Asymptotic problem of restoring the high-frequency right-hand side of the telegraph equation

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider the Cauchy problem for the telegraph equation. The lower coefficient and the right-hand side of the equation oscillate in time with a high frequency, the amplitude of the lower coefficient is small, namely, is inversely proportional to the frequency, and the right-hand side is unknown. We examine the problem on the recovery of the right-hand side from the three-term asymptotics of the solution given at some point in space. For this purpose, we use a nonclassical algorithm for solving inverse coefficient problems with rapidly oscillating data.

Full Text

1. Введение

В работе рассматривается задача Коши для телеграфного уравнения. Младший коэффициент и правая часть уравнения осциллируют по времени с большой частотой ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C4@ , причём амплитуда младшего коэффициента мала — пропорциональна ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , а правая часть не известна. (Термин « телеграфное уравнение»  в данной работе можно заменить на «волновое уравнение с малым младшим членом».) Исследован вопрос о её восстановлении по заданной в некоторой точке пространства трёхчленной асимптотике решения (на самом деле, непосредственно задаётся принципиально меньше MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ подробнее об этом сказано в последнем абзаце введения). При решении задачи используется неклассический алгоритм решения обратных коэффициентных задач с быстро осциллирующими по времени данными (см. [1, 2, 10, 13, 14]).

В настоящее время теория обратных задач (включая задачу о восстановлении источника) разработана с большой полнотой (см., например, [3–6, 11, 15]). Однако задачи с быстро осциллирующими данными в классической теории не рассматривались. Вместе с тем обратные задачи для уравнений такого типа часто встречаются при математическом моделировании физических, химических и иных процессов, протекающих в средах с неизвестными характеристиками, подверженных высокочастотному воздействию электромагнитных, акустических, вибрационных и т. п. полей. Укажем некоторые примеры таких уравнений: уравнение теплопроводности для стержня, через который пропускается высокочастотный электрический ток, вследствие чего в стержне образуются высокочастотные тепловые источники; волновое уравнение, описывающее колебания стержня под действием высокочастотных внешних сил (вспомним знаменитую задачу В. Н. Челомея о высокочастотных сжатиях —  растяжениях стержня, стабилизирующих его прямолинейную форму); уравнение переноса вещества в несжимаемой жидкости при наличии высокочастотных источников; уравнения тепловой конвекции жидкости в сосуде при его высокочастотных вибрациях (см [7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 9,12]) и др.

В работах [1, 2, 10, 13, 14] и в данной работе используется новый подход к постановке и решению обратных коэффициентных высокочастотных задач, лежащий на стыке двух дисциплин  асимптотические методы и обратные задачи. В связи с этим решение обратной задачи разбито там на две части (этапы), относящиеся к соответствующим дисциплинам, и нужно следить за согласованностью (например, в смысле гладкости функций) указанных частей. В этих работах исследуются обратные задачи для эволюционных уравнений с неизвестным быстро осциллирующим источником (в [1, 2, 10, 13, 14] —  начально-краевые задачи; в данной работе —  задача Коши). Подчеркнём в заключение, что специфика используемого подхода к постановке обратной задачи состоит в следующем: здесь в условии переопределения участвует не точное решение, как в классике, а лишь его частичная асимптотика, длина которой вычисляется на первом этапе решения обратной задачи; при этом необходимая для условия переопределения информация задаётся не для всех коэффициентов этой асимптотики, а лишь для некоторых « базисных» (нужные сведения для остальных коэффициентов однозначно определяются из « базисных» ). Так, в данной работе в постановке обратной задачи (в условии переопределения) участвуют коэффициенты трёхчленной асимптотики, вычисленные в фиксированной точке пространства —  это функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@ , ϕ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaaaaa@3A1D@  и ψ(t)+χ(t,ωt) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadshacaaIPaGaey4kaSIaeq4XdmMaaGikaiaadshacaaISaGa eqyYdCNaamiDaiaaiMcaaaa@4296@ , но непосредственно задаются лишь функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@  и χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ . Поставленная обратная задача при этом однозначно разрешима.

2. Построение асимптотики

Пусть T>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@3852@ , Π={(x,t):x,t[0,T]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdaLaaG ypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiQdacaWG 4bGaeyicI4SaeSyhHeQaaGilaiaaysW7caWG0bGaeyicI4SaaG4wai aaicdacaaISaGaamivaiaai2facaaI9baaaa@4BE3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ полоса, Ω={(x,t,τ):(x,t)Π,τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG ypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaa iMcacaaI6aGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcq qHGoaucaaISaGaaGjbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4o aiabg6HiLkaaiMcacaaI9baaaa@52CF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ бесконечный прямоугольный параллелепипед. На множестве Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  рассмотрим задачу Коши с большим параметром ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C4@  вида:

u tt (x,t) u xx (x,t)+ 1 ω a(x,t,ωt)u(x,t)=f(x,t,ωt)u(x,t )| t=0 =0 u t (x,t )| t=0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiabgkHiTiaadwhadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigda aeaacqaHjpWDaaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqyYdCNaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqyYdCNaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGcca aI9aGaaGimaiaadwhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYhadaWgaaWcbaGaamiDaiaai2daca aIWaaabeaakiaai2dacaaIWaaaaa@753C@ . (1)

Здесь f(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D6E@  и a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ вещественные функции, определённые и непрерывные на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодические по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Символом F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AD3@  обозначим среднее функции f(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D6E@  по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ :

F(x,t)=f(x,t,τ) 1 2π 0 2π f(x,t,τ)dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadAgacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8cq GHHjIUdaWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaapehabeWc baGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaadAgacaaIOa GaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaWGKbGaeqiX dqNaaGOlaaaa@5C25@

(Всюду в работе среднее вычисляется по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , τ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ypaiabeM8a3jaadshaaaa@3B49@  ). Пусть функция F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AD3@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Введём в рассмотрение функцию ϕ(x,t,τ)=f(x,t,τ)F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGypaiaa dAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacq GHsislcaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4C52@  и будем предполагать, что она непрерывна на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и вместе с производной по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  дифференцируема по (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  вплоть до 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B5@  -го порядка и все указанные производные непрерывны в Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ . Символом A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACE@  обозначим среднее функции a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@  по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ :

A(x,t)=a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadggacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8aa a@468A@

и предположим, что функция A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACE@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Далее введём в рассмотрение функцию b(x,t,τ)=a(x,t,τ)A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG HbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4B67@  и предположим, что она три раза непрерывно дифференцируема по совокупности переменных (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@ , причём все эти производные непрерывны на Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ .

