О преобразовании, двойственном к преобразованию Радона—Киприянова

Обложка

Цитировать

Полный текст

Аннотация

Преобразование Радона– Киприянова Kγ введено в 1998 г. В теоретических и прикладных исследованиях требуется ввести двойственное (сопряженное) к нему преобразование Kγ#. Доказаны теоремы об ограниченности двойственного преобразования в соответствующем подпространстве Л. Шварца основных функций и Kγ#-преобразовании свертки функции g с Kγ[f]-преобразованием при условии, что обе функции g и f принадлежат соответствующим пространствам основных функций.

Полный текст

1. Некоторые представления преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ Киприянова. В работе И. А. Киприянова и Л. Н. Ляхова [5] было введено <<специальное>> преобразование Радона, которое в дальнейшем получило название преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова (обозначение K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  ). Данная работа посвящена нахождению преобразования, двойственного (сопряженного) к K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  преобразованию в одномерном и многомерном случаях.

1.1. Определение преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa83eGaaa@3A91@ Киприянова K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ В евклидовом пространстве точек n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@  рассмотрим полупространство

n + ={x=( x 1 , x ): x =( x 2 ,, x n ), x 1 >0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aOGaaGypaiaaiUhacaWG4bGaaGypaiaaiIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaGilaiqadIhagaqbaiaaiMcacaaI6aGabmiEayaa faGaaGypaiaaiIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilai ablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaa iYcacaaMe8UaamiEamaaBaaaleaacaaIXaaabeaakiaai6dacaaIWa GaaGyFaiaai6caaaa@5930@

Функции f=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiMcaaaa@36BC@ , определенные на множестве n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ , для которых возможно четное продолжение по переменной x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@ , сохраняющее класс своей принадлежности, назовем x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четными по Киприянову. В случае непрерывно дифференцируемых функций x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четность по Киприянову означает, что

2m1 f(x) x 1 2m1 | x 1 =0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaiaad2gacqGHsislcaaIXaaaaOGaamOzaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaca WGTbGaeyOeI0IaaGymaaaaaaGccaaI8bWaaSbaaSqaaiaadIhadaWg aaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiaai2dacaaIWaaaaa@46CF@

для любого натурального числа m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  (см. [4, с.~21]).

Через S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@  обозначим подпространство пространства Л. Шварца основных функций, состоящее из x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четных по Киприянову функций.

Следуя [3], будем использовать следующее определение дельта-функции, сосредоточенной на (n1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgkHiTiaaigdaca aIPaaaaa@35BD@  -мерной поверхности P(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIhacaaIPaGaaG ypaiaaicdaaaa@3675@  в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ :

n + f(x)δ(P(x))dx= P(x) f(x)dΓ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaWGUbaa baGaey4kaScaaaqab0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiM cacqaH0oazcaaIOaGaamiuaiaaiIcacaWG4bGaaGykaiaaiMcacaaM i8UaamizaiaadIhacaaI9aWaa8quaeqaleaacaWGqbGaaGikaiaadI hacaaIPaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaa yIW7caWGKbGaeu4KdCKaaGilaaaa@5BFD@

где dΓ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeu4KdCeaaa@340E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  элемент поверхности P(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIhacaaIPaGaaG ypaiaaicdaaaa@3675@ .

Определение 1. Преобразованием Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , следуя [5], будем называть следующую конструкцию:

K γ [f](ξ;p)= n + f(x) Π x 1 γ δ(px,ξ) x 1 γ dx,γ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWkaaaa beqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7cqqHGo audaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaabaGaeq4SdCga aOGaaGjcVlabes7aKjaaiIcacaWGWbGaeyOeI0IaeyykJeUaamiEai aaiYcacqaH+oaEcqGHQms8caaIPaGaaGjcVlaadIhadaqhaaWcbaGa aGymaaqaaiabeo7aNbaakiaayIW7caWGKbGaamiEaiaaiYcacaaMf8 Uaeq4SdCMaaGOpaiaaicdacaaISaaaaa@7217@  (1)

где x,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG4bGaaGilaiabe67a4j abgQYiXdaa@38B6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерных векторов, и мы полагаем, что ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3380@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  единичный вектор нормали к плоскости (при этом |p| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiCaiaaiYhaaaa@34BE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  расстояние от начала координат до плоскости x,ξ=p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG4bGaaGilaiabe67a4j abgQYiXlaai2dacaWGWbaaaa@3A72@  ), а символ Π x 1 γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHGoaudaqhaaWcbaGaamiEamaaBa aabaGaaGymaaqabaaabaGaeq4SdCgaaaaa@36E8@  обозначает действие оператора Пуассона (см. [6]) по переменной x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@ :

Π x 1 γ g(x)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π g( x 1 cos α 1 , x 2 ,, x n ) sin γ1 αdα. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHGoaudaqhaaWcbaGaamiEamaaBa aabaGaaGymaaqabaaabaGaeq4SdCgaaOGaam4zaiaaiIcacaWG4bGa aGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaacqaHZo WzcqGHRaWkcaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacqqH toWrdaqadaqaamaalaaabaGaeq4SdCgabaGaaGOmaaaaaiaawIcaca GLPaaacqqHtoWrdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaa caGLOaGaayzkaaaaamaapehabeWcbaGaaGimaaqaaiabec8aWbqdcq GHRiI8aOGaam4zaiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGil aiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaWaaubiaeqaleqaba Gaeq4SdCMaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiab eg7aHjaayIW7caWGKbGaeqySdeMaaGOlaaaa@6EC4@  (2)

1.2. Представление K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ -преобразования в евклидовом пространстве вращения вокруг весовой оси координат. Раскрывая действие оператора Пуассона, получим

K γ [f](ξ;p)= n + f(x)C(γ) 0 π δ(p( x 1 cosα, x 2 ,, x n ),( ξ 1 , ξ 2 ,, ξ n )) sin γ1 αdα x 1 γ dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWkaaaa beqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaadoeacaaIOa Gaeq4SdCMaaGykamaapehabeWcbaGaaGimaaqaaiabec8aWbqdcqGH RiI8aOGaeqiTdqMaaGikaiaadchacqGHsislcqGHPms4caaIOaGaam iEamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4Caiabeg7a HjaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAcilj aaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaI OaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBa aaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaeqOVdG3aaSba aSqaaiaad6gaaeqaaOGaaGykaiabgQYiXlaaiMcadaqfGaqabSqabe aacqaHZoWzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGa eqySdeMaaGjcVlaadsgacqaHXoqycaaMi8UaamiEamaaDaaaleaaca aIXaaabaGaeq4SdCgaaOGaamizaiaadIhacaaISaaaaa@910F@

где

C(γ)= Γ γ+1 2 Γ γ 2 Γ 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabeo7aNjaaiMcaca aI9aWaaSaaaeaacqqHtoWrdaqadaqaamaalaaabaGaeq4SdCMaey4k aSIaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaabaGaeu4KdC0aae WaaeaadaWcaaqaaiabeo7aNbqaaiaaikdaaaaacaGLOaGaayzkaaGa eu4KdC0aaeWaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaGaayjkai aawMcaaaaacaaIUaaaaa@47FD@

Рассмотрим евклидово полупространство n+1 + ={( z 1 , z 2 , x 2 ,, x n ), z 2 >0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaakiaai2dacaaI7bGaaGikaiaadQhadaWgaaWcba GaaGymaaqabaGccaaISaGaamOEamaaBaaaleaacaaIYaaabeaakiaa iYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiY cacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaMe8Ua amOEamaaBaaaleaacaaIYaaabeaakiaai6dacaaIWaGaaGyFaaaa@55FB@ , которое получается из исходного полупространства n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  вращением x 1 z 1 2 + z 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOKH46aaOaaaeaacaWG6bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaamOEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaa aa@3BDB@  на угол π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHapaCaaa@337A@ . Следуя [8], функции f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaaaaa@350A@ , определенной на множестве n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ , поставим в соответствие функцию от вращения

f ˜ (z)= f ˜ ( z 1 , z 2 , x )=f( z 1 2 + z 2 2 , x 2 ,, x n ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAgaaiaawoWaaiaaiI cacaWG6bGaaGykaiaai2dadaaiaaqaaiaadAgaaiaawoWaaiaaiIca caWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcba GaaGOmaaqabaGccaaISaGabmiEayaafaGaaGykaiaai2dacaWGMbGa aGikamaakaaabaGaamOEamaaDaaaleaacaaIXaaabaGaaGOmaaaaki abgUcaRiaadQhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaakiaa iYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiY cacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcaaaa@5170@

