Обобщенные формулы Римана решения первой смешанной задачи для общего телеграфного уравнения с переменными коэффициентами в первой четверти плоскости

Обложка

Цитировать

Полный текст

Аннотация

Известным методом Римана и новым методом компенсации граничного режима правой частью уравнения получены формулы Римана единственного и устойчивого классического решения первой смешанной задачи для линейного общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. Из постановки смешанной задачи, определения классических решений и установленного критерия гладкости правой части уравнения выведен её критерий корректности по Адамару. Этот критерий корректности состоит из требований гладкости и трёх условий согласования правой части уравнения, граничного и начальных данных. Подтверждена справедливость полученных формул Римана и критерия корректности тем, что доказано их совпадение с известными формулами классического решения и критерием корректности для модельного телеграфного уравнения.

Полный текст

1. Введение. В настоящей работе впервые явно решена и полностью изучена корректность по Адамару (существование, единственность и устойчивость) первой смешанной задачи для линейного общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости для классических решений. Выведены обобщенные формулы типа Римана её единственного и устойчивого классического решения и установлен критерий (необходимые и достаточные условия) её корректности во множестве классических решений (теорема 3.1). Этот критерий корректности состоит из требований гладкости на правую часть уравнения, граничное и начальные данные и трёх условий согласования граничного режима с начальными условиями и уравнением. В настоящей статье (теорема 4.1) с помощью вычисленной функции Римана доказано, что в случае модельного телеграфного уравнения эти обобщенные формулы типа Римана и критерий корректности первой смешанной задачи из теоремы 3.1 совпадают с уже известными результатами из статьи [5]. В ней ранее автором настоящей работы были получены явные формулы классического решения, часть критерия корректности и доказана теорема существования единственного и устойчивого классического решения первой смешанной задачи для общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. В теореме 3.1 настоящей работы вывод полного критерия корректности на правую часть телеграфного уравнения с переменными коэффициентами использует критерий корректности [15, 16]. Результаты из [5] и настоящей работы нами распространены <<методом вспомогательных смешанных задач для полуограниченной струны>> (см. [6]) на первую смешанную задачу для модельного и общего телеграфных уравнений с переменными коэффициентами в полуполосе плоскости в статьях [17, 18].

В работе автора [5] обобщались результаты кандидатской диссертации [1], в которой первая смешанная задача для однородного уравнения в полуполосе плоскости, периодическими продолжениями исходных данных задачи и коэффициентов уравнения при соответствующих предположениях на них заменяется задачей Коши для него в верхней полуплоскости. Глобальная теорема корректности первой смешанной задачи для более общего ( a 1 a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO GaeyiyIKRaamyyamaaBaaaleaacaaIYaaabeaaaaa@3729@  ) волнового уравнения на отрезке, но с постоянными коэффициентами имеется в [7]. В этой статье введено понятие глобальных теорем корректности линейных краевых задач и с помощью леммы Цорна доказана теорема (см. [7, теорема 1]) о существовании их глобальных теорем корректности. Глобальными называются теоремы корректности краевых задач с критериями (необходимыми и достаточными условиями) их корректности по Адамару. Теорема 1 из [7] утверждает: каждая корректно поставленная линейная краевая задача для дифференциального уравнения в частных производных имеет глобальную теорему её корректной разрешимости по Адамару в соответствующей паре локально выпуклых топологических векторных пространств.

Результаты настоящей работы обобщают работы [3, 12–14], в которых рассматривалась первая смешанная задача для простейшего ( a=const>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaadogacaWGVbGaam OBaiaadohacaWG0bGaaGOpaiaaicdaaaa@39AC@ , b=c=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGypaiaadogacaaI9aGaaG imaaaa@35D4@ , q=q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiMcaaaa@36D2@  ) телеграфного уравнения (2.1). В диссертации [14] установлены необходимые и достаточные условия на начальные данные и только достаточные условия на правую часть уравнения для классического решения первой смешанной задачи. Согласно [3, 7]] необходимые условия f(0,t)=f(π,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamOzaiaaiIcacqaHapaCcaaISaGaamiDaiaa iMcacaaI9aGaaGimaaaa@3E7A@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , на правую часть f(x,t)C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikamaanaaabaGaamyuaaaacaaI Paaaaa@3B51@  уравнения колебаний струны из [14] являются лишь одними из достаточных (необязательных) условий корректности первой смешанной задачи. Здесь одними из необходимых (обязательных) условий служат условия согласования f(0,0)=f(π,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaaG imaiaaiMcacaaI9aGaamOzaiaaiIcacqaHapaCcaaISaGaaGimaiaa iMcacaaI9aGaaGimaaaa@3DFC@  правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  с нулевыми начальными и граничными данными. В статьях [12, 13] для волнового уравнения найдена формула и необходимые и достаточные условия на начальные данные для обобщенного (почти классического) решения смешанной задачи, предполагая его единственность. Это решение удовлетворяет уравнению почти всюду по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ .

2. Постановка основной первой смешанной задачи. В первой четверти G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  решить и вывести критерий корректности первой смешанной задачи

Lu(x,t) u tt (x,t) a 2 (x,t) u xx (x,t)+b(x,t) u t (x,t)+c(x,t) u x (x,t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaayIW7caWG1bGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacqGHHjIUcaWG1bWaaSbaaSqaaiaadshacaWG0b aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyOeI0Iaamyy amaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgUcaRiaadkgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiDaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadogacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRaaa@7303@

+q(x,t)u(x,t)=f(x,t),(x,t) G ˙ = 0,+ × 0,+ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGXbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaG ilaiaaywW7caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolqa dEeagaGaamaaBaaaleaacqGHEisPaeqaaOGaaGypamaajmcabaGaaG imaiaaiYcacqGHRaWkcqGHEisPaiaaw2facaGLBbaacqGHxdaTdaqc JaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLDbGaay5waaGaaG ilaaaa@5C13@  (2.1)

u | t=0 =φ(x), u t | t=0 =ψ(x),x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG0b GaaGypaiaaicdaaeqaaOGaaGypaiabeA8aQjaaiIcacaWG4bGaaGyk aiaaiYcacaaMf8UaamyDamaaBaaaleaacaWG0baabeaakiaaiYhada WgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2dacqaHipqEcaaI OaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacaaI+aGaaGimaiaaiY caaaa@4DE6@  (2.2)

u | x=0 =μ(t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG4b GaaGypaiaaicdaaeqaaOGaaGypaiabeY7aTjaaiIcacaWG0bGaaGyk aiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaaaa@40C1@  (2.3)

где коэффициенты уравнения a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вещественные функции и исходные данные задачи f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданные функции своих переменных x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ . Количеством нижних индексов функций мы обозначаем порядки их соответствующих частных производных.

Пусть C k (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaWGRbaaaO GaaGikaiabfM6axjaaiMcaaaa@369F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  множество k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  раз непрерывно дифференцируемых функций на подмножестве Ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334B@ , C(Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axjaaiMcaaa a@3578@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  множество непрерывных функций на Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHckcZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGa aGOmaaaaaaa@40E7@  и 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@3D5D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  плоскость.