Пусть u ω (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca aaa@3D05@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решение задачи (1). Его асимптотику можно строить в виде ряда:

u ω (x,t) u 0 (x,t)+ 1 ω u 1 (x,t)+ 1 ω 2 ( u 2 (x,t)+ v 2 (x,t,ωt))++ 1 ω k ( u k (x,t)+ v k (x,t,ωt))+, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca rqqr1ngBPrgifHhDYfgaiuaacqWF8iIocaWG1bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWc aaqaaiaaigdaaeaacqaHjpWDaaGaamyDamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYaaSaaaeaa caaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiIcaca WG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaISaGaamiDaiaaiYcacqaHjpWDcaWG0bGaaGykaiaaiMca cqGHRaWkcqWIMaYscqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDda ahaaWcbeqaaiaadUgaaaaaaOGaaGikaiaadwhadaWgaaWcbaGaam4A aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadA hadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGilaiabeM8a3jaadshacaaIPaGaaGykaiabgUcaRiablAciljaaiY caaaa@83DF@                           (2)

где функции u k (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C28@  и v k (x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaaaa@3EA4@  определены и непрерывны в Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  соответственно, а также дважды непрерывно дифференцируемы по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и по (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads hacaaISaGaeqiXdqNaaGykaaaa@3AD0@ , причём v k (x,t,τ)2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiabgkHiTiaaikdacqaHapaCaaa@420A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодические по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  с нулевым средним:

v k (x,t,τ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam ODamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaISaGaeqiXdqNaaGykaiabgQYiXlaai2dacaaIWaGaaGOlaaaa@4460@

Для формулировки теоремы определим два типа линейных однозначно разрешимых задач. К первому отнесём задачу для обыкновенного дифференциального уравнения второго порядка следующего вида:

2 s(x,t,τ) τ 2 =ψ(x,t,τ),s(x,t,τ+2π)=s(x,t,τ),s(x,t,τ)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGZbGaaGikaiaadIhacaaI SaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaeqiXdq3aaW baaSqabeaacaaIYaaaaaaakiaai2dacqaHipqEcaaIOaGaamiEaiaa iYcacaWG0bGaaGilaiabes8a0jaaiMcacaaISaGaam4CaiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaey4kaSIaaGOmaiabec8a WjaaiMcacaaI9aGaam4CaiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaiaaiYcacqGHPms4caWGZbGaaGikaiaadIhacaaI SaGaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGypaiaaicdaca aISaaaaa@6EF7@ , (3)

где ψ(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaaaa@3E51@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ определённая и непрерывная на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  функция, 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ периодическая по τ[0;) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI4SaaG4waiaaicdacaaI7aGaeyOhIuQaaGykaaaa@3DC8@  с нулевым средним. Как известно, решение задачи (3) имеет вид

sx,t,τ0τ0zψx,t,sds0τψx,t,sdsdz0τ0zψx,t,sds0τψx,t,sdsdz

Ко второму типу отнесём задачу Коши для волнового уравнения второго порядка в полосе (x,t)Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHiiIZcqqHGoauaaa@3D0A@  вида

uttx,tuxxx,tgx,tux,ttaxutx,ttbx  (4)

где функции g(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF4@  и a(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGykaaaa@393F@ , b(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGykaaaa@3940@  определены и непрерывны в полосе Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и на MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3767@  соответственно, причём g(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF4@  и b(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGykaaaa@3940@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ непрерывно дифференцируемы по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и g x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWG4baabeaaaaa@380C@  непрерывна в Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@ , а a(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGykaaaa@393F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дважды непрерывно дифференцируема. Решение задачи (4), как известно, выражается формулой Даламбера:

u(x,t)= 1 2 (a(xt)+a(x+t))+ 1 2 xt x+t b(ξ)dξ+ 1 2 0 t ds x(ts) x+(ts) g(ξ,s)dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaikdaaaGaaGikaiaadggacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaey4kaSIaamiDaiaaiMca caaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabS qaaiaadIhacqGHsislcaWG0baabaGaamiEaiabgUcaRiaadshaa0Ga ey4kIipakiaadkgacaaIOaGaeqOVdGNaaGykaiaadsgacqaH+oaEcq GHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaadsgacaWGZbWaa8qCaeqaleaaca WG4bGaeyOeI0IaaGikaiaadshacqGHsislcaWGZbGaaGykaaqaaiaa dIhacqGHRaWkcaaIOaGaamiDaiabgkHiTiaadohacaaIPaaaniabgU IiYdGccaWGNbGaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaadsga cqaH+oaEcaaIUaaaaa@7B95@

Для любого положительного числа M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C9@  определим прямоугольник Π M ={(x,t):|x|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaad2eaaeqaaOGaaGypaiaaiUhacaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaaiQdacaaI8bGaamiEaiaaiYhacqGHKjYOcaWGnb aaaa@44AE@ , t[0;T]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaG4oaiaadsfacaaIDbGaaGyFaaaa@3D9F@ , а также введём в рассмотрение (k+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacqGHRaWkcaaIXaGaaGykaaaa@39E9@  =членную, k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdaaaa@39DB@ , асимптотику решения задачи (1) (см. (2)):

u ω k (x,t)= u 0 (x,t)+ 1 ω u 1 (x,t)++ 1 ω k ( u k (x,t)+ v k (x,t,ωt)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaaabeqaaiaadUgaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaai2dacaWG1bWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkdaWc aaqaaiaaigdaaeaacqaHjpWDaaGaamyDamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaeSOjGSKa ey4kaSYaaSaaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaWGRb aaaaaakiaaiIcacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaadU gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHjpWDcaWG 0bGaaGykaiaaiMcacaaIUaaaaa@67EE@

Теорема 1.  Для каждого M>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@384B@  справедлива асимптотическая формула

u ω (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWG1bWaa0baaS qaaiabeM8a3bqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaaba GaamytaaqabaGaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWD daahaaWcbeqaaiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cq aHjpWDcqGHsgIRcqGHEisPcaaISaaaaa@6038@

где u n (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3C2B@ , n=0,1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaaaa@3B4E@ , и v 2 (x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaaaa@3E70@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решения задач типа (4) и (3) соответственно.