где z=( z 1 , z 2 , x ) n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaiabgIGioprr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaSqaaiaad6ga cqGHRaWkcaaIXaaabaGaey4kaScaaaaa@4B18@ , x =( x 2 ,, x n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacaaI9aGaaGikaiaadI hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadIha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B95@ . Функция f ˜ (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAgaaiaawoWaaiaaiI cacaWG6bGaaGykaaaa@35CE@  определена в области n+1 + ={z: z 2 >0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaakiaai2dacaaI7bGaamOEaiaaiQdacaWG6bWaaS baaSqaaiaaikdaaeqaaOGaaGOpaiaaicdacaaI9baaaa@4826@ . Введем антиполярные координаты

z 1 = x 1 cosα, z 2 = x 1 sinα; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaa cohacqaHXoqycaaISaGaaGzbVlaadQhadaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamiEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGa aiOBaiabeg7aHjaaiUdaaaa@46FA@

так как 0<α<π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdacq aHapaCaaa@375F@  и x 1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaaicdaaaa@352D@ , то < z 1 <+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqGHEisPcaaI8aGaamOEam aaBaaaleaacaaIXaaabeaakiaaiYdacqGHRaWkcqGHEisPaaa@39EA@ , 0< z 2 <+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadQhadaWgaaWcba GaaGOmaaqabaGccaaI8aGaey4kaSIaeyOhIukaaa@3847@ . При этом

x 1 γ1 sin γ1 α= z 2 γ1 , x 1 d x 1 dαd x =dz. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaa0baaSqaaiaaigdaaeaacq aHZoWzcqGHsislcaaIXaaaaOWaaubiaeqaleqabaGaeq4SdCMaeyOe I0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiabeg7aHjaai2daca WG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGa aGilaiaaywW7caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVlaads gacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVlaadsgacqaHXoqy caaMi8UaamizaiqadIhagaqbaiaai2dacaWGKbGaamOEaiaai6caaa a@58B9@

Следовательно,

K γ [f](ξ;p)=C(γ) n+1 + f ˜ (z)δ(pz, ξ ˜ ) z 2 γ1 dz. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqh aaqaaiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey4kIi pakmaaGaaabaGaamOzaaGaay5adaGaaGikaiaadQhacaaIPaGaeqiT dqMaaGikaiaadchacqGHsislcqGHPms4caWG6bGaaGilaiqbe67a4z aaiaGaeyOkJeVaaGykaiaadQhadaqhaaWcbaGaaGOmaaqaaiabeo7a NjabgkHiTiaaigdaaaGccaaMi8UaamizaiaadQhacaaIUaaaaa@6AB7@  (3)

Здесь z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilaiqbe67a4z aaiaGaeyOkJepaaa@38C7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерных векторов z=( z 1 , z 2 , x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaaaa@3B3E@  и ξ ˜ =( ξ 1 ,0, ξ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacaiaai2dacaaIOaGaeq OVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaicdacaaISaGafqOV dGNbauaacaaIPaaaaa@3C64@ , где ξ = ξ 2 ,, ξ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqbaiaai2dacqaH+oaEda WgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiabe67a4naa BaaaleaacaWGUbaabeaaaaa@3C78@ , а p=z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiabgMYiHlaadQhaca aISaGafqOVdGNbaGaacqGHQms8aaa@3A83@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  уравнение гиперплоскости, параллельной координатной оси O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ .

Представление (3) есть представление преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова в виде специального весового преобразования Радона.

Воспользовавшись определением δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3362@  -функции, сосредоточенной на гиперплоскости p=z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiabgMYiHlaadQhaca aISaGafqOVdGNbaGaacqGHQms8aaa@3A83@ , получим

K γ [f](ξ;p)=C(γ) {p=z, ξ ˜ } + f ˜ (z) z 2 γ1 dΓ(z), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaGaaG 4EaiaadchacaaI9aGaeyykJeUaamOEaiaaiYcacuaH+oaEgaacaiab gQYiXlaai2hadaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaa caaeaacaWGMbaacaGLdmaacaaIOaGaamOEaiaaiMcacaWG6bWaa0ba aSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGaaGjcVlaads gacqqHtoWrcaaIOaGaamOEaiaaiMcacaaISaaaaa@5F17@  (4)

где {z, ξ ˜ =p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcada aiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGypaiaadchacaaI9bWa aWbaaSqabeaacqGHRaWkaaaaaa@3E51@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  часть гиперплоскости в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ , определяемая неравенством z 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@3530@ , dΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeu4KdCKaaGikaiaadQhaca aIPaaaaa@3672@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  элемент этой гиперплоскости. Как обычно (см. [1,2,11]), ориентация гиперплоскости {z, ξ ˜ =p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcaca aMi8+aaacaaeaacqaH+oaEaiaawoWaaiabgQYiXlaai2dacaWGWbGa aGyFamaaCaaaleqabaGaey4kaScaaaaa@3FE2@  выбрана так, чтобы она являлась границей полупространства {z, ξ ˜ <p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcada aiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGipaiaadchacaaI9bWa aWbaaSqabeaacqGHRaWkaaaaaa@3E50@ .

1.3. Представление K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  -преобразования в локальных координатах касательной плоскости. Важно отметить, что указанное выше вращение евклидова пространства вокруг оси O x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEamaaBaaaleaacaaIXa aabeaaaaa@3475@  сводит преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова (1) к весовому преобразованию Радона (3) в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ , представляющему собой интеграл по гиперплоскости параллельной координатной оси O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ .

Принадлежность оси координат O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@  гиперплоскости z, ξ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilamaaGaaaba GaeqOVdGhacaGLdmaacqGHQms8caaI9aGaaGimaaaa@3AFB@  порождает локальную систему координат, в которой одной из координатных осей является ось O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ . Другие оси декартовой системы координат на этой плоскости выберем лежащими в линии пересечения гиперплоскости z 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@  с гиперплоскостью z, ξ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilamaaGaaaba GaeqOVdGhacaGLdmaacqGHQms8caaI9aGaaGimaaaa@3AFB@ . Этот набор координатных осей обозначим y =( y 2 ,, y n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaaGikaiaadM hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadMha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B98@ . Ясно, что гиперплоскость интегрирования является линейным многообразием размерности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  в евклидовом пространстве n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ . Точки гиперплоскости интегрирования в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  имеют следующие локальные координаты: ( z 2 , y ,p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaBaaaleaacaaIYa aabeaakiaaiYcaceWG5bGbauaacaaISaGaamiCaiaaiMcaaaa@387E@ , y =( y 2 ,, y n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaaGikaiaadM hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadMha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B98@ , а |p| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiCaiaaiYhaaaa@34BE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  расстояние от гиперплоскости до начала координат.