Определение 2.1. Классическим решением смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) называется непрерывная ограниченная функция c непрерывными и ограниченными первыми и вторыми частными производными на G = 0,+ × 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba GccaaI9aWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5w aiaawUfaaiabgEna0oaajicabaGaaGimaiaaiYcacqGHRaWkcqGHEi sPaiaawUfacaGLBbaaaaa@42BE@ , т.е. u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@ , удовлетворяющая уравнению (2.1) на G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  в обычном смысле, а начальным условиям (2.2) и граничному режиму (2.3) в смысле значений пределов u( x ˙ , t ˙ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiqadIhagaGaaiaaiY caceWG0bGbaiaacaaIPaaaaa@36DA@  и её производной u t ˙ ( x ˙ , t ˙ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiqadshagaGaaa qabaGccaaIOaGabmiEayaacaGaaGilaiqadshagaGaaiaaiMcaaaa@3812@  по t ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG0bGbaiaaaaa@32BF@  во внутренних точках ( x ˙ , t ˙ ) G ˙ = 0,+ × 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmiEayaacaGaaGilaiqads hagaGaaiaaiMcacqGHiiIZceWGhbGbaiaadaWgaaWcbaGaeyOhIuka beaakiaai2dadaqcJaqaaiaaicdacaaISaGaey4kaSIaeyOhIukaca GLDbGaay5waaGaey41aq7aaKWiaeaacaaIWaGaaGilaiabgUcaRiab g6HiLcGaayzxaiaawUfaaaaa@4874@ , стремящихся к соответствующим граничным точкам (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@ .

Требуется найти в явном виде классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  и установить критерий корректности на правую часть f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , начальные φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и граничное μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  данные для ее однозначной везде разрешимости.

Из постановки этой смешанной задачи и определения 2.1 её классических решений сразу вытекают следующие необходимые условия гладкости исходных данных:

fC( G ),φ C 2 0,+ ,ψ C 1 0,+ ,μ C 2 0,+ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7cqaH gpGAcqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaaca aIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaiaaiYcacaaM f8UaeqiYdKNaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakmaaji cabaGaaGimaiaaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaacaaI SaGaaGzbVlabeY7aTjabgIGiolaadoeadaahaaWcbeqaaiaaikdaaa GcdaqcIaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLBbGaay5w aaGaaGOlaaaa@60D5@  (2.4)

Ниже в теореме 3.1 возьмем дополнительные необходимые и достаточные требования гладкости (3.1) на fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  из [15, 16], где ищутся классические решения неоднородного модельного телеграфного уравнения с минимальной гладкостью правой части.

Полагая t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  соответственно в граничном режиме (2.3), первой и второй производных по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  от граничного режима (2.3), с помощью начальных условий (2.2) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  и уравнения (2.1) при x=t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadshacaaI9aGaaG imaaaa@35FB@  выводим необходимые условия согласования:

φ(0)=μ(0),ψ(0)= μ (0), Sf(0,0)+ a 2 (0,0) φ (0)b(0,0)ψ(0)c(0,0) φ (0)q(0,0)φ(0)= μ (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaeqOXdOMaaGikai aaicdacaaIPaGaaGypaiabeY7aTjaaiIcacaaIWaGaaGykaiaaiYca caaMf8UaeqiYdKNaaGikaiaaicdacaaIPaGaaGypaiqbeY7aTzaafa GaaGikaiaaicdacaaIPaGaaGilaaqaaiaadofacqGHHjIUcaWGMbGa aGikaiaaicdacaaISaGaaGimaiaaiMcacqGHRaWkcaWGHbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaaGimaiaaiMcacuaH gpGAgaqbgaqbaiaaiIcacaaIWaGaaGykaiabgkHiTiaadkgacaaIOa GaaGimaiaaiYcacaaIWaGaaGykaiabeI8a5jaaiIcacaaIWaGaaGyk aiabgkHiTiaadogacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiqbeA 8aQzaafaGaaGikaiaaicdacaaIPaGaeyOeI0IaamyCaiaaiIcacaaI WaGaaGilaiaaicdacaaIPaGaeqOXdOMaaGikaiaaicdacaaIPaGaaG ypaiqbeY7aTzaafyaafaGaaGikaiaaicdacaaIPaGaaGOlaaaaaaa@787E@  (2.5)

Количеством штрихов над функциями одной переменной мы обозначаем порядки их обыкновенных производных по этой переменной.

Уравнение (2.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  имеет характеристические дифференциальные уравнения

dx=( 1) i a(x,t)dt,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamiEaiaai2dacaaIOaGaey OeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGccaWGHbGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcacaaMf8 UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@4651@  (2.6)

которым в плоскости 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@3D5D@  переменных x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  соответствуют два различных семейства неявных характеристик g i (x,t)= C i , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaakiaaiYcacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@496E@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ . Если коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , то переменная t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на характеристике g 1 (x,t)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaaIXaaabeaaaaa@3A21@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , строго убывает, а на характеристике g 2 (x,t)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaaIYaaabeaaaaa@3A23@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , строго возрастает вместе с ростом x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  в правой плоскости Oxt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEaiaadshaaaa@3487@ . Поэтому у неявных функций y i = g i (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadEgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaaa@3AC7@ , x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , существуют явные строго монотонные обратные функции x= h i { y i ,t} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadIgadaWgaaWcba GaamyAaaqabaGccaaI7bGaamyEamaaBaaaleaacaWGPbaabeaakiaa iYcacaWG0bGaaGyFaaaa@3B6F@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , и t= h (i) [x, y i ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadIgadaahaaWcbe qaaiaaiIcacaWGPbGaaGykaaaakiaaiUfacaWG4bGaaGilaiaadMha daWgaaWcbaGaamyAaaqabaGccaaIDbaaaa@3C95@ , x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , для которых на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выполняются следующие тождества обращения из статьи [5]:

5 g i ( h i { y i ,t},t)= y i ,t0, h i { g i (x,t),t}=x,x0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI1aGaam4zamaaBaaaleaacaWGPb aabeaakiaaiIcacaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaG4Eaiaa dMhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamiDaiaai2hacaaISa GaamiDaiaaiMcacaaI9aGaamyEamaaBaaaleaacaWGPbaabeaakiaa iYcacaaMf8UaamiDaiabgwMiZkaaicdacaaISaGaaGzbVlaadIgada WgaaWcbaGaamyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadshaca aI9bGaaGypaiaadIhacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGa aGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaa a@64C6@  (2.7)

g i (x, h (i) [x, y i ])= y i ,x0, h (i) [x, g i (x,t)]=t,t0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiAamaaCaaaleqabaGaaGikaiaadMga caaIPaaaaOGaaG4waiaadIhacaaISaGaamyEamaaBaaaleaacaWGPb aabeaakiaai2facaaIPaGaaGypaiaadMhadaWgaaWcbaGaamyAaaqa baGccaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGilaiaaywW7ca WGObWaaWbaaSqabeaacaaIOaGaamyAaiaaiMcaaaGccaaIBbGaamiE aiaaiYcacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIDbGaaGypaiaadshacaaISaGaaGzbVlaa dshacqGHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGypaiaaigdaca aISaGaaGOmaiaaiYcaaaa@665B@  (2.8)

h i { y i , h (i) [x, y i ]}=x,x0, h (i) [ h i { y i ,t}, y i ]=t,t0,i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamiAamaa CaaaleqabaGaaGikaiaadMgacaaIPaaaaOGaaG4waiaadIhacaaISa GaamyEamaaBaaaleaacaWGPbaabeaakiaai2facaaI9bGaaGypaiaa dIhacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGilaiaaywW7ca WGObWaaWbaaSqabeaacaaIOaGaamyAaiaaiMcaaaGccaaIBbGaamiA amaaBaaaleaacaWGPbaabeaakiaaiUhacaWG5bWaaSbaaSqaaiaadM gaaeqaaOGaaGilaiaadshacaaI9bGaaGilaiaadMhadaWgaaWcbaGa amyAaaqabaGccaaIDbGaaGypaiaadshacaaISaGaaGzbVlaadshacq GHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGa aGOmaiaai6caaaa@69F7@  (2.9)

Если коэффициент a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , то функции g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaaaa @3869@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaa aa@33D5@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [1]).