Доказательство. Подставим формально ряд (2) в уравнения (1):

null

В каждом из этих трёх последних равенств поочерёдно приравняем коэффициенты при степенях ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIWaaaaaaa@38AB@ , ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIYaaaaaaa@399A@ , ω 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIZaaaaaaa@399B@ , а затем применим к полученным уравнениям операцию усреднения. В результате придём к следующему набору задач:

2 u 0 (x,t) t 2 2 u 0 (x,t) x 2 =F(x,t), u 0 (x,t )| t=0 =0, u 0 (x,t) t t=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiaadA eacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaeaacaWG1bWa aSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGccaaI9aGa aGimaiaaiYcaaeaadaabcaqaamaalaaabaGaeyOaIyRaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaaleaacaWG0bGaaGypai aaicdaaeqaaOGaaGypaiaaicdacaaI7aaaaaaa@7100@ (5)

2 v 2 (x,t,τ) τ 2 =ϕ(x,t,τ), v 2 (x,t,τ+2π)= v 2 (x,t,τ), v 2 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qabeWabaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaeqiXdq3aaWbaaSqa beaacaaIYaaaaaaakiaai2dacqaHvpGzcaaIOaGaamiEaiaaiYcaca WG0bGaaGilaiabes8a0jaaiMcacaaISaaabaGaamODamaaBaaaleaa caaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdq Naey4kaSIaaGOmaiabec8aWjaaiMcacaaI9aGaamODamaaBaaaleaa caaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdq NaaGykaiaaiYcaaeaacqGHPms4caWG2bWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OkJeVaaGypaiaaicdacaaI7aaaaaGaay5Eaaaaaa@73FD@    (6)

2 u 1 (x,t) t 2 2 u 1 (x,t) x 2 =A(x,t) u 0 (x,t), u 1 (x,t )| t=0 =0, u 1 (x,t) t t=0 + v 2 (x,t,τ) τ t,τ=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaG imaaqabaGccaaI9aGaaGimaiaaiYcaaeaadaabcaqaamaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaa leaacaWG0bGaaGypaiaaicdaaeqaaOGaey4kaSYaaqGaaeaadaWcaa qaaiabgkGi2kaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcaaeaacqGHciITcqaHep aDaaaacaGLiWoadaWgaaWcbaGaamiDaiaaiYcacqaHepaDcaaI9aGa aGimaaqabaGccaaI9aGaaGimaiaaiUdaaaGaay5Eaaaaaa@8DB7@ (7)

2 v 3 (x,t,τ) τ 2 =2 2 v 2 (x,t,τ) tτ b(x,t,τ) u 0 (x,t), v 3 (x,t,τ+2π)= v 3 (x,t,τ), v 3 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kabes8a0naaCaaaleqabaGaaGOm aaaaaaGccaaI9aGaeyOeI0IaaGOmamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaamODamaaBaaaleaacaaIYaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaqaaiabgkGi2k aadshacqGHciITcqaHepaDaaGaeyOeI0IaamOyaiaaiIcacaWG4bGa aGilaiaadshacaaISaGaeqiXdqNaaGykaiaadwhadaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaeaa caWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcqGHRaWkcaaIYaGaeqiWdaNaaGykaiaai2da caWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacqaHepaDcaaIPaGaaGilaaqaaiabgMYiHlaadAhadaWg aaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilai abes8a0jaaiMcacqGHQms8caaI9aGaaGimaiaaiUdaaaGaay5Eaaaa aa@8C16@ (8)

2 u 2 (x,t) t 2 2 u 2 (x,t) x 2 =A(x,t) u 1 (x,t), u 2 (x,t )| t=0 + v 2 (x,t,τ )| t,τ=0 =0, u 2 (x,t) t t=0 + v 2 (x,t,τ) t t,τ=0 + v 3 (x,t,τ) τ t,τ=0 =0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcaaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaG imaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGiFamaaBa aaleaacaWG0bGaaGilaiabes8a0jaai2dacaaIWaaabeaakiaai2da caaIWaGaaGilaaqaamaaeiaabaWaaSaaaeaacqGHciITcaWG1bWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca aeaacqGHciITcaWG0baaaaGaayjcSdWaaSbaaSqaaiaadshacaaI9a GaaGimaaqabaGccqGHRaWkdaabcaqaamaalaaabaGaeyOaIyRaamOD amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aISaGaeqiXdqNaaGykaaqaaiabgkGi2kaadshaaaaacaGLiWoadaWg aaWcbaGaamiDaiaaiYcacqaHepaDcaaI9aGaaGimaaqabaGccqGHRa WkdaabcaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaaIZaaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaa qaaiabgkGi2kabes8a0baaaiaawIa7amaaBaaaleaacaWG0bGaaGil aiabes8a0jaai2dacaaIWaaabeaakiaai2dacaaIWaGaaG4oaaaaca GL7baaaaa@B13A@ (9)

 

2 v 4 (x,t,τ) τ 2 = 2 v 2 (x,t,τ) x 2 2 v 2 (x,t,τ) t 2 2 2 v 3 (x,t,τ) tτ b(x,t,τ) u 1 (x,t), v 4 (x,t,τ+2π)= v 4 (x,t,τ), v 4 (x,t,τ)=0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaI0aaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kabes8a0naaCaaaleqabaGaaGOm aaaaaaGccaaI9aWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiEamaaCaaale qabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcaaeaacqGHciITcaWG 0bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaaikdadaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadAhadaWgaaWcbaGaaG4m aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiM caaeaacqGHciITcaWG0bGaeyOaIyRaeqiXdqhaaiabgkHiTiaadkga caaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaISaaabaGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaey4kaSIaaGOmaiabec8a WjaaiMcacaaI9aGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaaiYcaaeaacqGH Pms4caWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGypaiaaicdacaaI 7aaaaiaawUhaaaaa@A975@    (10)