Множество касательных плоскостей к сфере, проходящих через ее центр, называется касательным расслоением сферы. Каждая плоскость касательного расслоения перпендикулярна соответствующему вектору нормали ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaaaaa@3442@ , лежащему в координатной гиперплоскости z 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ . Мы фиксируем нормаль ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3380@  исходной гиперплоскости интегрирования в определении преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова (1) и (4) и обозначаем исходную гиперплоскость интегрирования символом ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ . В евклидовом полупространстве <<вращения>> n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  вектором нормали к плоскости интегрирования является вектор ξ ˜ =( ξ 1 ,0, ξ 2 ,, ξ n )=( ξ 1 ,0, ξ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG ypaiaaiIcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGim aiaaiYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGS KaaGilaiabe67a4naaBaaaleaacaWGUbaabeaakiaaiMcacaaI9aGa aGikaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacaaIWaGaaG ilaiqbe67a4zaafaGaaGykaaaa@4C4C@ . В конструкции (4) эту гиперплоскость в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  обозначим тем же символом ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ .

Итак, имеем следующую систему локальных координат в евклидовом полупространстве n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ :

y=( z 2 , y ,p), y =( z 2 , y ,0), ξ ˜ =(0,0,,0,1), ξ ˜ p=(0,0,,p). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaikdaaeqaaOGaaGilaiqadMhagaqbaiaaiYcacaWGWbGa aGykaiaaiYcacaaMf8UaamyEamaaBaaaleaacqGHLkIxaeqaaOGaaG ypaiaaiIcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiqadMha gaqbaiaaiYcacaaIWaGaaGykaiaaiYcacaaMf8+aaacaaeaacqaH+o aEaiaawoWaaiaai2dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiab lAciljaaiYcacaaIWaGaaGilaiaaigdacaaIPaGaaGilaiaaywW7da aiaaqaaiabe67a4bGaay5adaGaeyyXICTaamiCaiaai2dacaaIOaGa aGimaiaaiYcacaaIWaGaaGilaiablAciljaaiYcacaWGWbGaaGykai aai6caaaa@652A@  (5)

Используя эти обозначения переменных, формулы (3) и (4) можем записать в виде интеграла по плоскости ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ , проходящей через начало координат перпендикулярно вектору ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaaaaa@3442@ , в виде

K γ [f](ξ,p)=C(γ) ξ f ˜ ξ ˜ p+ y z 2 γ1 dΓ( y ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaGaeq OVdG3aaWbaaeqabaGaeyyPI4faaaqab0Gaey4kIipakmaaGaaabaGa amOzaaGaay5adaWaaeWaaeaadaaiaaqaaiabe67a4bGaay5adaGaam iCaiabgUcaRiaadMhadaWgaaWcbaGaeyyPI4fabeaaaOGaayjkaiaa wMcaaiaayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsi slcaaIXaaaaOGaaGjcVlaadsgacqqHtoWrcaaIOaGaamyEamaaBaaa leaacqGHLkIxaeqaaOGaaGykaiaai6caaaa@60A7@  (6)

2. Основные результаты. Оператор, двойственный K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ , получен интегрированием по 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaaIXaaabaGaey4kaSca aaaa@3E3E@  по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  (теорема 1) и интегрированием по евклидову полупространству n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  (теорема 2). Последнее получено дополнительным интегрированием по поверхности сферы в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  при условии, что p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  радиальная переменная. Двойственное преобразование K γ,ξ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaaaa@3787@  определено в следующем утверждении.

Теорема 1. Для функций f S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaamOBaaqaaiabgU caRaaakiaaiMcaaaa@4547@  и g S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGymaaqaaiabgU caRaaakiaaiMcaaaa@4510@  справедливо равенство

1 K γ [f](ξ,p)g(p)dp= n + f(x) K ξ,γ # g(x) x 1 γ d x 1 d x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7ca WGlbWaa0baaSqaaiabe67a4jaaiYcacqaHZoWzaeaacaaIJaaaaOGa am4zaiaaiIcacaWG4bGaaGykaiaayIW7caWG4bWaa0baaSqaaiaaig daaeaacqaHZoWzaaGccaWGKbGaamiEamaaBaaaleaacaaIXaaabeaa kiaayIW7caWGKbGabmiEayaafaGaaGilaaaa@7281@

где

K γ,ξ # g(x)= Π x 1 γ (g(ξ,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba Gaeq4SdCgaaOGaaGikaiaadEgacaaIOaGaeyykJeUaeqOVdGNaaGil aiaadIhacqGHQms8caaIPaGaaGykaiaai6caaaa@4C42@  (7)

Равенство (7) равносильно равенству

K γ,ξ # g(x)= Π ξ 1 γ (g(ξ,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaeqOVdG3aaSbaaeaacaaIXaaabeaaae aacqaHZoWzaaGccaaIOaGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaI SaGaamiEaiabgQYiXlaaiMcacaaIPaGaaGOlaaaa@4D08@

Следствие 1. Пусть f S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaamOBaaqaaiabgU caRaaakiaaiMcaaaa@4547@  и g S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGymaaqaaiabgU caRaaakiaaiMcaaaa@4510@ . Тогда

S 1 (n) 1 K γ [f](ξ,p)g(p)dpdS(ξ)= n + f(x) K γ # g(x) x 1 γ d x 1 dd x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiaadofadaWgaaqaai aaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakmaapefa beWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq WFDeIudaWgaaqaaiaaigdaaeqaaaqab0Gaey4kIipakiaadUeadaWg aaWcbaGaeq4SdCgabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+o aEcaaISaGaamiCaiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGyk aiaayIW7caWGKbGaamiCaiaayIW7caWGKbGaam4uaiaaiIcacqaH+o aEcaaIPaGaaGypamaapefabeWcbaGae8xhHi1aa0baaeaacaWGUbaa baGaey4kaScaaaqab0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiM cacaaMi8Uaam4samaaDaaaleaacqaHZoWzaeaacaaIJaaaaOGaam4z aiaaiIcacaWG4bGaaGykaiaayIW7caWG4bWaa0baaSqaaiaaigdaae aacqaHZoWzaaGccaaMi8UaamizaiaadIhadaWgaaWcbaGaaGymaaqa baGccaaMi8UaamizaiaayIW7caWGKbGabmiEayaafaGaaGilaaaa@80EE@

где

K γ # g(x)= S 1 (n) Π x 1 (g(ξ,ξ,x))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaWGNbGaaGikaiaadIhacaaIPaGaaGypamaapefabeWc baGaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaaabe qdcqGHRiI8aOGaeuiOda1aaSbaaSqaaiaadIhadaWgaaqaaiaaigda aeqaaaqabaGccaaIOaGaam4zaiaaiIcacqaH+oaEcaaISaGaeyykJe UaeqOVdGNaaGilaiaadIhacqGHQms8caaIPaGaaGykaiaayIW7caWG KbGaam4uaiaaiIcacqaH+oaEcaaIPaGaaGOlaaaa@5775@  (8)

Равенство (8) эквивалентно равенству

K γ # g(x)=C(γ) S 1 (n) Π ξ 1 (g(ξ,ξ,x))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaWGNbGaaGikaiaadIhacaaIPaGaaGypaiaadoeacaaI OaGaeq4SdCMaaGykamaapefabeWcbaGaam4uamaaBaaabaGaaGymaa qabaGaaGikaiaad6gacaaIPaaabeqdcqGHRiI8aOGaeuiOda1aaSba aSqaaiabe67a4naaBaaabaGaaGymaaqabaaabeaakiaaiIcacaWGNb GaaGikaiabe67a4jaaiYcacqGHPms4cqaH+oaEcaaISaGaamiEaiab gQYiXlaaiMcacaaIPaGaaGjcVlaadsgacaWGtbGaaGikaiabe67a4j aaiMcacaaIUaaaaa@5C0F@  (9)

Теорема 2. Для функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@ , принадлежащих пространству основных функций S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@ , справедлива следующая формула:

K γ # (g* K γ [f])=( K γ # g*f ) γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaaIOaGaam4zaiaaiQcacaWGlbWaaSbaaSqaaiabeo7a NbqabaGccaaIBbGaamOzaiaai2facaaIPaGaaGypaiaaiIcacaWGlb Waa0baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAga caaIPaWaaSbaaSqaaiabeo7aNbqabaGccaaIUaaaaa@4828@  (10)

3. Оператор, двойственный к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ Киприянова.