Замечание 2.1. В случае a(x,t)=a=const>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyyaiaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaai6dacaaIWaaaaa@3F6A@  ими служат функции g 1 (x,t)=x+at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamiEaiabgUca RiaadggacaWG0baaaa@3C30@ , g 2 (x,t)=xat MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamiEaiabgkHi TiaadggacaWG0baaaa@3C3C@ , h 1 { y 1 ,t}= y 1 at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaa i2hacaaI9aGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadg gacaWG0baaaa@3EC7@ , h 2 { y 2 ,t}= y 2 +at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDaiaa i2hacaaI9aGaamyEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadg gacaWG0baaaa@3EBF@ , h (1) [x, y 1 ]=( y 1 x)/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamiEaiaaiYcacaWG5bWaaSbaaSqaaiaa igdaaeqaaOGaaGyxaiaai2dacaaIOaGaamyEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadIhacaaIPaGaaG4laiaadggaaaa@4213@ , h (2) [x, y 2 ]=(x y 2 )/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaamiEaiaaiYcacaWG5bWaaSbaaSqaaiaa ikdaaeqaaOGaaGyxaiaai2dacaaIOaGaamiEaiabgkHiTiaadMhada WgaaWcbaGaaGOmaaqabaGccaaIPaGaaG4laiaadggaaaa@4216@  (см. [10]).

Определение 2.2. Характеристика g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@ , в которой a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , называется критической для уравнения (2.1) в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

Критическая характеристика разбивает четверть плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  на два множества

G ={(x,t) G : g 2 (x,t)> g 2 (0,0)}, G + ={(x,t) G : g 2 (x,t) g 2 (0,0)}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba GccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyic I4Saam4ramaaBaaaleaacqGHEisPaeqaaOGaaGOoaiaadEgadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa i6dacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISa GaaGimaiaaiMcacaaI9bGaaGilaiaaywW7caWGhbWaaSbaaSqaaiab gUcaRaqabaGccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaeyicI4Saam4ramaaBaaaleaacqGHEisPaeqaaOGaaGOoaiaa dEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgsMiJkaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa aGimaiaaiYcacaaIWaGaaGykaiaai2hacaaIUaaaaa@68FF@

На этих множествах первая смешанная задача (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) может иметь разные единственные согласованные классические решения и критерии корректности по Адамару. В отличие от смешанных (начально-граничных) задач, в задаче Коши обычно нет условий согласования.

3. Исследование корректности основной смешанной задачи. Если в уравнении (2.1) продолжить функцию a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B4@  чётным образом на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ , то характеристики g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , будут заданы на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  плоскости Oxt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEaiaadshaaaa@3487@ .

Обобщенные формулы Римана классического решения и критерий корректности описаны в следующей теореме.

Теорема 3.1 (см. [19]). Пусть a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3D04@ . Первая смешанная задача (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (2.3) в области G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  имеет единственное и устойчивое по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  тогда и только тогда, когда справедливы требования гладкости (2.4),

H i (x,t) 0 t f(| h i { g i (x,t),τ}|,τ) a(| h i { g i (x,t),τ}|,τ) h i { g i (x,t),τ} g i dτ C 1 ( G ),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHHjIUdaWdXbqabSqa aiaaicdaaeaacaWG0baaniabgUIiYdGcdaWcaaqaaiaadAgacaaIOa GaaGiFaiaadIgadaWgaaWcbaGaamyAaaqabaGccaaI7bGaam4zamaa BaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiabes8a0jaai2hacaaI8bGaaGilaiabes8a0jaaiMcaaeaa caWGHbGaaGikaiaaiYhacaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaG 4EaiaadEgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGiFaiaaiYcacqaHep aDcaaIPaaaaiaayIW7daWcaaqaaiabgkGi2kaadIgadaWgaaWcbaGa amyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaeaa cqGHciITcaWGNbWaaSbaaSqaaiaadMgaaeqaaaaakiaayIW7caWGKb GaeqiXdqNaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIca caWGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7ca WGPbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaaa@8A41@  (3.1)

и условия согласования (2.5). Классическим решением задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  является функция

u (x,t)= (auv)( h 2 { g 2 (x,t),0},0)+(auv)( h 1 { g 1 (x,t),0},0) 2a(x,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa iIcacaWGHbGaamyDaiaadAhacaaIPaGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaGaey4kaSIaaGikaiaadggacaWG1bGaamODaiaa iMcacaaIOaGaamiAamaaBaaaleaacaaIXaaabeaakiaaiUhacaWGNb WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcaaeaacaaIYa GaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaiabgUcaRaaa @64F5@

+ 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4Eai aadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqiYdK NaaGikaiaadohacaaIPaGaamODaiaaiIcacaWGZbGaaGilaiaaicda caaIPaGaeyOeI0IaeqOXdOMaaGikaiaadohacaaIPaGaamODamaaBa aaleaacqaHepaDaeqaaOGaaGikaiaadohacaaISaGaaGimaiaaiMca cqGHRaWkcaWGIbGaaGikaiaadohacaaISaGaaGimaiaaiMcacqaHgp GAcaaIOaGaam4CaiaaiMcacaWG2bGaaGikaiaadohacaaISaGaaGim aiaaiMcacaaIDbGaaGjcVlaadsgacaWGZbGaey4kaScaaa@7B24@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f(s,τ)v(s,τ;x,t)ds,(x,t) G , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc caWGMbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadAhacaaIOa Gaam4CaiaaiYcacqaHepaDcaaI7aGaaGjcVlaadIhacaaISaGaamiD aiaaiMcacaaMi8UaamizaiaadohacaaISaGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaISaaaaa@7945@  (3.2)

u + (x,t)= (auv)( h 1 { g 1 (x,t),0},0)(auv)( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) 2a(x,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaayIW7caaI9aGaaGjc VpaalaaabaGaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaam iAamaaBaaaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaa igdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaG imaiaai2hacaaISaGaaGimaiaaiMcacqGHsislcaaIOaGaamyyaiaa dwhacaWG2bGaaGykaiaaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaa iYcacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBb GaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaG yFaiaaiYcacaaIWaGaaGykaaqaaiaaikdacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcaaaGaey4kaScaaa@7349@