2 u 3 (x,t) t 2 2 u 3 (x,t) x 2 =A(x,t) u 2 (x,t)b(x,t,τ) v 2 (x,t,τ), u 3 (x,t )| t=0 + v 3 (x,t,τ )| t,τ=0 =0, u 3 (x,t) t t=0 + v 3 (x,t,τ) t t,τ=0 + v 4 (x,t,τ) τ t,τ=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHsisl daWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaa WcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGypaiabgk HiTiaadgeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai abgkHiTiabgMYiHlaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiabes8a0jaaiMcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaeyOkJeVaaGil aaqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaaIWaaa beaakiabgUcaRiaadAhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacaaI8bWaaSbaaSqa aiaadshacaaISaGaeqiXdqNaaGypaiaaicdaaeqaaOGaaGypaiaaic dacaaISaaabaWaaqGaaeaadaWcaaqaaiabgkGi2kaadwhadaWgaaWc baGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqaai abgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGaamiDaiaai2dacaaI WaaabeaakiabgUcaRmaaeiaabaWaaSaaaeaacqGHciITcaWG2bWaaS baaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiYca cqaHepaDcaaIPaaabaGaeyOaIyRaamiDaaaaaiaawIa7amaaBaaale aacaWG0bGaaGilaiabes8a0jaai2dacaaIWaaabeaakiabgUcaRmaa eiaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaaisdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGa eyOaIyRaeqiXdqhaaaGaayjcSdWaaSbaaSqaaiaadshacaaISaGaeq iXdqNaaGypaiaaicdaaeqaaOGaaGypaiaaicdacaaIUaaaaiaawUha aaaa@C591@ (11)

Положив

u ^ ω 3 (x,t)= u ω 3 (x,t)+ 1 ω 4 v 4 (x,t,ωt), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaace WG1bGbaKaadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaG4maaaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaxacabaGaamyDam aaBaaaleaacqaHjpWDaeqaaaqabeaacaaIZaaaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjp WDdaahaaWcbeqaaiaaisdaaaaaaOGaamODamaaBaaaleaacaaI0aaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGaeqyYdCNaamiDai aaiMcacaaISaaaaa@5581@

придём к задаче

u^ω3x,tttu^ω3x,txx+1ωax,t,ωtu^ω3x,tfx,t,ωt+zx,t,ωtu^ω3x,t|t=0=wxu^ω3x,tt|t=0=rx (12)

где функции z(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D82@ , w(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3955@  и r(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG4bGaaGykaaaa@3950@  имеют вид

z(x,t,τ)= 1 ω 3 ( 2 v 3 (x,t,τ) t 2 2 v 3 (x,t,τ) x 2 +2 2 v 4 (x,t,τ) tτ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dadaWc aaqaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaaiodaaaaaaOGaaG ikamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODamaa BaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISa GaeqiXdqNaaGykaaqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikda aaaaaOGaeyOeI0YaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiEamaaCaaale qabaGaaGOmaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOa IyRaamiDaiabgkGi2kabes8a0baacqGHRaWkaaa@72D0@

+[b(x,t,τ)+A(x,t)]( u 2 (x,t)+ v 2 (x,t,τ))A(x,t) u 2 (x,t)b(x,t,τ) v 2 (x,t,τ))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG 4waiaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaa iMcacqGHRaWkcaWGbbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIDbGaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgUcaRiaadAhadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMca caaIPaGaeyOeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaeyOeI0IaeyykJeUaamOyaiaaiIcacaWG4bGaaGilai aadshacaaISaGaeqiXdqNaaGykaiaadAhadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacq GHQms8caaIPaGaey4kaScaaa@7840@

+ 1 ω 4 ( 2 v 4 (x,t,τ) t 2 2 v 4 (x,t,τ) x 2 +[b(x,t,τ)+A(x,t)]( u 3 (x,t,τ)+ v 3 (x,t,τ)))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaI0aaaaaaakiaa iIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadAhada WgaaWcbaGaaGinaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiabes8a0jaaiMcaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYa aaaaaakiabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaamODamaaBaaaleaacaaI0aaabeaakiaaiIcacaWG4bGaaGilai aadshacaaISaGaeqiXdqNaaGykaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSIaaG4waiaadkgacaaIOaGaamiEai aaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHRaWkcaWGbbGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGikaiaadwhadaWgaa WcbaGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiab es8a0jaaiMcacqGHRaWkcaWG2bWaaSbaaSqaaiaaiodaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGykaiaa iMcacqGHRaWkaaa@7D1E@

+ 1 ω 5 [b(x,t,τ)+A(x,t)] v 4 (x,t,τ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaeqyYdC3aaWbaaSqabeaacaaI1aaaaaaakiaa iUfacaWGIbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDca aIPaGaey4kaSIaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGyxaiaadAhadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGilaiabes8a0jaaiMcacaaISaaaaa@5290@

w(x)= 1 ω 4 v 4 (x,0,0),r(x)= 1 ω 4 v 4 (x,t,τ) t t,τ=0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacqaHjpWDdaah aaWcbeqaaiaaisdaaaaaaOGaamODamaaBaaaleaacaaI0aaabeaaki aaiIcacaWG4bGaaGilaiaaicdacaaISaGaaGimaiaaiMcacaaISaGa aGzbVlaadkhacaaIOaGaamiEaiaaiMcacaaI9aWaaqGaaeaadaWcaa qaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaaisdaaaaaaOWaaSaa aeaacqGHciITcaWG2bWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaeyOaIyRaamiD aaaaaiaawIa7amaaBaaaleaacaWG0bGaaGilaiabes8a0jaai2daca aIWaaabeaakiaai6caaaa@6294@

Отсюда вытекают следующие асимптотические равенства:

z(x,t,τ)=O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG pbGaaGikaiabeM8a3naaCaaaleqabaGaeyOeI0IaaG4maaaakiaaiM cacaaISaGaaGzbVlabeM8a3jabgkziUkabg6HiLkaaiYcaaaa@4C55@ (13)

равномерно относительно (x,t,τ),(x,t,τ) Ω M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaaGilaiaaiIcacaWG 4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiabgIGiolabfM6axn aaBaaaleaacaWGnbaabeaaaaa@47D5@ , где Ω M ={(x,t,τ):(x,t) Π M ,τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaad2eaaeqaaOGaaGypaiaaiUhacaaIOaGaamiEaiaaiYca caWG0bGaaGilaiabes8a0jaaiMcacaaI6aGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHiiIZcqqHGoaudaWgaaWcbaGaamytaaqabaGc caaISaGaaGjbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4oaiabg6 HiLkaaiMcacaaI9baaaa@54DF@ ;

w(x)=O( ω 4 ),r(x)=O( ω 4 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dacaWGpbGaaGikaiabeM8a3naaCaaaleqa baGaeyOeI0IaaGinaaaakiaaiMcacaaISaGaaGzbVlaadkhacaaIOa GaamiEaiaaiMcacaaI9aGaam4taiaaiIcacqaHjpWDdaahaaWcbeqa aiabgkHiTiaaisdaaaGccaaIPaGaaGilaiaaywW7cqaHjpWDcqGHsg IRcqGHEisPcaaISaaaaa@5475@ (14)

равномерно относительно x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ , |x|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyizImQaamytaaaa@3B87@ .