3.1. Доказательство теоремы 1. Пусть g=g(p) S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaadEgacaaIOaGaam iCaiaaiMcacqGHiiIZcaWGtbWaaSbaaSqaaiaadwgacaWG2baabeaa kiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabai ab=1risnaaDaaaleaacaaIXaaabaGaey4kaScaaOGaaGykaaaa@491D@ . Рассмотрим следующую линейную форму от произведения преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова на функцию g(p) S ev MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadchacaaIPaGaey icI4Saam4uamaaBaaaleaacaWGLbGaamODaaqabaaaaa@3970@ , p 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGym aaqaaiabgUcaRaaaaaa@40B7@ :

1 + K γ [f](ξ,p)g(p)dp=C(γ) 1 + g(p)dp ξ f ˜ ( ξ ˜ p+ y ) z 2 γ1 dΓ( y ); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYd GccaWGNbGaaGikaiaadchacaaIPaGaaGjcVlaadsgacaWGWbWaa8qu aeqaleaacqaH+oaEdaahaaqabeaacqGHLkIxaaaabeqdcqGHRiI8aO WaaacaaeaacaWGMbaacaGLdmaacaaIOaWaaacaaeaacqaH+oaEaiaa woWaaiaayIW7caWGWbGaey4kaSIaamyEamaaBaaaleaacqGHLkIxae qaaOGaaGykaiaayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWz cqGHsislcaaIXaaaaOGaamizaiabfo5ahjaaiIcacaWG5bWaaSbaaS qaaiabgwQiEbqabaGccaaIPaGaaG4oaaaa@837F@  (11)

внутренний интеграл записан в локальной системе координат (5). Здесь ξ ˜ p+ y =( z 2 , y ,p)=y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG jcVlaadchacqGHRaWkcaWG5bWaaSbaaSqaaiabgwQiEbqabaGccaaI 9aGaaGikaiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaISaGabmyEay aafaGaaGilaiaadchacaaIPaGaaGypaiaadMhaaaa@43DC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@   (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерный вектор. Замена переменных

z= ξ ˜ p+ y p=z, ξ ˜ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypamaaGaaabaGaeqOVdG hacaGLdmaacaaMi8UaamiCaiabgUcaRiaadMhadaWgaaWcbaGaeyyP I4fabeaakiaaywW7cqGHshI3caaMf8UaamiCaiaai2dacqGHPms4ca WG6bGaaGilamaaGaaabaGaeqOVdGhacaGLdmaacqGHQms8caaISaaa aa@4BFD@

имеет якобиан, равный D(z) D( y +p ξ ˜ ) = D(z) D(y) =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadseacaaIOaGaamOEai aaiMcaaeaacaWGebGaaGikaiaadMhadaWgaaWcbaGaeyyPI4fabeaa kiabgUcaRiaadchadaaiaaqaaiabe67a4bGaay5adaGaaGykaaaaca aI9aWaaSaaaeaacaWGebGaaGikaiaadQhacaaIPaaabaGaamiraiaa iIcacaWG5bGaaGykaaaacaaI9aGaaGymaaaa@471B@  ), и приводит выражение (11) к виду

1 + K γ [f](ξ,p)g(p)dp=C(γ) 1 + ξ f ˜ (z) z 2 γ1 dΓ( y )g(z, ξ ˜ )dp. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYd GcdaWdrbqabSqaaiabe67a4naaCaaabeqaaiabgwQiEbaaaeqaniab gUIiYdGcdaaiaaqaaiaadAgaaiaawoWaaiaaiIcacaWG6bGaaGykai aayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaI XaaaaOGaaGjcVlaadsgacqqHtoWrcaaIOaGaamyEamaaBaaaleaacq GHLkIxaeqaaOGaaGykaiaadEgacaaIOaGaeyykJeUaamOEaiaaiYca daaiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGykaiaayIW7caWGKb GaamiCaiaai6caaaa@83F8@  (12)

Учитывая, что гиперплоскость ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@  определена в евклидовом полупространстве x 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@352E@ , выражение (12) запишем в координатах пространства вращений n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  (имеются в виду первоначальные координаты z=( z 1 , z 2 , x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaaaa@3B3E@  ), т.е. в следующем виде:

1 K γ [f](ξ,p)g(p)dp=C(γ) n+1 + f ˜ (z)g( ξ ˜ ,z) z 2 γ1 d z 1 d z 2 d x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aGaam4qaiaaiIcacqaHZoWzcaaIPaWaa8quaeqaleaacqWFDeIu daqhaaqaaiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey 4kIipakmaaGaaabaGaamOzaaGaay5adaGaaGikaiaadQhacaaIPaGa aGjcVlaadEgacaaIOaGaeyykJe+aaacaaeaacqaH+oaEaiaawoWaai aaiYcacaWG6bGaeyOkJeVaaGykaiaayIW7caWG6bWaa0baaSqaaiaa ikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGaamizaiaadQhadaWgaa WcbaGaaGymaaqabaGccaaMi8UaamizaiaadQhadaWgaaWcbaGaaGOm aaqabaGccaaMi8UaamizaiqadIhagaqbaiaai6caaaa@7FBC@

Здесь скалярное произведение (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерных векторов совпадает со скалярным произведением n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерных векторов: ξ ˜ ,z=ξ,x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4daaiaaqaaiabe67a4bGaay 5adaGaaGilaiaadQhacqGHQms8caaI9aGaeyykJeUaeqOVdGNaaGil aiaadIhacqGHQms8aaa@413A@ . Поэтому, введя цилиндрические координаты

z 1 = x 1 cosα, z 2 = x 1 sinα, x = x ,0<α<π,d z 1 d z 2 d x = x 1 d x 1 dαd x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaa cohacqaHXoqycaaISaGaaGzbVlaadQhadaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamiEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGa aiOBaiabeg7aHjaaiYcacaaMf8UabmiEayaafaGaaGypaiqadIhaga qbaiaaiYcacaaMf8UaaGimaiaaiYdacqaHXoqycaaI8aGaeqiWdaNa aGilaiaaywW7caWGKbGaamOEamaaBaaaleaacaaIXaaabeaakiaayI W7caWGKbGaamOEamaaBaaaleaacaaIYaaabeaakiaayIW7caWGKbGa bmiEayaafaGaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8 UaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamizaiab eg7aHjaayIW7caWGKbGabmiEayaafaGaaGilaaaa@6FB2@

получим

1 + K γ [f](ξ,p)g(p)dp=C(γ) n + f(x) 0 π g(Bigξ,( x 1 cosα, x )Bnb) sin γ1 αdα x 1 γ d x 1 dd x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaamOBaaqaaiabgUcaRaaaaeqaniabgUIiYd GccaWGMbGaaGikaiaadIhacaaIPaGaaGjcVpaapehabeWcbaGaaGim aaqaaiabec8aWbqdcqGHRiI8aOGaam4zaiaaiIcacaWGcbGaamyAai aadEgacqGHPms4cqaH+oaEcaaISaGaaGikaiaadIhadaWgaaWcbaGa aGymaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycaaISaGabmiEay aafaGaaGykaiaadkeacaWGUbGaamOyaiabgQYiXlaaiMcadaqfGaqa bSqabeaacqaHZoWzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6 gaaaGaeqySdeMaaGjcVlaadsgacqaHXoqycaaMi8UaamiEamaaDaaa leaacaaIXaaabaGaeq4SdCgaaOGaaGjcVlaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGjcVlaadsgacaaMi8UaamizaiqadIhagaqb aiaai6caaaa@9A53@

Воспользовавшись определением оператора Пуассона (2) и видом константы C(γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabeo7aNjaaiMcaaa a@3591@ , это выражение можем записать в сокращенной форме:

1 K γ [f](ξ,p)g(p)dp= n + f(x) Π x 1 γ g(ξ,x) x 1 γ d x 1 d x = n + f(x) Π ξ 1 γ g(ξ,x) x 1 γ d x 1 d x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7cq qHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaabaGaeq4S dCgaaOGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaISaGaamiEaiabgQ YiXlaaiMcacaaMi8UaamiEamaaDaaaleaacaaIXaaabaGaeq4SdCga aOGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamizai qadIhagaqbaiaai2dadaWdrbqabSqaaiab=1risnaaDaaabaGaamOB aaqaaiabgUcaRaaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aIPaGaaGjcVlabfc6aqnaaDaaaleaacqaH+oaEdaWgaaqaaiaaigda aeqaaaqaaiabeo7aNbaakiaadEgacaaIOaGaeyykJeUaeqOVdGNaaG ilaiaadIhacqGHQms8caaIPaGaaGjcVlaadIhadaqhaaWcbaGaaGym aaqaaiabeo7aNbaakiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGjcVlaadsgaceWG4bGbauaacaaIUaaaaa@9DAC@

Теперь, введя обозначения

K γ,ξ # g(x)= Π x 1 γ g(ξ,x)или K γ,ξ # g(x)= Π ξ 1 γ g(ξ,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba Gaeq4SdCgaaOGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaISaGaamiE aiabgQYiXlaaiMcacaaMf8UaaeioeiaabUdbcaqG4qGaaGzbVlaadU eadaqhaaWcbaGaeq4SdCMaaGilaiabe67a4bqaaiaaiocaaaGccaWG NbGaaGikaiaadIhacaaIPaGaaGypaiabfc6aqnaaDaaaleaacqaH+o aEdaWgaaqaaiaaigdaaeqaaaqaaiabeo7aNbaakiaadEgacaaIOaGa eyykJeUaeqOVdGNaaGilaiaadIhacqGHQms8caaIPaGaaGilaaaa@6965@

получим (10).

Определение 2. Двойственным оператором к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова в 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaaIXaaabaGaey4kaSca aaaa@3E3E@  называется оператор K γ,ξ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaaaa@3787@ .

Доказательство следствия \rom\refc2.1.. Вернемся к равенству (4). Интегрирование по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерной сфере S 1 (n)={ξ:|ξ|=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypaiaaiUhacqaH+oaEcaaI6aGaaGiF aiabe67a4jaaiYhacaaI9aGaaGymaiaai2haaaa@4089@  приведет к равенству

S 1 (n) 1 + K γ [f](ξ,p)g(p)dpdS(ξ)= n + f(x) Π x 1 γ S 1 (n) g(ξ,x)dS(ξ) x 1 γ d x 1 dd x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiaadofadaWgaaqaai aaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakmaapefa beWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq WFDeIudaqhaaqaaiaaigdaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGa am4samaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaG ikaiabe67a4jaaiYcacaWGWbGaaGykaiaayIW7caWGNbGaaGikaiaa dchacaaIPaGaaGjcVlaadsgacaWGWbGaaGjcVlaadsgacaWGtbGaaG ikaiabe67a4jaaiMcacaaI9aWaa8quaeqaleaacqWFDeIudaqhaaqa aiaad6gaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGaamOzaiaaiIcaca WG4bGaaGykaiaayIW7cqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGa aGymaaqabaaabaGaeq4SdCgaaOWaaeWaaeaadaWdrbqabSqaaiaado fadaWgaaqaaiaaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4k IipakiaadEgacaaIOaGaeyykJeUaeqOVdGNaaGilaiaadIhacqGHQm s8caaIPaGaaGjcVlaadsgacaWGtbGaaGikaiabe67a4jaaiMcaaiaa wIcacaGLPaaacaaIGaGaamiEamaaDaaaleaacaaIXaaabaGaeq4SdC gaaOGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamiz aiaayIW7caWGKbGabmiEayaafaGaaGOlaaaa@9595@

Остается воспользоваться обозначением (8) или (9).

Определение 3. Двойственным оператором к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  называется оператор K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@ .

4. K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  -Преобразование свертки функций с K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  -преобразованием. Свертка радиальных функций в евклидовом пространстве n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@  определяется по формуле (см. [7, 9])

(f*g)(|x|)= n f(|y|)g(|xy|)dy=| S 1 (n)| 1 f(r) T r g(ρ) ρ n1 dρ,r=|x|,ρ=|y|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOzaiaaiQcacaWGNbGaaG ykaiaaiIcacaaI8bGaamiEaiaaiYhacaaIPaGaaGypamaapefabeWc baWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDe IudaWgaaqaaiaad6gaaeqaaaqab0Gaey4kIipakiaadAgacaaIOaGa aGiFaiaadMhacaaI8bGaaGykaiaadEgacaaIOaGaaGiFaiaadIhacq GHsislcaWG5bGaaGiFaiaaiMcacaaMi8UaamizaiaadMhacaaI9aGa aGiFaiaadofadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamOBaiaaiM cacaaI8bWaa8quaeqaleaacqWFDeIudaWgaaqaaiaaigdaaeqaaaqa b0Gaey4kIipakiaadAgacaaIOaGaamOCaiaaiMcacaaMi8Uaamivam aaCaaaleqabaGaamOCaaaakiaadEgacaaIOaGaeqyWdiNaaGykaiaa yIW7cqaHbpGCdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaaG jcVlaadsgacqaHbpGCcaaISaGaaGzbVlaadkhacaaI9aGaaGiFaiaa dIhacaaI8bGaaGilaiaaywW7cqaHbpGCcaaI9aGaaGiFaiaadMhaca aI8bGaaGilaaaa@8936@

где | S 1 (n)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4uamaaBaaaleaacaaIXa aabeaakiaaiIcacaWGUbGaaGykaiaaiYhaaaa@37EA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  площадь поверхности единичной сферы в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@ , T x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacaWG4baaaa aa@33C0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  обобщенный сдвиг Пуассона:

T ρ v(r)=C(γ)= Γ n 2 Γ n1 2 Γ 1 2 0 π g r 2 + ρ 2 2rρcosβ sin n2 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacqaHbpGCaa GccaWG2bGaaGikaiaadkhacaaIPaGaaGypaiaadoeacaaIOaGaeq4S dCMaaGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaaca WGUbaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqa amaalaaabaGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaaGaayjkai aawMcaaiabfo5ahnaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa aiaawIcacaGLPaaaaaWaa8qCaeqaleaacaaIWaaabaGaeqiWdahani abgUIiYdGccaWGNbWaaeWaaeaadaGcaaqaaiaadkhadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikdaaaGccq GHsislcaaIYaGaamOCaiabeg8aYjaayIW7ciGGJbGaai4Baiaacoha cqaHYoGyaSqabaaakiaawIcacaGLPaaacaaMi8+aaubiaeqaleqaba GaamOBaiabgkHiTiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaH YoGycaaMi8Uaamizaiabek7aIjaai6caaaa@720B@

Для произвольного числа γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  обобщенной сверткой Пуассона (сверткой Пуассона) называется выражение (см. [4, 6])

(u*v) γ (ρ)= 1 + u(r) T ρ v(r) r γ dr,γ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiQcacaWG2bGaaG ykamaaBaaaleaacqaHZoWzaeqaaOGaaGikaiabeg8aYjaaiMcacaaI 9aWaa8quaeqaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGabaiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniab gUIiYdGccaWG1bGaaGikaiaadkhacaaIPaGaaGjcVlaadsfadaahaa Wcbeqaaiabeg8aYbaakiaadAhacaaIOaGaamOCaiaaiMcacaaMi8Ua amOCamaaCaaaleqabaGaeq4SdCgaaOGaamizaiaadkhacaaISaGaaG zbVlabeo7aNjaai6dacaaIWaGaaGilaaaa@61D6@