+ 1 2a(x,t) h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaa qaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaa caaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaig daaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aO GaaG4waiabeI8a5jaaiIcacaWGZbGaaGykaiaadAhacaaIOaGaam4C aiaaiYcacaaIWaGaaGykaiabgkHiTiabeA8aQjaaiIcacaWGZbGaaG ykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGil aiaaicdacaaIPaGaey4kaSIaamOyaiaaiIcacaWGZbGaaGilaiaaic dacaaIPaGaeqOXdOMaaGikaiaadohacaaIPaGaamODaiaaiIcacaWG ZbGaaGilaiaaicdacaaIPaGaaGyxaiaayIW7caWGKbGaam4CaiabgU caRaaa@862C@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f (|s|,τ)v(|s|,τ;|x|,t)ds+μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGjcVlaaiYhacaWG4bGaaGiFaiaaiYcacaWG0bGaaGykai aayIW7caWGKbGaam4CaiabgUcaRiabeY7aTjaaiIcacaWG0bGaaGyk aiabgkHiTaaa@7C77@

1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f (|s|,τ)v(|s|,τ;0,t)ds,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGjcVlaaicdacaaISaGaamiDaiaaiMcacaaMi8Uaamizai aadohacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyicI4Saam4ramaaBaaaleaacqGHRaWkaeqaaOGaaGilaaaa@7DFA@  (3.3)

где f (x,t)=f(x,t) f μ (x,t)+ f (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHsislcaWGMbWaaSbaaSqaaiabeY7aTbqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadAgadaahaaWcbeqa aiaaiIcacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaaaaa@4CA0@ , f μ (x,t)=Lμ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabeY7aTbqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2datuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=jrimjaayIW7cqaH8o qBcaaIOaGaamiDaiaaiMcaaaa@499E@ , f (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaWbaaSqabeaacaaIOaGaaG imaiaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@390F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  сужение на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  решения системы (3.27) интегрального уравнения Вольтерра второго рода и соответствующего линейного алгебраического уравнения, а функции Римана v(s,τ)=v(s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWG2bGaaGikaiaadohacaaISaGaeqiXdqNa aG4oaiaayIW7caWG4bGaaGilaiaadshacaaIPaaaaa@432C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  классические решения задач Гурса (3.10), (3.13) в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.20), (3.21) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ .

Доказательство. Достаточность. Сначала выведем формулы (3.2) и (3.3) формального решения задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Затем установим его дважды непрерывную дифференцируемость, единственность и устойчивость в нормах (3.29) и (3.30).

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Множество G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ Уравнение (2.1) для любых функций u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@394A@  умножаем на любые функции v C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@394B@  и, используя очевидные равенства

u tt v=( u t v ) t u t v t =( u t v ) t (u v t ) t +u v tt , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshacaWG0b aabeaakiaayIW7caWG2bGaaGypaiaaiIcacaWG1bWaaSbaaSqaaiaa dshaaeqaaOGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadshaaeqaaO GaeyOeI0IaamyDamaaBaaaleaacaWG0baabeaakiaayIW7caWG2bWa aSbaaSqaaiaadshaaeqaaOGaaGypaiaaiIcacaWG1bWaaSbaaSqaai aadshaaeqaaOGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadshaaeqa aOGaeyOeI0IaaGikaiaadwhacaaMi8UaamODamaaBaaaleaacaWG0b aabeaakiaaiMcadaWgaaWcbaGaamiDaaqabaGccqGHRaWkcaWG1bGa aGjcVlaadAhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGilaaaa@5DD8@

a 2 u xx v=( u x a 2 v ) x u x ( a 2 v) x =( u x a 2 v ) x (u ( a 2 v) x ) x +u ( a 2 v) xx , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaWG4bGaamiEaaqabaGccaaMi8UaamODaiaa i2dacaaIOaGaamyDamaaBaaaleaacaWG4baabeaakiaayIW7caWGHb WaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiE aaqabaGccqGHsislcaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGjcVl aaiIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWg aaWcbaGaamiEaaqabaGccaaI9aGaaGikaiaadwhadaWgaaWcbaGaam iEaaqabaGccaaMi8UaamyyamaaCaaaleqabaGaaGOmaaaakiaadAha caaIPaWaaSbaaSqaaiaadIhaaeqaaOGaeyOeI0IaaGikaiaadwhaca aMi8UaaGikaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG2bGaaGyk amaaBaaaleaacaWG4baabeaakiaaiMcadaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWG1bGaaGjcVlaaiIcacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaG ilaaaa@6D4D@

b u t v=(ubv ) t u (bv) t ,c u x v=(ucv ) x u (cv) x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaamyDamaaBaaaleaacaWG0b aabeaakiaayIW7caWG2bGaaGypaiaaiIcacaWG1bGaamOyaiaadAha caaIPaWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0IaamyDaiaayIW7ca aIOaGaamOyaiaadAhacaaIPaWaaSbaaSqaaiaadshaaeqaaOGaaGil aiaaysW7caaMe8Uaam4yaiaadwhadaWgaaWcbaGaamiEaaqabaGcca aMi8UaamODaiaai2dacaaIOaGaamyDaiaadogacaWG2bGaaGykamaa BaaaleaacaWG4baabeaakiabgkHiTiaadwhacaaMi8UaaGikaiaado gacaWG2bGaaGykamaaBaaaleaacaWG4baabeaakiaaiYcaaaa@5DD4@

приходим к тождеству

(Lu)vu(Mv)= H(u,v) t + K(u,v) x u,v C 2 ( G ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWFsectcaaMi8UaamyDaiaaiMcacaaM i8UaamODaiabgkHiTiaadwhacaaMi8UaaGikaiab=ntinjaayIW7ca WG2bGaaGykaiaai2dadaWcaaqaaiabgkGi2kaadIeacaaIOaGaamyD aiaaiYcacaWG2bGaaGykaaqaaiabgkGi2kaadshaaaGaey4kaSYaaS aaaeaacqGHciITcaWGlbGaaGikaiaadwhacaaISaGaamODaiaaiMca aeaacqGHciITcaWG4baaaiaaywW7cqGHaiIicaWG1bGaaGilaiaadA hacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadEea daWgaaWcbaGaeyOeI0cabeaakiaaiMcacaaISaaaaa@6ABB@  (3.4)

где

Mv= v tt (x,t) ( a 2 (x,t)v(x,t)) xx (b(x,t)v(x,t)) t (c(x,t)v(x,t)) x +q(x,t)v(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinjaayIW7caWG2bGaaGypaiaadAhadaWg aaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacqGHsislcaaIOaGaamyyamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4bGaamiEaaqabaGc cqGHsislcaaIOaGaamOyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamODaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaBaaa leaacaWG0baabeaakiabgkHiTiaaiIcacaWGJbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG2bGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaIPaWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamyCaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGilaaaa@7D25@

H(u,v)= u t vu v t +buv=(uv ) t u[2 v t bv], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadwhacaaISaGaam ODaiaaiMcacaaI9aGaamyDamaaBaaaleaacaWG0baabeaakiaayIW7 caWG2bGaeyOeI0IaamyDaiaayIW7caWG2bWaaSbaaSqaaiaadshaae qaaOGaey4kaSIaamOyaiaadwhacaWG2bGaaGypaiaaiIcacaWG1bGa amODaiaaiMcadaWgaaWcbaGaamiDaaqabaGccqGHsislcaWG1bGaaG 4waiaaikdacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0IaamOy aiaadAhacaaIDbGaaGilaaaa@54E4@  (3.5)