Согласно неравенству треугольника

u ω (x,t) u ω 2 (x,t) C( Π M ) u ω (x,t) u ^ ω 3 (x,t) C( Π M ) + u ^ ω 3 (x,t) u ω 2 (x,t) C( Π M ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsisldaWfGaqaaiaadw hadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOa GaeuiOda1aaSbaaeaacaWGnbaabeaacaaIPaaabeaakiabgsMiJkab =vIiqjaadwhadaWgaaWcbaGaeqyYdChabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaeyOeI0YaaCbiaeaaceWG1bGbaKaadaWgaaWc baGaeqyYdChabeaaaeqabaGaaG4maaaakiaaiIcacaWG4bGaaGilai aadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeuiOda1a aSbaaeaacaWGnbaabeaacaaIPaaabeaakiabgUcaRiab=vIiqnaaxa cabaGabmyDayaajaWaaSbaaSqaaiabeM8a3bqabaaabeqaaiaaioda aaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTmaaxacaba GaamyDamaaBaaaleaacqaHjpWDaeqaaaqabeaacaaIYaaaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qai aaiIcacqqHGoaudaWgaaqaaiaad2eaaeqaaiaaiMcaaeqaaOGaaGOl aaaa@842B@ (15)

Оценим каждое из слагаемых правой части (29). Очевидно, что

u ^ ω 3 (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIa1aaCbiaeaaceWG1bGbaKaadaWgaaWcbaGa eqyYdChabeaaaeqabaGaaG4maaaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaeyOeI0YaaCbiaeaacaWG1bWaaSbaaSqaaiabeM8a3bqa baaabeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaabaGaamyt aaqabaGaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWDdaahaa WcbeqaaiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cqaHjpWD cqGHsgIRcqGHEisPcaaIUaaaaa@6182@   (16)

Разность v ω (x,t) u ω (x,t) u ^ ω 3 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca cqGHHjIUcaWG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiabgkHiTmaaxacabaGabmyDayaajaWaaSba aSqaaiabeM8a3bqabaaabeqaaiaaiodaaaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaaaa@4EE3@  представим следующим образом:

v ω (x,t)= 1 2 0 t ds x(ts) x+(ts) z(ξ,s)dξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacqaHjpWDaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabS qaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaam4Camaapeha beWcbaGaamiEaiabgkHiTiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiM caaeaacaWG4bGaey4kaSIaaGikaiaadshacqGHsislcaWGZbGaaGyk aaqdcqGHRiI8aOGaamOEaiaaiIcacqaH+oaEcaaISaGaam4CaiaaiM cacaWGKbGaeqOVdGNaeyOeI0caaa@5E7A@

1 2 (w(xt)+w(x+t)) 1 2 xt x+t r(ξ)dξ 1 2ω 0 t ds x(ts) x+(ts) a(ξ,s,ωs) v ω (ξ,s)dξ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaam4DaiaaiIcacaWG4bGa eyOeI0IaamiDaiaaiMcacqGHRaWkcaWG3bGaaGikaiaadIhacqGHRa WkcaWG0bGaaGykaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaI YaaaamaapehabeWcbaGaamiEaiabgkHiTiaadshaaeaacaWG4bGaey 4kaSIaamiDaaqdcqGHRiI8aOGaamOCaiaaiIcacqaH+oaEcaaIPaGa amizaiabe67a4jabgkHiTmaalaaabaGaaGymaaqaaiaaikdacqaHjp WDaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiz aiaadohadaWdXbqabSqaaiaadIhacqGHsislcaaIOaGaamiDaiabgk HiTiaadohacaaIPaaabaGaamiEaiabgUcaRiaaiIcacaWG0bGaeyOe I0Iaam4CaiaaiMcaa0Gaey4kIipakiaadggacaaIOaGaeqOVdGNaaG ilaiaadohacaaISaGaeqyYdCNaam4CaiaaiMcacaWG2bWaaSbaaSqa aiabeM8a3bqabaGccaaIOaGaeqOVdGNaaGilaiaadohacaaIPaGaam izaiabe67a4jaai6caaaa@8418@

Отсюда и из (13), (14) следует, что

v ω (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamODamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam 4qaiaaiIcacqqHGoaudaWgaaqaaiaad2eaaeqaaiaaiMcaaeqaaOGa aGypaiaad+eacaaIOaGaeqyYdC3aaWbaaSqabeaacqGHsislcaaIZa aaaOGaaGykaiaaiYcacaaMf8UaeqyYdCNaeyOKH4QaeyOhIuQaaGOl aaaa@5783@ (17)

Из (15) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  (17) при любом фиксированном M>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@384B@  получим:

u ω (x,t) u ω 2 (x,t) C( Π M ) =O( ω 3 ),ω. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaBaaaleaacqaHjpWDaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsisldaWfGaqaaiaadw hadaWgaaWcbaGaeqyYdChabeaaaeqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOa GaeuiOda1aaSbaaeaacaWGnbaabeaacaaIPaaabeaakiaai2dacaWG pbGaaGikaiabeM8a3naaCaaaleqabaGaeyOeI0IaaG4maaaakiaaiM cacaaISaGaaGzbVlabeM8a3jabgkziUkabg6HiLkaai6caaaa@6077@

Теорема 1 доказана.