где

T ρ v(r)=C(γ)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π g r 2 + ρ 2 2rρcosβ sin γ1 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacqaHbpGCaa GccaWG2bGaaGikaiaadkhacaaIPaGaaGypaiaadoeacaaIOaGaeq4S dCMaaGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaacq aHZoWzcqGHRaWkcaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaa cqqHtoWrdaqadaqaamaalaaabaGaeq4SdCgabaGaaGOmaaaaaiaawI cacaGLPaaacqqHtoWrdaqadaqaamaalaaabaGaaGymaaqaaiaaikda aaaacaGLOaGaayzkaaaaamaapehabeWcbaGaaGimaaqaaiabec8aWb qdcqGHRiI8aOGaam4zamaabmaabaWaaOaaaeaacaWGYbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaO GaeyOeI0IaaGOmaiaadkhacqaHbpGCcaaMi8Uaci4yaiaac+gacaGG ZbGaeqOSdigaleqaaaGccaGLOaGaayzkaaGaaGjcVpaavacabeWcbe qaaiabeo7aNjabgkHiTiaaigdaaOqaaiGacohacaGGPbGaaiOBaaaa cqaHYoGycaaMi8Uaamizaiabek7aIjaai6caaaa@741B@

Для цели наших исследований мы используем обобщенный сдвиг смешанного типа, определенный при γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  в [4] формулой

T x y f(x)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π f x 1 2 + y 1 2 2 x 1 y 1 cosα , x 2 y 2 ,, x n y n sin γ1 αdα. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadIhaaeaaca WG5baaaOGaamOzaiaaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiab fo5ahnaabmaabaWaaSaaaeaacqaHZoWzcqGHRaWkcaaIXaaabaGaaG OmaaaaaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqaamaalaaabaGa eq4SdCgabaGaaGOmaaaaaiaawIcacaGLPaaacqqHtoWrdaqadaqaam aalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamaapeha beWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzamaabmaaba WaaOaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4k aSIaamyEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgkHiTiaaik dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyEamaaBaaaleaacaaI XaaabeaakiaayIW7ciGGJbGaai4BaiaacohacqaHXoqyaSqabaGcca aISaGaaGjcVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG 5bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4b WaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWG UbaabeaaaOGaayjkaiaawMcaaiaaiccadaqfGaqabSqabeaacqaHZo WzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqySdeMa aGjcVlaadsgacqaHXoqycaaIUaaaaa@7F7E@

Преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова обобщенной свертки основных функций S ev MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaaaaa@34A6@  определено в [8] следующим равенством:

K γ [(f*g ) γ ](ξ,p)= 1 K γ [f](ξ,t) K γ [g](ξ,pt)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaaGikaiaadAgacaaIQaGaam4zaiaaiMcadaWgaaWcbaGa eq4SdCgabeaakiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPa GaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiqaacqWFDeIudaWgaaqaaiaaigdaaeqaaaqab0Gaey4kIi pakiaadUeadaWgaaWcbaGaeq4SdCgabeaakiaaiUfacaWGMbGaaGyx aiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcacaaMi8Uaam4samaaBa aaleaacqaHZoWzaeqaaOGaaG4waiaadEgacaaIDbGaaGikaiabe67a 4jaaiYcacaWGWbGaeyOeI0IaamiDaiaaiMcacaWGKbGaamiDaiaai6 caaaa@6A09@

Таким образом, преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова свертки Пуассона оказывается одномерной (и обычной) сверткой преобразований Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова свертывателей. Похожее свойство проявляется для преобразования двойственного к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова.

4.1. Доказательство теоремы 2. Пусть функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  принадлежат пространству основных функций S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@ . Докажем справедливость равенства (10), т.е.

( K γ # g*f) γ = K γ # (g* K γ [f]). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypaiaadUeadaqhaaWcbaGaeq4SdCgabaGaaG 4iaaaakiaaiIcacaWGNbGaaGOkaiaadUeadaWgaaWcbaGaeq4SdCga beaakiaaiUfacaWGMbGaaGyxaiaaiMcacaaIUaaaaa@4828@

Воспользуемся представлением действия оператора K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  по формуле (8). Имеем

( K γ # *f) γ = n + T y x K γ # [ Π ξ 1 γ g(ξ;y,ξ)]f(y) y 1 γ dy= n + S 1 (n) T y x Π ξ 1 γ g(ξ;y,ξ)dS(ξ)f(y) y 1 γ dy. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaaGOkaiaadAgacaaIPaWaaSbaaSqaaiabeo7a NbqabaGccaaI9aWaa8quaeqaleaatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGaamOBaaqaaiabgUca RaaaaeqaniabgUIiYdGccaWGubWaa0baaSqaaiaadMhaaeaacaWG4b aaaOGaam4samaaDaaaleaacqaHZoWzaeaacaaIJaaaaOGaaG4waiab fc6aqnaaDaaaleaacqaH+oaEdaWgaaqaaiaaigdaaeqaaaqaaiabeo 7aNbaakiaadEgacaaIOaGaeqOVdGNaaG4oaiabgMYiHlaadMhacaaI SaGaeqOVdGNaeyOkJeVaaGykaiaai2facaWGMbGaaGikaiaadMhaca aIPaGaamyEamaaDaaaleaacaaIXaaabaGaeq4SdCgaaOGaamizaiaa dMhacaaI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacq GHRaWkaaaabeqdcqGHRiI8aOWaa8quaeqaleaacqWFsc=udaWgaaqa aiaaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakiaads fadaqhaaWcbaGaamyEaaqaaiaadIhaaaGccqqHGoaudaqhaaWcbaGa eqOVdG3aaSbaaeaacaaIXaaabeaaaeaacqaHZoWzaaGccaWGNbGaaG ikaiabe67a4jaaiUdacqGHPms4caWG5bGaaGilaiabe67a4jabgQYi XlaaiMcacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykaiabgw SixlaadAgacaaIOaGaamyEaiaaiMcacaWG5bWaa0baaSqaaiaaigda aeaacqaHZoWzaaGccaWGKbGaamyEaiaai6caaaa@A1BB@

Здесь оператор обобщенного сдвига и оператор Пуассона действуют по разным переменным, поэтому, воспользовавшись перестановочностью обобщенного сдвига в весовой билинейной форме с показателем веса x γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa aaaa@348E@ , имеем

( K γ # g*f) γ = n + K γ # g(y) T x f(y) y 1 γ dy. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaa cqGHRaWkaaaabeqdcqGHRiI8aOGaam4samaaDaaaleaacqaHZoWzae aacaaIJaaaaOGaam4zaiaaiIcacaWG5bGaaGykaiaayIW7caWGubWa aWbaaSqabeaacaWG4baaaOGaamOzaiaaiIcacaWG5bGaaGykaiaayI W7caWG5bWaa0baaSqaaiaaigdaaeaacqaHZoWzaaGccaaMi8Uaamiz aiaadMhacaaIUaaaaa@619D@

Согласно определению (9) оператора K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  получим

( K γ # g*f) γ = n + T x f(y) S 1 (n) + Π y 1 γ g(ξ,y,ξ)dS(ξ) y 1 γ dy= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaiIcacaWGlbWaa0 baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAgacaaI PaWaaSbaaSqaaiabeo7aNbqabaGccaaI9aWaa8quaeqaleaatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaa baGaamOBaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8Uaamivam aaCaaaleqabaGaamiEaaaakiaadAgacaaIOaGaamyEaiaaiMcadaqa daqaamaapefabeWcbaGaam4uamaaBaaabaGaaGymaaqabaGaaGikai aad6gacaaIPaWaaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakiab fc6aqnaaDaaaleaacaWG5bWaaSbaaeaacaaIXaaabeaaaeaacqaHZo WzaaGccaaMi8Uaam4zaiaaiIcacqaH+oaEcaaISaGaeyykJeUaamyE aiaaiYcacqaH+oaEcqGHQms8caaIPaGaaGjcVlaadsgacaWGtbGaaG ikaiabe67a4jaaiMcacaaMi8oacaGLOaGaayzkaaGaaGjcVlaadMha daqhaaWcbaGaaGymaaqaaiabeo7aNbaakiaayIW7caWGKbGaamyEai aai2daaaa@81A2@