K(u,v)= u x a 2 v+u ( a 2 v) x +cuv= ( a 2 uv) x +u[2( a 2 v ) x +cv]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaaGikaiaadwhacaaISaGaam ODaiaaiMcacaaI9aGaeyOeI0IaamyDamaaBaaaleaacaWG4baabeaa kiaayIW7caWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiabgUcaRi aadwhacaaMi8UaaGikaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG 2bGaaGykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaWG1b GaamODaiaai2dacqGHsislcaaIOaGaamyyamaaCaaaleqabaGaaGOm aaaakiaadwhacaWG2bGaaGykamaaBaaaleaacaWG4baabeaakiabgU caRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiEaaqabaGccqGHRaWkca WGJbGaamODaiaai2facaaIUaaaaa@60E2@  (3.6)

Дифференциальный оператор M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinbaa@3C6C@ , который является сопряженным оператором к оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimbaa@3C4A@  в смысле численнозначных распределений Шварца D'( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ejaaiEcacaaIOaGaam4ramaaBaaaleaa cqGHsislaeqaaOGaaGykaaaa@4108@  (см. [2, 22]), обычно называют формально сопряженным оператором к оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimbaa@3C4A@ . В силу левой ориентации плоскости Oτs MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqNaam4Caaaa@354E@  на рис. 1 по известной формуле Грина двойной интеграл от тождества (3.4) по характеристическому треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  с любой вершиной M(x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgkHiTaqabaaaaa@3A09@  и вершинами его основания P( h 2 { g 2 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaaaa@40B1@  и Q( h 1 { g 1 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIgadaWgaaWcba GaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaaaa@40B0@  равен

ΔMPQ [(Lu)vu(Mv)]dsdτ= ΔMPQ [ H(u,v) τ + K(u,v) s ]dsdτ= l + [K(u,v)dτH(u,v)ds], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabgs5aejaad2eaca WGqbGaamyuaaqab0Gaey4kIipakiaaiUfacaaIOaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiqaacqWFsectcaWG1bGaaGykai aayIW7caWG2bGaeyOeI0IaamyDaiaayIW7caaIOaGae83mH0KaamOD aiaaiMcacaaIDbGaamizaiaadohacaaMi8Uaamizaiabes8a0jaai2 dadaWdrbqabSqaaiabgs5aejaad2eacaWGqbGaamyuaaqab0Gaey4k IipakiaaiUfadaWcaaqaaiabgkGi2kaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaaqaaiabgkGi2kabes8a0baacqGHRaWkdaWcaaqa aiabgkGi2kaadUeacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaaqaai abgkGi2kaadohaaaGaaGyxaiaadsgacaWGZbGaaGjcVlaadsgacqaH epaDcaaI9aWaa8quaeqaleaacaWGSbWaaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakiaaiUfacaWGlbGaaGikaiaadwhacaaISaGaamOD aiaaiMcacaWGKbGaeqiXdqNaeyOeI0IaamisaiaaiIcacaWG1bGaaG ilaiaadAhacaaIPaGaamizaiaadohacaaIDbGaaGilaaaa@8F24@  (3.7)

где l + =QMMPPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaWbaaSqabeaacqGHRaWkaa GccaaI9aGaamyuaiaad2eacqGHQicYcaWGnbGaamiuaiabgQIiilaa dcfacaWGrbaaaa@3CC8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  контур криволинейного треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с положительным направлением обхода.

 

Рис. 1. Криволинейный характеристический треугольник ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ .

 

В криволинейном интеграле (3.7) с помощью выражений (3.5), (3.6), дифференциального уравнения характеристики из (2.6) при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  и очевидных равенств

(uv) τ a=(auv ) τ a τ uv, ( a 2 uv) s (1/a)=(auv ) s a 2 uv (1/a) s =(auv ) s + a s uv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaayIW7caWG2bGaaG ykamaaBaaaleaacqaHepaDaeqaaOGaamyyaiaai2dacaaIOaGaamyy aiaayIW7caWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiabes8a0b qabaGccqGHsislcaWGHbWaaSbaaSqaaiabes8a0bqabaGccaWG1bGa aGjcVlaadAhacaaISaGaaGzbVlaaiIcacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaamyDaiaayIW7caWG2bGaaGykamaaBaaaleaacaWGZbaa beaakiaaiIcacaaIXaGaaG4laiaadggacaaIPaGaaGypaiaaiIcaca WGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcadaWgaaWcbaGaam4C aaqabaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamyDai aayIW7caWG2bGaaGikaiaaigdacaaIVaGaamyyaiaaiMcadaWgaaWc baGaam4CaaqabaGccaaI9aGaaGikaiaadggacaaMi8UaamyDaiaayI W7caWG2bGaaGykamaaBaaaleaacaWGZbaabeaakiabgUcaRiaadgga daWgaaWcbaGaam4CaaqabaGccaWG1bGaaGjcVlaadAhaaaa@7D59@

 вычисляем интеграл вдоль характеристики QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  уравнения g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F27@ :

Q M [K(u,v)dτH(u,v)ds]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadgfaaeaacaWGnb aaniabgUIiYdGccaaIBbGaam4saiaaiIcacaWG1bGaaGilaiaadAha caaIPaGaamizaiabes8a0jabgkHiTiaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaiaadsgacaWGZbGaaGyxaiaai2daaaa@47A5@

= Q M [(uv ) τ adτ+ ( a 2 uv) s (1/a)ds]+ Q M (u[2 v τ bv]ds+u[2( a 2 v ) s +cv]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaWGrbaaba GaamytaaqdcqGHRiI8aOGaaG4waiaaiIcacaWG1bGaaGjcVlaadAha caaIPaWaaSbaaSqaaiabes8a0bqabaGccaaMi8UaamyyaiaayIW7ca WGKbGaeqiXdqNaey4kaSIaaGikaiaadggadaahaaWcbeqaaiaaikda aaGccaWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaaigdacaaIVaGaamyyaiaaiMcacaaMi8Uaamizaiaadoha caaIDbGaey4kaSYaa8qCaeqaleaacaWGrbaabaGaamytaaqdcqGHRi I8aOGaaGikaiaadwhacaaIBbGaaGOmaiaadAhadaWgaaWcbaGaeqiX dqhabeaakiabgkHiTiaadkgacaWG2bGaaGyxaiaayIW7caWGKbGaam 4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWaaWbaaSqa beaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaam4CaaqabaGccq GHRaWkcaWGJbGaamODaiaai2facaWGKbGaeqiXdqNaaGykaiaai2da aaa@792E@