3. Обратная задача

Пусть T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@ , Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ те же, что в пункте 2. В полосе Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  рассмотрим задачу Коши:

u tt (x,t) u xx (x,t)+ 1 ω a(x,t,ωt)u(x,t)=f(x,t)r(t,ωt), u(x,t )| t=0 =0, u t (x,t )| t=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiaadwhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaadIhaca WG4baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYa aSaaaeaacaaIXaaabaGaeqyYdChaaiaadggacaaIOaGaamiEaiaaiY cacaWG0bGaaGilaiabeM8a3jaadshacaaIPaGaamyDaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGypaiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadkhacaaIOaGaamiDaiaaiYcacqaHjpWDcaWG 0bGaaGykaiaacYcaaeaacaWG1bGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGccaaI 9aGaaGimaiaaiYcaaeaacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaadsha caaI9aGaaGimaaqabaGccaaI9aGaaGimaiaai6caaaGaay5Eaaaaaa@7BD1@ (18)

Относительно функций a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@ , f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF3@  и r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@  сделаем следующие предположения. Функция f(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3AF3@  определена на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  и вместе с производной по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  непрерывно дифференцируема по (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  вплоть до 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B5@  -го порядка. Функция a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaaaa@3D69@  определена и непрерывна на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  и 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодична по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Функция A(x,t)=a(x,t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiabgMYiHlaadggacaaI OaGaamiEaiaaiYcacaWG0bGaaGilaiabes8a0jaaiMcacqGHQms8aa a@468A@  непрерывна на Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOdafaaa@3775@  вместе с двумя производными по x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ . Функция b(x,t,τ)=a(x,t,τ)A(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiI cacaWG4bGaaGilaiaadshacaaISaGaeqiXdqNaaGykaiaai2dacaWG HbGaaGikaiaadIhacaaISaGaamiDaiaaiYcacqaHepaDcaaIPaGaey OeI0IaamyqaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4B67@  определена на множестве Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ , три раза непрерывно дифференцируема по совокупности переменных (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaaa@3A08@  и все эти производные непрерывны на Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@ . Функция r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@  определена и непрерывна на множестве Q={(t,τ):t[0,T],τ[0;)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2 dacaaI7bGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiaaiQdacaWG 0bGaeyicI4SaaG4waiaaicdacaaISaGaamivaiaai2facaaISaGaaG jbVlabes8a0jabgIGiolaaiUfacaaIWaGaaG4oaiabg6HiLkaaiMca caaI9baaaa@4FE3@  и 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодична по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ . Положим r(t,τ)= r 0 (t)+ r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcacaaI9aGaamOCamaaBaaaleaa caaIWaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadkhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaa aa@4876@ , где r 0 (t)=r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHPms4 caWGYbGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiabgQYiXdaa@4456@ . Пусть функция r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3C@  непрерывна на отрезке [0;T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaI7aGaamivaiaai2faaaa@3A1B@ , а r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca aaa@3CB8@  имеет на Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  непрерывные производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@  вплоть до четвертого порядка. Функцию r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ , удовлетворяющую указанным выше условиям, будем называть функцией класса (I). В этом пункте будем считать её неизвестной.

Пусть заданы следующие объекты: точка x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaaaaa@37DA@ , для которой f( x 0 ,t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa eyiyIKRaaGimaaaa@3E64@ , t[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C89@ ; функция q C 2 ([0;T]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIOaGaaG4waiaaicda caaI7aGaamivaiaai2facaaIPaaaaa@3FB5@  и удовлетворяющая условию q(0)= q (0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaaIWaGaaGykaiaai2daceWGXbGbauaacaaIOaGaaGimaiaaiMca caaI9aGaaGimaaaa@3E75@ ; функция χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ , непрерывная на множестве Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@ , 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabec 8aWbaa@3870@  =периодическая по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  с нулевым средним и дважды непрерывно дифференцируемая по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , причём χ τ 2 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4XdmMbau GbauaadaWgaaWcbaGaeqiXdq3aaWbaaeqabaGaaGOmaaaaaeqaaOGa aGikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3F77@  имеет непрерывные на Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@  вплоть до четвёртого порядка. Отметим следующий факт, который докажем позже: задача (5) с F=f r 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2 dacaWGMbGaamOCamaaBaaaleaacaaIWaaabeaaaaa@3A51@  при дополнительном условии u 0 ( x 0 ,t)=q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadshacaaIPaGaaGypaiaadghacaaIOaGaamiDaiaaiM caaaa@40FD@  имеет единственное решение r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3C@ . Теперь введём в рассмотрение ещё две функции

ϕ(t)= u ˜ 1 ( x 0 ,t),ψ(t)= u ˜ 2 ( x 0 ,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaGaaGypaiqadwhagaacamaaBaaaleaacaaIXaaa beaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaads hacaaIPaGaaGilaiaaywW7cqaHipqEcaaIOaGaamiDaiaaiMcacaaI 9aGabmyDayaaiaWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacaaISaaaaa@50C8@

где u ˜ 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaia WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@3C02@ , u ˜ 2 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaaia WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@3C03@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решения задач (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  (9), в которых положено

v 2 (x,t,τ)= f(x,t)χ(t,τ) f( x 0 ,t) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiaai2dadaWcaaqaaiaadAgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiabeE8aJjaaiIcacaWG0bGaaGilaiabes8a0jaa iMcaaeaacaWGMbGaaGikaiaadIhadaWgaaWcbaGaaGimaaqabaGcca aISaGaamiDaiaaiMcaaaGaaGilaaaa@5175@

v 3 (x,t,τ)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaISaGa eqiXdqNaaGykaiaai2daaaa@3F38@

= 0 τ 0 z 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds+ 0 τ 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds dz+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaaeWa aeaadaWdXbqabSqaaiaaicdaaeaacaWG6baaniabgUIiYdGcdaWada qaaiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa dAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDaiabgkGi2kabes8a 0baacqGHRaWkcaWGIbGaaGikaiaadIhacaaISaGaamiDaiaaiYcaca WGZbGaaGykaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaaGaay5waiaaw2faaiaadsgacaWGZbGaey 4kaSYaaaWaaeaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4k IipakmaadmaabaGaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamODamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaISaGaam4CaiaaiMcaaeaacqGHciITcaWG0bGaey OaIyRaeqiXdqhaaiabgUcaRiaadkgacaaIOaGaamiEaiaaiYcacaWG 0bGaaGilaiaadohacaaIPaGaamyDamaaBaaaleaacaaIWaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLBbGaayzxaaGaamiz aiaadohaaiaawMYicaGLQmcaaiaawIcacaGLPaaacaWGKbGaamOEai abgUcaRaaa@9025@