= n + T x f(y) S 1 (n) + G(ξ,y,ξ) dS(ξ) y 1 γ dy, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaatuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGa amOBaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8UaamivamaaCa aaleqabaGaamiEaaaakiaadAgacaaIOaGaamyEaiaaiMcadaWdrbqa bSqaaiaadofadaWgaaqaaiaaigdaaeqaaiaaiIcacaWGUbGaaGykam aaCaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8Uaam4raiaa iIcacqaH+oaEcaaISaGaeyykJeUaamyEaiaaiYcacqaH+oaEcqGHQm s8caaIPaGaaGiiaiaayIW7caWGKbGaam4uaiaaiIcacqaH+oaEcaaI PaGaaGjcVlaadMhadaqhaaWcbaGaaGymaaqaaiabeo7aNbaakiaayI W7caWGKbGaamyEaiaaiYcacaaMf8UaaGzbVdaa@70A3@

где введено обозначение

G(ξ,y,ξ)= Π y 1 γ g(ξ,y,ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG5bGaaGilaiabe67a4jabgQYiXlaaiMcacaaI9aGaeuiO da1aa0baaSqaaiaadMhadaWgaaqaaiaaigdaaeqaaaqaaiabeo7aNb aakiaadEgacaaIOaGaeqOVdGNaaGilaiabgMYiHlaadMhacaaISaGa eqOVdGNaeyOkJeVaaGykaiaai6caaaa@4FDA@

Каждая из функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  принадлежат основному классу функций, поэтому можно применить теорему Лебега о перестановке пределов интегрирования. В результате получим равенство

( K γ # g*f) γ = S 1 (n) + n + G(ξ,y,ξ) T x f(y) y 1 γ dydS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypamaapefabeWcbaGaam4uamaaBaaabaGaaG ymaaqabaGaaGikaiaad6gacaaIPaWaaWbaaeqabaGaey4kaScaaaqa b0Gaey4kIipakmaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPr ginfgDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaaGjcVlaadEeacaaIOaGaeqOVdGNaaGilai abgMYiHlaadMhacaaISaGaeqOVdGNaeyOkJeVaaGykaiaayIW7caWG ubWaaWbaaSqabeaacaWG4baaaOGaamOzaiaaiIcacaWG5bGaaGykai aayIW7caWG5bWaa0baaSqaaiaaigdaaeaacqaHZoWzaaGccaaMi8Ua amizaiaadMhacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykai aai6caaaa@7607@

Учитывая действие оператора Пуассона (2), запишем

G(ξ,y,ξ)=C(γ) 0 π g(ξ, y 1 ξ 1 cosβ+ y 2 ξ 2 +, y n ξ n ) sin γ1 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG5bGaaGilaiabe67a4jabgQYiXlaaiMcacaaI9aGaam4q aiaaiIcacqaHZoWzcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGNbGaaGikaiabe67a4jaaiYcacaWG5bWaaSba aSqaaiaaigdaaeqaaOGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaci 4yaiaac+gacaGGZbGaeqOSdiMaey4kaSIaamyEamaaBaaaleaacaaI Yaaabeaakiabe67a4naaBaaaleaacaaIYaaabeaakiabgUcaRiablA ciljaaiYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaeqOVdG3aaSba aSqaaiaad6gaaeqaaOGaaGykaiaayIW7daqfGaqabSqabeaacqaHZo WzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOSdiMa aGjcVlaadsgacqaHYoGycaaIUaaaaa@705B@  (13)

Как в доказательстве теоремы 1, воспользуемся процедурой вращения. При этом учтем, что

x 1 2 + y 1 2 2 x 1 y 1 cosα = ( x 1 y 1 cosα) 2 + y 1 2 sin 2 α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGcaaqaaiaadIhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccqGHRaWkcaWG5bWaa0baaSqaaiaaigdaaeaa caaIYaaaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGaaGymaaqaba GccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGa eqySdegaleqaaOGaaGypamaakaaabaGaaGikaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaeqySdeMaaGykamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaadMhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGcdaqf GaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqySde galeqaaOGaaGilaaaa@585D@

и векторы размерности n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@ , участвующие в скалярном произведении y,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG5bGaaGilaiabe67a4j abgQYiXdaa@38B7@ , транслируются в векторы размерности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  и имеют следующие координаты:

y z ˜ =( z 1 ,0, y ),ξ ξ ˜ =( ξ 1 ,0, ξ ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaeyOKH46aaacaaeaacaWG6b aacaGLdmaacaaI9aGaaGikaiaadQhadaWgaaWcbaGaaGymaaqabaGc caaISaGaaGimaiaaiYcaceWG5bGbauaacaaIPaGaaGilaiaaywW7cq aH+oaEcqGHsgIRdaaiaaqaaiabe67a4bGaay5adaGaaGypaiaaiIca cqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGimaiaaiYcacu aH+oaEgaqbaiaaiMcacaaIUaaaaa@4FBB@

В результате получим

( K γ # g*f) γ (x)= S 1 (n) + n+1 + f ˜ ( x ˜ z)G(ξ,z, ξ ˜ ) z 2 γ1 dzdS(ξ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakmaapefabeWcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqa aiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey4kIipaki aayIW7daaiaaqaaiaadAgaaiaawoWaaiaaiIcaceWG4bGbaGaacqGH sislcaWG6bGaaGykaiaayIW7caWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG6bGaaGilamaaGaaabaGaeqOVdGhacaGLdmaacqGHQms8 caaIPaGaaGjcVlaadQhadaqhaaWcbaGaaGOmaaqaaiabeo7aNjabgk HiTiaaigdaaaGccaaMi8UaamizaiaadQhacaaMi8Uaamizaiaadofa caaIOaGaeqOVdGNaaGykaiaaiYcaaaa@7D21@

где z=( z 1 , z 2 , y ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmyEayaafaGaaGykaaaa@3B3F@ , x ˜ =( x 1 ,0, x 2 ,, x n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaGaacaaI9aGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGimaiaaiYcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaS baaSqaaiaad6gaaeqaaOGaaGykaaaa@3FAC@  и поэтому x ˜ z=( x 1 z 1 , z 2 , x y ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaGaacqGHsislcaWG6bGaaG ypaiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOE amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaaik daaeqaaOGaaGilaiqadIhagaqbaiabgkHiTiqadMhagaqbaiaaiMca aaa@4209@ . Введем n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерные локальные координаты

ξ ˜ =(0,0,,1), ξ ˜ p=(0,0,,p), y =( z 2 , y ,0),y=( z 2 , y ,p). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG ypaiaaiIcacaaIWaGaaGilaiaaicdacaaISaGaeSOjGSKaaGilaiaa igdacaaIPaGaaGilaiaaywW7daaiaaqaaiabe67a4bGaay5adaGaey yXICTaamiCaiaai2dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiab lAciljaaiYcacaWGWbGaaGykaiaaiYcacaaMf8UaamyEamaaBaaale aacqGHLkIxaeqaaOGaaGypaiaaiIcacaWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGilaiqadMhagaqbaiaaiYcacaaIWaGaaGykaiaaiYcaca aMf8UaamyEaiaai2dacaaIOaGaamOEamaaBaaaleaacaaIYaaabeaa kiaaiYcaceWG5bGbauaacaaISaGaamiCaiaaiMcacaaIUaaaaa@63BA@