= Q M d(auv)+ Q M (u[2 v τ +( a s b)v]ds+u[2( a 2 v ) s +(c a τ )v]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaWGrbaaba GaamytaaqdcqGHRiI8aOGaamizaiaaiIcacaWGHbGaaGjcVlaadwha caaMi8UaamODaiaaiMcacqGHRaWkdaWdXbqabSqaaiaadgfaaeaaca WGnbaaniabgUIiYdGccaaIOaGaamyDaiaayIW7caaIBbGaaGOmaiaa dAhadaWgaaWcbaGaeqiXdqhabeaakiabgUcaRiaaiIcacaWGHbWaaS baaSqaaiaadohaaeqaaOGaeyOeI0IaamOyaiaaiMcacaWG2bGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiI cacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWc baGaam4CaaqabaGccqGHRaWkcaaIOaGaam4yaiabgkHiTiaadggada WgaaWcbaGaeqiXdqhabeaakiaaiMcacaWG2bGaaGyxaiaadsgacqaH epaDcaaIPaGaaGypaaaa@6D2B@

=(auv)(M)(auv)(Q) 0 t u{4a v τ [ab4 a τ +c]v}dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaadggacaaMi8Uaam yDaiaayIW7caWG2bGaaGykaiaaiIcacaWGnbGaaGykaiabgkHiTiaa iIcacaWGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcacaaIOaGaam yuaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWG1bGaaG4EaiaaisdacaWGHbGaaGjcVlaadAhadaWgaa WcbaGaeqiXdqhabeaakiabgkHiTiaaiUfacaWGHbGaamOyaiabgkHi TiaaisdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccqGHRaWkcaWGJb GaaGyxaiaadAhacaaI9bGaaGjcVlaadsgacqaHepaDcaaIUaaaaa@65BA@  (3.8)

Здесь на характеристике QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  мы воспользовались характеристическим дифференциальным уравнением из (2.6) и для функций w C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CF@  новым представлением из

w s (s,τ)=( 1) i w τ (s,τ) a(s,τ) ,i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaaIOaGaeyOe I0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGccaaMi8+aaSaaae aacaWG3bWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYca cqaHepaDcaaIPaaabaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0j aaiMcaaaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaai6caaaa@53C4@

Поскольку на каждой из характеристик QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  переменные s= s i (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaamyAaaqabaGccaaIOaGaeqiXdqNaaGykaaaa@38C2@ , τ= τ i (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdq3aaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadohacaaIPaaaaa@398F@  являются взаимно зависимыми, т.е. соответственно при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  и i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  переменные s= h i { g i (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadIgadaWgaaWcba GaamyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaa a@4035@ , τ= h (i) [s, g i (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiAamaaCaaale qabaGaaGikaiaadMgacaaIPaaaaOGaaG4waiaadohacaaISaGaam4z amaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaaaa@415B@  согласно формулам обращения (2.7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.9), то эти представления вытекают из очевидных формул первых частных производных:

w s (s,τ(s))= w s (s,τ )| τ=τ(s) + w τ (s,τ )| τ=τ(s) τ (s)= w s (s,τ )| τ=τ(s) + (1) i w τ (s,τ )| τ=τ(s) /a(s,τ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGikaiaadohacaaIPaGaaGyk aiaai2dacaWG3bWaaSbaaSqaaiaadohaaeqaaOGaaGikaiaadohaca aISaGaeqiXdqNaaGykaiaaiYhadaWgaaWcbaGaeqiXdqNaaGypaiab es8a0jaaiIcacaWGZbGaaGykaaqabaGccqGHRaWkcaWG3bWaaSbaaS qaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa aGiFamaaBaaaleaacqaHepaDcaaI9aGaeqiXdqNaaGikaiaadohaca aIPaaabeaakiqbes8a0zaafaGaaGikaiaadohacaaIPaGaaGypaiaa dEhadaWgaaWcbaGaam4CaaqabaGccaaIOaGaam4CaiaaiYcacqaHep aDcaaIPaGaaGiFamaaBaaaleaacqaHepaDcaaI9aGaeqiXdqNaaGik aiaadohacaaIPaaabeaakiabgUcaRiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaamyAaaaakiaadEhadaWgaaWcbaGaeqiXdqha beaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI8bWaaSbaaS qaaiabes8a0jaai2dacqaHepaDcaaIOaGaam4CaiaaiMcaaeqaaOGa aG4laiaadggacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGilaa aa@8B45@

w τ (s(τ),τ)= w τ (s,τ )| s=s(τ) + w s (s,τ )| s=s(τ) s (τ)= w τ (s,τ )| s=s(τ) + (1) i w s (s,τ )| s=s(τ) a(s,τ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiabes8a0bqaba GccaaIOaGaam4CaiaaiIcacqaHepaDcaaIPaGaaGilaiabes8a0jaa iMcacaaI9aGaam4DamaaBaaaleaacqaHepaDaeqaaOGaaGikaiaado hacaaISaGaeqiXdqNaaGykaiaaiYhadaWgaaWcbaGaam4Caiaai2da caWGZbGaaGikaiabes8a0jaaiMcaaeqaaOGaey4kaSIaam4DamaaBa aaleaacaWGZbaabeaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiMca caaI8bWaaSbaaSqaaiaadohacaaI9aGaam4CaiaaiIcacqaHepaDca aIPaaabeaakiqadohagaqbaiaaiIcacqaHepaDcaaIPaGaaGypaiaa dEhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGilaiabes 8a0jaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaam4CaiaaiIca cqaHepaDcaaIPaaabeaakiabgUcaRiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaamyAaaaakiaadEhadaWgaaWcbaGaam4Caaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadohacaaIOaGaeqiXdqNaaGykaaqabaGccaWG HbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiYcaaaa@88F2@

так как τ (s)=( 1) i /a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaqbaiaaiIcacaWGZbGaaG ykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaaIVaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiM caaaa@415B@ , s (τ)=( 1) i a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGZbGbauaacaaIOaGaeqiXdqNaaG ykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@40A2@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , также ввиду формул (2.6). В последнем равенстве (3.8) для сведения криволинейного интеграла второго типа вдоль QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  к обыкновенному определенному интегралу мы применили параметрическое представление кривой QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@ : s= s 1 (τ)= h 1 { g 1 (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2dacaWGObWaaSba aSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaaa@45A9@ , τ=τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdqhaaa@360E@ , 0τt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaeyizIm QaamiDaaaa@389F@ .

Используя характеристическое уравнение из (2.6) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ , в (3.7) аналогично берем интеграл вдоль характеристики MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  с уравнением g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F29@ :

M P [K(u,v)dτH(u,v)ds]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaad2eaaeaacaWGqb aaniabgUIiYdGccaaIBbGaam4saiaaiIcacaWG1bGaaGilaiaadAha caaIPaGaamizaiabes8a0jabgkHiTiaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaiaadsgacaWGZbGaaGyxaiaai2daaaa@47A4@

= M P [(uv ) τ adτ+ ( a 2 uv) s (1/a)ds]+ M P (u[2 v τ bv]ds+u[2( a 2 v ) s +cv]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Yaa8qCaeqaleaaca WGnbaabaGaamiuaaqdcqGHRiI8aOGaaG4waiaaiIcacaWG1bGaaGjc VlaadAhacaaIPaWaaSbaaSqaaiabes8a0bqabaGccaaMi8Uaamyyai aayIW7caWGKbGaeqiXdqNaey4kaSIaaGikaiaadggadaahaaWcbeqa aiaaikdaaaGccaWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaado haaeqaaOGaaGikaiaaigdacaaIVaGaamyyaiaaiMcacaaMi8Uaamiz aiaadohacaaIDbGaey4kaSYaa8qCaeqaleaacaWGnbaabaGaamiuaa qdcqGHRiI8aOGaaGikaiaadwhacaaIBbGaaGOmaiaadAhadaWgaaWc baGaeqiXdqhabeaakiabgkHiTiaadkgacaWG2bGaaGyxaiaayIW7ca WGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWa aWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaam4Caa qabaGccqGHRaWkcaWGJbGaamODaiaai2facaWGKbGaeqiXdqNaaGyk aiaai2daaaa@7A19@