+ 0 τ 0 z 2 2 v 2 (x,t,s) ts +b(x,t,τ) u 0 (x,t) ds+ 0 τ 2 2 v 2 (x,t,s) tτ +b(x,t,s) u 0 (x,t) ds dz , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa WaaeaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaa bmaabaWaa8qCaeqaleaacaaIWaaabaGaamOEaaqdcqGHRiI8aOWaam WaaeaacaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshacqGHciITcaWG ZbaaaiabgUcaRiaadkgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilai abes8a0jaaiMcacaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaacaWGKbGaam4Cai abgUcaRmaaamaabaWaa8qCaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWadaqaaiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDai abgkGi2kabes8a0baacqGHRaWkcaWGIbGaaGikaiaadIhacaaISaGa amiDaiaaiYcacaWGZbGaaGykaiaadwhadaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaGaay5waiaaw2faaiaa dsgacaWGZbaacaGLPmIaayPkJaaacaGLOaGaayzkaaGaamizaiaadQ haaiaawMYicaGLQmcacaaISaaaaa@90F7@

где u 0 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3BF2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ решение задачи (5) с правой частью f(x,t) r 0 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamOCamaaBaaaleaacaaIWaaa beaakiaaiIcacaWG0bGaaGykaaaa@3F38@ .

Определение.  Задачу о нахождении функции r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ класса (I), при которой решение задачи (18) на отрезке ( x 0 ,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcaaaa@3AF8@ , t[0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@3C89@ , удовлетворяет условию

u ω ( x 0 ,t)q(t) 1 ω ϕ(t) 1 ω 2 (ψ(t)+χ(t,ωt)) C([0,T]) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEamaaBaaaleaa caaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgkHiTiaadghacaaIOa GaamiDaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacqaHjpWDaaGa eqy1dyMaaGikaiaadshacaaIPaGaeyOeI0YaaSaaaeaacaaIXaaaba GaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiIcacqaHipqEcaaI OaGaamiDaiaaiMcacqGHRaWkcqaHhpWycaaIOaGaamiDaiaaiYcacq aHjpWDcaWG0bGaaGykaiaaiMcaaiaawMa7caGLkWoadaWgaaWcbaGa am4qaiaaiIcacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaaiMcaae qaaOGaaGypaiaad+eacaaIOaGaeqyYdC3aaWbaaSqabeaacqGHsisl caaIZaaaaOGaaGykaiaaiYcacaaMf8UaeqyYdCNaeyOKH4QaeyOhIu QaaGilaaaa@74CF@ (19)

будем называть обратной задачей.

Теорема 2.  Обратная задача имеет единственное решение.

Доказательство. Согласно теореме 1 решение задачи Коши (18) при известной функции r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@  класса (I) удовлетворяет условию

u ω (x,t) u 0 (x,t) 1 ω u 1 (x,t) 1 ω 2 ( u 2 (x,t)+ v 2 (x,t,ωt)) C( Π M ) =O( ω 3 ),ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WG1bWaaSbaaSqaaiabeM8a3bqabaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTmaalaaabaGaaGymaaqa aiabeM8a3baacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacqaH jpWDdaahaaWcbeqaaiaaikdaaaaaaOGaaGikaiaadwhadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUca RiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGilaiabeM8a3jaadshacaaIPaGaaGykaaGaayzcSlaawQa7 amaaBaaaleaacaWGdbGaaGikaiabfc6aqnaaBaaabaGaamytaaqaba GaaGykaaqabaGccaaI9aGaam4taiaaiIcacqaHjpWDdaahaaWcbeqa aiabgkHiTiaaiodaaaGccaaIPaGaaGilaiaaywW7cqaHjpWDcqGHsg IRcqGHEisPcaaISaaaaa@7A72@

где u i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@380B@ , v i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@380C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ те же, что в п. 0.2. Отсюда, с учётом (19), следует асимптотическая формула

u 0 ( x 0 ,t)+ 1 ω u 1 ( x 0 ,t)+ 1 ω 2 ( u 2 ( x 0 ,t)+ v 2 ( x 0 ,t,ωt))= =q(t)+ 1 ω ϕ(t)+ 1 ω 2 (ψ(t)+χ(t,ωt))+O( ω 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEamaaBaaa leaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiabgUcaRmaalaaaba GaaGymaaqaaiabeM8a3baacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaaiM cacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDdaahaaWcbeqaaiaa ikdaaaaaaOGaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGykaiab gUcaRiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBa aaleaacaaIWaaabeaakiaaiYcacaWG0bGaaGilaiabeM8a3jaadsha caaIPaGaaGykaiaai2daaeaacaaI9aGaamyCaiaaiIcacaWG0bGaaG ykaiabgUcaRmaalaaabaGaaGymaaqaaiabeM8a3baacqaHvpGzcaaI OaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHjpWDda ahaaWcbeqaaiaaikdaaaaaaOGaaGikaiabeI8a5jaaiIcacaWG0bGa aGykaiabgUcaRiabeE8aJjaaiIcacaWG0bGaaGilaiabeM8a3jaads hacaaIPaGaaGykaiabgUcaRiaad+eacaaIOaGaeqyYdC3aaWbaaSqa beaacqGHsislcaaIZaaaaOGaaGykaiaai6caaaaaaa@85D4@ (20)

Приравняем коэффициенты при степенях ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIWaaaaaaa@38AB@ , ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIXaaaaaaa@3999@ , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacqGHsislcaaIYaaaaaaa@399A@  в равенстве (20). Отсюда, используя операцию усреднения по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ , τ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ypaiabeM8a3jaadshaaaa@3B49@ , получим равенства:

(a)u0x0,tqt(b)u1x0,tϕt(c)u2x0,tψt(d)v2x0,t,τχt,τ (21)

В силу п. 2

u 0 ( x 0 ,t)= 1 2 0 t r 0 (s) x 0 (ts) x 0 +(ts) f(ξ,s)dξds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaik daaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamOC amaaBaaaleaacaaIWaaabeaakiaaiIcacaWGZbGaaGykamaapehabe WcbaGaamiEamaaBaaabaGaaGimaaqabaGaeyOeI0IaaGikaiaadsha cqGHsislcaWGZbGaaGykaaqaaiaadIhadaWgaaqaaiaaicdaaeqaai abgUcaRiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcaa0Gaey4kIipa kiaadAgacaaIOaGaeqOVdGNaaGilaiaadohacaaIPaGaamizaiabe6 7a4jaadsgacaWGZbGaaGOlaaaa@631A@