Произведем замену переменных

z= x ˜ ζs ξ ˜ , x ˜ z=s ξ ˜ +ζ,гдеζ=( ζ 1 , z 2 , ζ 3 ,, ζ n ) ξ ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiqadIhagaacaiabgk HiTiabeA7a6jabgkHiTiaadohacuaH+oaEgaacaiaaiYcacaaMf8Ua bmiEayaaiaGaeyOeI0IaamOEaiaai2dacaWGZbGafqOVdGNbaGaacq GHRaWkcqaH2oGEcaaISaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7 cqaH2oGEcaaI9aGaaGikaiabeA7a6naaBaaaleaacaaIXaaabeaaki aaiYcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA7a6naa BaaaleaacaaIZaaabeaakiaaiYcacqWIMaYscaaISaGaeqOTdO3aaS baaSqaaiaad6gaaeqaaOGaaGykaiabgIGiolqbe67a4zaaiaWaaWba aSqabeaacqGHLkIxaaGccaaIUaaaaa@646D@

Якобиан этой замены равен D(z) D(p,ζ) =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadseacaaIOaGaamOEai aaiMcaaeaacaWGebGaaGikaiaadchacaaISaGaeqOTdONaaGykaaaa caaI9aGaaGymaaaa@3C12@ , и мы имеем

( K γ # g*f) γ (x)= S 1 (n) + 1 + ξ ˜ f ˜ (s ξ ˜ +ζ) z 2 γ1 dζG(ξ, x ˜ , ξ ˜ s)dsdS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakmaapefabeWcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqa aiaaigdaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGaaGjcVpaapefabe WcbaGafqOVdGNbaGaadaahaaqabeaacqGHLkIxaaaabeqdcqGHRiI8 aOWaaacaaeaacaWGMbaacaGLdmaacaaIOaGaam4Caiqbe67a4zaaia Gaey4kaSIaeqOTdONaaGykaiaayIW7caWG6bWaa0baaSqaaiaaikda aeaacqaHZoWzcqGHsislcaaIXaaaaOGaaGjcVlaadsgacqaH2oGEca aMi8Uaam4raiaaiIcacqaH+oaEcaaISaGaeyykJe+aaacaaeaacaWG 4baacaGLdmaacaaISaWaaacaaeaacqaH+oaEaiaawoWaaiabgQYiXl abgkHiTiaadohacaaIPaGaamizaiaadohacaaMi8Uaamizaiaadofa caaIOaGaeqOVdGNaaGykaiaai6caaaa@88FD@

Здесь внутренний интеграл есть преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова, записанное в виде интеграла по касательной плоскости ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@  (см. формулу (6)). Следовательно,

( K γ # g*f) γ (x)= S 1 (n) + 1 + K γ [f](ξ,s)G(ξ,ps)dsdS(ξ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaiIcacaWGlbWaa0 baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAgacaaI PaWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaamiEaiaaiMcacaaI9a Waa8quaeqaleaacaWGtbWaaSbaaeaacaaIXaaabeaacaaIOaGaamOB aiaaiMcadaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaa8quae qaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab =1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYdGcca aMi8Uaam4samaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaI DbGaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaayIW7caWGhbGaaG ikaiabe67a4jaaiYcacaWGWbGaeyOeI0Iaam4CaiaaiMcacaaMi8Ua amizaiaadohacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykai aai2daaaa@76ED@

= S 1 (n) + 1 + ( K γ [f](ξ,s) Π x 1 γ g(ξ,ps))dsdS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacaWGtbWaaS baaeaacaaIXaaabeaacaaIOaGaamOBaiaaiMcadaahaaqabeaacqGH RaWkaaaabeqdcqGHRiI8aOWaa8quaeqaleaatuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGaaGymaaqa aiabgUcaRaaaaeqaniabgUIiYdGccaaIOaGaam4samaaBaaaleaacq aHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaGikaiabe67a4jaaiYca caWGZbGaaGykaiaayIW7cqqHGoaudaqhaaWcbaGaamiEamaaBaaaba GaaGymaaqabaaabaGaeq4SdCgaaOGaam4zaiaaiIcacqaH+oaEcaaI SaGaamiCaiabgkHiTiaadohacaaIPaGaaGykaiaayIW7caWGKbGaam 4CaiaayIW7caWGKbGaam4uaiaaiIcacqaH+oaEcaaIPaGaaGOlaaaa @6D61@

В последнем равенстве воспользовались обозначением (13). Но x ˜ , ξ ˜ =x,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4daaiaaqaaiaadIhaaiaawo WaaiaaiYcadaaiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGypaiab gMYiHlaadIhacaaISaGaeqOVdGNaeyOkJepaaa@41FA@ , поэтому внутренний интеграл представляет собой классическую свертку по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ . В результате

( K γ # g*f) γ (x)= S 1 (n) + Π x 1 γ ( K γ [f](ξ,p)*g(ξ,p))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakiabfc6aqnaaDaaaleaaca WG4bWaaSbaaeaacaaIXaaabeaaaeaacqaHZoWzaaGccaaIOaGaam4s amaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaGikai abe67a4jaaiYcacaWGWbGaaGykaiaaiQcacaWGNbGaaGikaiabe67a 4jaaiYcacaWGWbGaaGykaiaaiMcacaaMi8UaamizaiaadofacaaIOa GaeqOVdGNaaGykaiaai6caaaa@63E9@

Полученное выражение есть двойственный оператор к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова от свертки функций по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ , т.е.

( K γ # g*f) γ (x)= K γ # ( K γ (ξ,p)*g(ξ,p)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypaiaadUeadaWgaa WcbaGaeq4SdCgabeaakmaaCaaaleqabaGaaG4iaaaakiaaiIcacaWG lbWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaeqOVdGNaaGilaiaadc hacaaIPaGaaGOkaiaadEgacaaIOaGaeqOVdGNaaGilaiaadchacaaI PaGaaGykaiaai6caaaa@51AF@

Доказательство закончено.

×

Об авторах

Лев Николаевич Ляхов

Воронежский государственный университет; Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Автор, ответственный за переписку.
Email: levnlya@mail.ru
Россия, Воронеж; Липецк

Владимир Анатольевич Калитвин

Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Email: kalitvin@gmail.com
Россия, Липецк

Марина Геннадьевна Лапшина

Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Email: marina.lapsh@ya.ru
Россия, Липецк

Список литературы

  1. Гельфанд И. М., Гиндикин С. Г., Граев М. И. Избранные задачи интегральной геометрии. — М.: Добросвет, 2007.
  2. Гельфанд И. М., Граев М. И., Виленкин Н. Я. Интегральная геометрия и связанные с ней вопросы теории представлений. — М.: ГИФМЛ, 1962.
  3. Гельфанд И. М., Шапиро З. Я. Однородные функции и их приложения// Усп. мат. наук. — 1955. — 10, № 3. — С. 3–70.
  4. Киприянов И. А. Сингулярные эллиптические краевые задачи. — M.: Наука, 1997.
  5. Киприянов И. А., Ляхов Л. Н. О преобразованиях Фурье, Фурье—Бесселя и Радона// Докл. АН СССР. — 1998. — 360, № 2. — С. 157–160.
  6. Левитан Б. М. Разложение в ряды и интегралы Фурье по функциям Бесселя// Усп. мат. наук. — 1951. — 6, № 2 (42). — С. 102–143.
  7. Ляхов Л. Н. О преобразовании Радона—Киприянова сферически симметричных функций// Докл. РАН. — 2008. — 419, № 3. — С. 315–319.
  8. Ляхов Л. Н. Преобразование Киприянова—Радона// Тр. Мат. ин-та им. В. А. Стеклова РАН. — 2005. — 248. — С. 144–152.
  9. Ляхов Л. Н. Построение ядер Дирихле и Валле-Пуссена—Никольского для j-бесселевых интегралов Фурье// Тр. Моск. мат. о-ва. — 2015. — 76, № 1. — С. 67–84.
  10. Ляхов Л. Н., Санина Е. Л. Дифференциальные и интегральные операции в скрытой сферической симметрии и размерность кривой Коха// Мат. заметки. — 2023. — 113, № 4. — С. 527–537.
  11. Хелгасон С. Преобразование Радона. — М.: Мир, 1983.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ляхов Л.Н., Калитвин В.А., Лапшина М.Г., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».