= M P d(auv)+ M P (u[2 v τ ( a s +b)v]ds+u[2( a 2 v ) s +(c+ a τ )v]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Yaa8qCaeqaleaaca WGnbaabaGaamiuaaqdcqGHRiI8aOGaamizaiaaiIcacaWGHbGaaGjc VlaadwhacaaMi8UaamODaiaaiMcacqGHRaWkdaWdXbqabSqaaiaad2 eaaeaacaWGqbaaniabgUIiYdGccaaIOaGaamyDaiaayIW7caaIBbGa aGOmaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiabgkHiTiaaiIcaca WGHbWaaSbaaSqaaiaadohaaeqaaOGaey4kaSIaamOyaiaaiMcacaWG 2bGaaGyxaiaayIW7caWGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaG OmaiaaiIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMca daWgaaWcbaGaam4CaaqabaGccqGHRaWkcaaIOaGaam4yaiabgUcaRi aadggadaWgaaWcbaGaeqiXdqhabeaakiaaiMcacaWG2bGaaGyxaiaa dsgacqaHepaDcaaIPaGaaGypaaaa@6E0B@

=(auv)(M)(auv)(P) 0 t u{4a v τ [ab4 a τ c]v}dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaadggacaaMi8Uaam yDaiaayIW7caWG2bGaaGykaiaaiIcacaWGnbGaaGykaiabgkHiTiaa iIcacaWGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcacaaIOaGaam iuaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWG1bGaaG4EaiaaisdacaWGHbGaaGjcVlaadAhadaWgaa WcbaGaeqiXdqhabeaakiabgkHiTiaaiUfacaWGHbGaamOyaiabgkHi TiaaisdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccqGHsislcaWGJb GaaGyxaiaadAhacaaI9bGaaGjcVlaadsgacqaHepaDcaaIUaaaaa@65C4@  (3.9)

Здесь при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  мы применили характеристическое дифференциальное уравнение из (2.6) и указанное выше представление w s (s,τ)= w τ (s,τ)/a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG3bWaaSba aSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPa GaaG4laiaadggacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@47CC@ . В последнем равенстве из (3.9) для сведения криволинейного интеграла второго типа вдоль характеристики MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  к обыкновенному определенному интегралу мы также воспользовались параметрическим представлением кривой MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ : s= s 2 (τ)= h 2 { g 2 (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaaGOmaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2dacaWGObWaaSba aSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaaa@45AC@ , τ=τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdqhaaa@360E@ , 0τt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaeyizIm QaamiDaaaa@389F@ .

Пусть функция v(s,τ)=v(s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWG2bGaaGikaiaadohacaaISaGaeqiXdqNa aG4oaiaadIhacaaISaGaamiDaiaaiMcaaaa@419B@  с параметрами (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@  является классическим решением однородного формально сопряженного дифференциального уравнения

Mv(s,τ)=0,(s,τ)ΔMPQ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinjaayIW7caWG2bGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiaai2dacaaIWaGaaGilaiaaysW7caaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaGaeyicI4SaeyiLdqKaamytaiaadcfa caWGrbGaaGilaaaa@528A@  (3.10)

с условиями на характеристиках QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ :

4a(s,τ) v τ (s,τ)[a(s,τ)b(s,τ)4 a τ (s,τ)+c(s,τ)]v(s,τ)=0, 4a(s,τ) v τ (s,τ)[a(s,τ)b(s,τ)4 a τ (s,τ)c(s,τ)]v(s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGabaaabaGaaGinaiaadggaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamODamaaBaaaleaacqaH epaDaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHiTi aaiUfacaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadkga caaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0IaaGinaiaadg gadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGilaiabes8a 0jaaiMcacqGHRaWkcaWGJbGaaGikaiaadohacaaISaGaeqiXdqNaaG ykaiaai2facaWG2bGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaaIWaGaaGilaaqaaiaaisdacaWGHbGaaGikaiaadohacaaISa GaeqiXdqNaaGykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcacqGHsislcaaIBbGaamyyaiaaiI cacaWGZbGaaGilaiabes8a0jaaiMcacaWGIbGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiabgkHiTiaaisdacaWGHbWaaSbaaSqaaiabes 8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0Ia am4yaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIDbGaamODai aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaaGimaaaaaaa@9A3E@  (3.11)

соответственно из определенных интегралов в (3.8) и (3.9) и условием согласования

v(M)=1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaad2eacaaIPaGaaG ypaiaaigdacaaIUaaaaa@3729@  (3.12)

Условия (3.11), (3.12)) равносильны двум уже согласованным условиям Гурса

v(s,τ) =exp{ t τ k 1 ( h 1 { g 1 (x,t),ρ},ρ)dρ}, g 1 (s,τ)= g 1 (x,t), v(s,τ) =exp{ t τ k 2 ( h 2 { g 2 (x,t),ρ},ρ)dρ}, g 2 (s,τ)= g 2 (x,t),τ[0,t], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWG2bGaaGikai aadohacaaISaGaeqiXdqNaaGykaaqaaiaai2daciGGLbGaaiiEaiaa cchacaaI7bWaa8qCaeqaleaacaWG0baabaGaeqiXdqhaniabgUIiYd GccaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIgadaWgaaWc baGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabeg8aYjaai2ha caaISaGaeqyWdiNaaGykaiaayIW7caWGKbGaeqyWdiNaaGyFaiaaiY caaeaacaaMf8oabaGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaam4zamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaqa aiaadAhacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaabaGaaGypai GacwgacaGG4bGaaiiCaiaaiUhadaWdXbqabSqaaiaadshaaeaacqaH epaDa0Gaey4kIipakiaadUgadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiAamaaBaaaleaacaaIYaaabeaakiaaiUhacaWGNbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISa GaeqyWdiNaaGyFaiaaiYcacqaHbpGCcaaIPaGaaGjcVlaadsgacqaH bpGCcaaI9bGaaGilaaqaaiaaywW7aeaacaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaaGzbVlabes8a0jabgIGiolaaiUfacaaIWaGaaGil aiaadshacaaIDbGaaGilaaaaaaa@AA4F@  (3.13)