Отсюда и из (21)(a) следует равенство

q(t)= 1 2 0 t r 0 (s) x 0 (ts) x 0 +(ts) f(ξ,s)dξds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaa pehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadkhadaWgaa WcbaGaaGimaaqabaGccaaIOaGaam4CaiaaiMcadaWdXbqabSqaaiaa dIhadaWgaaqaaiaaicdaaeqaaiabgkHiTiaaiIcacaWG0bGaeyOeI0 Iaam4CaiaaiMcaaeaacaWG4bWaaSbaaeaacaaIWaaabeaacqGHRaWk caaIOaGaamiDaiabgkHiTiaadohacaaIPaaaniabgUIiYdGccaWGMb GaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaadsgacqaH+oaEcaWG KbGaam4Caiaai6caaaa@5F83@

Продифференцировав его дважды по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , получим уравнение Вольтерра второго рода

q (t)= r 0 (t)f( x 0 ,t)+ 1 2 0 t r 0 (s)[ f x ( x 0 +(ts),s) f x ( x 0 (ts),s)]ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaafy aafaGaaGikaiaadshacaaIPaGaaGypaiaadkhadaWgaaWcbaGaaGim aaqabaGccaaIOaGaamiDaiaaiMcacaWGMbGaaGikaiaadIhadaWgaa WcbaGaaGimaaqabaGccaaISaGaamiDaiaaiMcacqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0 Gaey4kIipakiaadkhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaam4C aiaaiMcacaaIBbGabmOzayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaG ikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIOaGaamiD aiabgkHiTiaadohacaaIPaGaaGilaiaadohacaaIPaGaeyOeI0Iabm OzayaafaWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhadaWgaaWc baGaaGimaaqabaGccqGHsislcaaIOaGaamiDaiabgkHiTiaadohaca aIPaGaaGilaiaadohacaaIPaGaaGyxaiaadsgacaWGZbGaaGilaaaa @6D27@

из которого следует существование и единственность решения r 0 C([0,T]) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaaabeaakiabgIGiolaadoeacaaIOaGaaG4waiaaicda caaISaGaamivaiaai2facaaIPaaaaa@3FA4@ . Теперь продифференцируем (21)(d) по переменной τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@  дважды. В силу (8) получим

f( x 0 ,t) r 1 (t,τ)= 2 χ(t,τ) τ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshacaaIPaGa amOCamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes 8a0jaaiMcacaaI9aWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccqaHhpWycaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaabaGaey OaIyRaeqiXdq3aaWbaaSqabeaacaaIYaaaaaaakiaai6caaaa@513A@

Таким образом, функция r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiabes8a0jaaiMca aaa@3CB8@  также определяется единственным образом. В силу условий, наложенных на функции q(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaaaa@394B@  и χ(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadshacaaISaGaeqiXdqNaaGykaaaa@3C87@ , полученная функция r(t,τ)= r 0 (t)+ r 1 (t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcacaaI9aGaamOCamaaBaaaleaa caaIWaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadkhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacqaHepaDcaaIPaaa aa@4876@  принадлежит классу (I).

Нетрудно показать, что при найденной функции r(t,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGilaiabes8a0jaaiMcaaaa@3BC7@ решение задачи Коши (18) удовлетворяет требуемой асимптотической формуле (19). Теорема 2 доказана.

×

About the authors

Ella V. Korablina

Математический институт им. В. А. Стеклова РАН; Южный федеральный университет

Author for correspondence.
Email: ellakorablina1998@gmail.com
Russian Federation, Москва; Ростов-на-Дону

Valery B. Levenshtam

Математический институт им. В. А. Стеклова РАН; Южный федеральный университет

Email: vlevenshtam@yandex.ru
Russian Federation, Москва; Ростов-на-Дону

References

  1. Бабич П. В., Левенштам В. Б. Восстановление быстро осциллирующего свободного члена в многомерном гиперболическом уравнении// Мат. заметки. — 2018. — 104, № 4. — С. 489-497.
  2. БабичП. В., Лсвснштам В. Б., При-ка С. П. Восстановление быстро осциллирующего источника в уравнении теплопроводности по асимптотике решения// Ж. вычисл. мат. мат. физ. — 2017. — 57, № 12. — С. 1955-1965.
  3. Ватульяп А. О. Обратные задачи в механике деформируемого твердого тела. — М.: Физматлит, 2007.
  4. Денисов А. М. Введение в теорию обратных задач. — М.: Наука, 1994.
  5. Кабапихип С. И. Обратные и некорректные задачи. — Новосибирск, 2008.
  6. Лавретьев М. М., Резницкая К. Г., Яхно В. Г. Одномерные обратные задачи математической физики. Новосибирск: Наука, 1982.
  7. Левенштам В. Б. Метод усреднения в задаче конвекции при высокочастотных наклонных вибрациях// Сиб. мат. ж. — 1996. — 37, № 5. — С. 1103-1116.
  8. Левенштам В. Б. Асимптотическое интегрирование задачи о вибрационной конвекции// Диффер. уравн. — 1998. — 34, № 4. — С. 523-532.
  9. Левенштам В. Б. Асимптотическое разложение решения задачи о вибрационной конвекции// Ж. вычисл. мат. мат. физ. — 2000. — 40, № 9. — С. 1416-1424.
  10. Левенштам В. Б. Параболические уравнения с большим параметром. Обратные задачи// Мат. заметки. — 2020. — 107, № 3. — С. 412-425.
  11. Романов В. Г. Обратные задачи математической физики. — М.: Наука, 1984.
  12. Симоненко И. Б. Обоснование метода усреднения для задачи конвекции в поле быстро осциллирующих сил и для других параболических уранений// Мат. сб. — 1972. — 87, № 2. — С. 236-253.
  13. Babich P. V., Levenshtam V. B. Direct and inverse asymptotic problems high-frequency terms// Asympt.
  14. Anal. 2016. 97. P. 329 336.
  15. Babich P. V.. Leiemshtani V. B. Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term// in: Operator Theory and Differential Equations (Kusraev A. G, Totieva Zh. D., eds.). — Birkhauser, 2021. — P. 7-25.
  16. Prilepko A. U.. Orlovsky D. G.. Vasin 1. A. Methods for Solving Inverse Problems in Mathematical Physics. — New York: Marsel Dekker, 2000.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Korablina E.V., Levenshtam V.B.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».