGacwgacaGG4bGaaiiC amaabeaabaGaeyOeI0IaamyAaiabe67a4naapehabeWcbaGaamiDam aaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYdGccaWGfbGa aG4waiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiIcacqaHdpWCca aIPaGaaGyxaiaadgeacaWGKbGaeq4WdmNaeyOeI0IaamyAaiabe67a 4naapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadweaca aIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGikaiabeo8aZjaa iMcacaaIDbGaamyqaiaadsgacqaHdpWCcqGHsisldaWcaaqaaiaaig daaeaacaaIYaaaaiabe67a4naaCaaaleqabaGaaGOmaaaakmaapeha beWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgU IiYdGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiab es8a0bqdcqGHRiI8aOGaamOyamaaBaaaleaacaaIXaaabeaakiaaiI cacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadohadaWgaaWc baGaaGOmaaqabaGccaaIPaGaamyqamaaCaaaleqabaGaaGOmaaaaki aadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWg aaWcbaGaaGOmaaqabaGccqGHsislaiaawIcaaaGaayjkaaaaaa@873F@

1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z)]E[ y 0 (z)] ds+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIi pakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadkga daWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXa aabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa dgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4CamaaBaaaleaaca aIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGL PaaaaiaawMcaaiaadweacaaIBbGaamOyaiaaiIcacaWGZbGaaGilai aadQhacaaIPaGaaGyxaiabgEHiQiaadweacaaIBbGaamyEamaaBaaa leaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaiaai2faaiaaw2haai aadsgacaWGZbGaey4kaScaaa@63AF@

+ t 0 t t 0 τ exp σ τ E[ ε 2 ( s 2 )]d s 2 + s t E[ ε 2 ( s 2 )]d s 2 + 1 2 σ τ σ τ b 2 ( s 1 , s 2 )d s 1 d s 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaadshada Wgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaapehabeWc baGaamiDamaaBaaabaGaaGimaaqabaaabaGaeqiXdqhaniabgUIiYd GcdaGabaqaaiGacwgacaGG4bGaaiiCamaabeaabaWaa8qCaeqaleaa cqaHdpWCaeaacqaHepaDa0Gaey4kIipakiaadweacaaIBbGaeqyTdu 2aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGOm aaqabaGccaaIPaGaaGyxaiaadsgacaWGZbWaaSbaaSqaaiaaikdaae qaaOGaey4kaSYaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8 aOGaamyraiaaiUfacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIOa Gaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIDbGaamizaiaa dohadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaaigdaae aacaaIYaaaamaapehabeWcbaGaeq4WdmhabaGaeqiXdqhaniabgUIi YdGcdaWdXbqabSqaaiabeo8aZbqaaiabes8a0bqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaakiabgUcaRaGaayjkaaaacaGL7baaaaa@8140@

+ 1 2 s t s t b 2 ( s 1 , s 2 )d s 1 d s 2 F ξ 1 exp iξ σ τ E[ ε 1 ( s 1 )]Ad s 1 iξ s t E[ ε 1 ( s 1 )]Ad s 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqacaqaaiabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGH RiI8aOWaa8qCaeqaleaacaWGZbaabaGaamiDaaqdcqGHRiI8aOGaam OyamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGKbGaam4Camaa BaaaleaacaaIYaaabeaaaOGaayzkaaGaamOramaaDaaaleaacqaH+o aEaeaacqGHsislcaaIXaaaaOWaaeqaaeaaciGGLbGaaiiEaiaaccha daqabaqaaiabgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiabeo8aZb qaaiabes8a0bqdcqGHRiI8aOGaamyraiaaiUfacqaH1oqzdaWgaaWc baGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaaki aaiMcacaaIDbGaamyqaiaayIW7caWGKbGaam4CamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadMgacqaH+oaEdaWdXbqabSqaaiaadohaae aacaWG0baaniabgUIiYdGccaWGfbGaaG4waiabew7aLnaaBaaaleaa caaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaG ykaiaai2facaWGbbGaaGjcVlaadsgacaWGZbWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0cacaGLOaaaaiaawIcaaaaa@81D0@

1 2 ξ 2 σ τ σ τ b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 1 2 ξ 2 s t s t b 1 ( s 1 , s 2 ) A 2 d s 1 d s 2 E[b(s,z) b Т (σ,z)] dσds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGacaqaamaabiaabaWaaeGaaeaacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaaleqa baGaaGOmaaaakmaapehabeWcbaGaeq4WdmhabaGaeqiXdqhaniabgU IiYdGcdaWdXbqabSqaaiabeo8aZbqaaiabes8a0bqdcqGHRiI8aOGa amOyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGZbWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadohadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaamyqamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGZbWaaSbaaS qaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGc cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabe67a4naaCaaale qabaGaaGOmaaaakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4k IipakmaapehabeWcbaGaam4Caaqaaiaadshaa0Gaey4kIipakiaadk gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam4CamaaBaaaleaacaaI XaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGykai aadgeadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4CamaaBaaaleaa caaIXaaabeaakiaadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGcca GLPaaaaiaawMcaaiabgEHiQiaadweacaaIBbGaamOyaiaaiIcacaWG ZbGaaGilaiaadQhacaaIPaGaamOyamaaCaaaleqabaGaaeOieaaaki aaiIcacqaHdpWCcaaISaGaamOEaiaaiMcacaaIDbaacaGL9baacaWG KbGaeq4WdmNaamizaiaadohaaaa@857B@

является второй моментной функцией решения этой задачи.

×

Об авторах

Лариса Юрьевна Кабанцова

Воронежский государственный университет

Автор, ответственный за переписку.
Email: dljuv@yandex.ru
Россия, Воронеж

Список литературы

  1. Задорожний В. Г. Методы вариационного анализа. — М.—Ижевск: РХД, 2006.
  2. Задорожний В. Г., Кабанцова Л. Ю. О решении линейных систем дифференциальных уравнений в частных производных первого порядка// Совр. мат. Фундам. напр. — 2021. — 67, № 3. — С. 549–563.
  3. Задорожний В. Г., Коновалова М. А. Мультипликативно возмущенное случайным шумом дифференциальное уравнение в банаховом пространстве// Совр. мат. Фундам. напр. — 2017. — 63, № 4. — С. 599–614.
  4. Задорожний В. Г., Тихомиров Г. С. О системе дифференциальных уравнений со случайными параметрами// Совр. мат. Фундам. напр. — 2022. — 68, № 4. — С. 621–634.
  5. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 2. — М.: Наука, 1970.
  6. Шилов Г. Е. Математический анализ. Второй специальный курс. — М.: Физматлит, 1965.
  7. Zadorozhniy V. G., Semenov M. E., Selavesyuk N. T., Ulshin I. I., Nozhkin V. S. Statistical characteristics of solutions of the system of the stochastic transfer model// Math. Mod. Comp. Simul. — 2021. — 13, № 1. — P. 11–25.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кабанцова Л.Ю., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».