где

k 1 (s,τ) ={a(s,τ)b(s,τ)4 a τ (s,τ)+c(s,τ)}/4a(s,τ) на кривой QM, k 2 (s,τ) ={a(s,τ)b(s,τ)4 a τ (s,τ)c(s,τ)}/4a(s,τ) на кривой MP. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGRbWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaqa aiaai2dacaaI7bGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiM cacaWGIbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHiTiaa isdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaey4kaSIaam4yaiaaiIcacaWGZbGaaGilaiab es8a0jaaiMcacaaI9bGaaG4laiaaisdacaWGHbGaaGikaiaadohaca aISaGaeqiXdqNaaGykaaqaaiaaywW7aeaacaqG9qGaaeimeiaabcca caqG6qGaaeiqeiaabIdbcaqGYqGaaeOpeiaabMdbcaqGGaGaaeyuai aab2eacaaISaaabaGaam4AamaaBaaaleaacaaIYaaabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcaaeaacaaI9aGaaG4Eaiaadggaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamOyaiaaiIcacaWGZbGa aGilaiabes8a0jaaiMcacqGHsislcaaI0aGaamyyamaaBaaaleaacq aHepaDaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHi TiaadogacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGyFaiaai+ cacaaI0aGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaa caaMf8oabaGaaeypeiaabcdbcaqGGaGaaeOoeiaabcebcaqG4qGaae Omeiaab6dbcaqG5qGaaeiiaiaab2eacaqGqbGaaeOlaaaaaaa@A0BC@

Общеизвестно, что задача Гурса (3.10), (3.13) с коэффициентами a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHsislaeqaaOGaaGykaaaa@3C80@  всегда имеет единственное классическое решение v C 2 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3ECD@ , которое общепринято называть функцией Римана для задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . В общем случае функция Римана однозначно находится методом последовательных приближений (см. [11, c. 129–135].

В формуле (3.7) полагаем Lu(s,τ)=f(s,τ),Mv(s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaayIW7caWG1bGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiaai2dacaWGMbGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaaiYcacaaMe8Uae83mH0KaaGjcVlaadAhacaaIOaGa am4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaaicdaaaa@5685@  на треугольнике ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@ , и в силу соотношений (3.10) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.13) согласно (3.8) и (3.9) получаем формулу решения

u (x,t)= (auv)(P)+(auv)(Q) 2a(x,t) + 1 2a(x,t) P Q [H(u,v)dsK(u,v)dτ]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa iIcacaWGHbGaamyDaiaadAhacaaIPaGaaGikaiaadcfacaaIPaGaey 4kaSIaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaamyuaiaa iMcaaeaacaaIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa aaaiaayIW7cqGHRaWkcaaMi8+aaSaaaeaacaaIXaaabaGaaGOmaiaa dggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqabSqaai aadcfaaeaacaWGrbaaniabgUIiYdGccaaIBbGaamisaiaaiIcacaWG 1bGaaGilaiaadAhacaaIPaGaaGjcVlaadsgacaWGZbGaeyOeI0Iaam 4saiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaamizaiabes8a0jaa i2facqGHRaWkaaa@6E65@

+ 1 2a(x,t) ΔMPQ f(s,τ)v(s,τ;x,t)dsdτ,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapefa beWcbaGaeyiLdqKaamytaiaadcfacaWGrbaabeqdcqGHRiI8aOGaam OzaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaWG2bGaaGikaiaa dohacaaISaGaeqiXdqNaaG4oaiaadIhacaaISaGaamiDaiaaiMcaca aMi8UaamizaiaadohacaaMi8Uaamizaiabes8a0jaaiYcacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaWgaaWcbaGaey OeI0cabeaakiaai6caaaa@5F00@  (3.14)

Здесь в интеграле по отрезку PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@ , где a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b,c C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacqGHiiIZca WGdbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiaadEeadaWgaaWcbaGa eyOeI0cabeaakiaaiMcaaaa@3AD4@  и dτ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiXdqNaaGypaiaaicdaaa a@35EC@ , подынтегральные функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328A@  и K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@328D@  однозначно определяются начальными условиями (2.2) (см. рис. 1). Если ещё двойной интеграл по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  записать в виде повторных интегралов, то в (3.14) сумма этих двух интегралов будет равна

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa amiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaaik daaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicda caaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgada WgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqiYdKNaaGikai aadohacaaIPaGaamODaiaaiIcacaWGZbGaaGilaiaaicdacaaIPaGa eyOeI0IaeqOXdOMaaGikaiaadohacaaIPaGaamODamaaBaaaleaacq aHepaDaeqaaOGaaGikaiaadohacaaISaGaaGimaiaaiMcacqGHRaWk caWGIbGaaGikaiaadohacaaISaGaaGimaiaaiMcacqaHgpGAcaaIOa Gaam4CaiaaiMcacaWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMca caaIDbGaaGjcVlaadsgacaWGZbGaey4kaScaaa@7A42@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f(s,τ)v(s,τ;x,t)ds,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc caWGMbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadAhacaaIOa Gaam4CaiaaiYcacqaHepaDcaaI7aGaamiEaiaaiYcacaWG0bGaaGyk aiaayIW7caWGKbGaam4CaiaaiYcacaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgIGiolaadEeadaWgaaWcbaGaeyOeI0cabeaakiaai6ca aaa@77B6@  (3.15)

Первое слагаемое из (3.14) содержит значения

u( h 2 { g 2 (x,t),0},0)=φ( h 2 { g 2 (x,t),0}),u( h 1 { g 1 (x,t),0},0)=φ( h 1 { g 1 (x,t),0}). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaiaa iMcacaaISaGaaGzbVlaadwhacaaIOaGaamiAamaaBaaaleaacaaIXa aabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2hacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiaa i6caaaa@714D@

Формула (3.14) с интегралами (3.15) вместо двух последних интегралов становится формулой (3.2), которая обобщает формулу Римана из [11, c. 139] со скорости a=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaigdaaaa@3425@  на скорость a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B4@  волны на полупрямой x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  носителя данных φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ .

Теперь убедимся в дважды непрерывной дифференцируемости функции (3.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . Если коэффициенты a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , то требований φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  из (2.4) достаточно для дважды непрерывной дифференцируемости первых двух слагаемых с интегралом по отрезку PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  в (3.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ , так как существует единственная функция Римана v C 2 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3ECD@  (см. [11, c. 129--135]. Для fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  достаточность гладкости (3.1) для дважды непрерывной дифференцируемости на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  последнего интеграла в (3.2) следует, например, из достаточности требований (3.1) на f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  для существования единственного классического решения задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  в теореме 2 из [5].

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Множество G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ Пусть a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , f ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaaaaa@32B8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  чётные продолжения и c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  нечётное продолжение по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  коэффициентов a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@  и правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  уравнения (2.1) на все x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ . В верхней полуплоскости G ˜ =× 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaiaai2 datuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1ri sjabgEna0oaajmcabaGaaGimaiaaiYcacqGHRaWkcqGHEisPaiaaw2 facaGLBbaaaaa@46BB@  ищем решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaaaaa@32C6@  задачи Коши

L ^ u ˜ (x,t) u ˜ tt a ^ 2 (x,t) u ˜ xx + b ^ (x,t) u ˜ t + c ˜ (x,t) u ˜ x (x,t)+ q ^ (x,t) u ˜ = f ^ (x,t),(x,t) G ˜ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaGaaGjcVlqadwhagaacaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaeyyyIORabmyDayaaiaWaaSbaaS qaaiaadshacaWG0baabeaakiabgkHiTiqadggagaqcamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGabmyDay aaiaWaaSbaaSqaaiaadIhacaWG4baabeaakiabgUcaRiqadkgagaqc aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGabmyDayaaiaWaaSbaaS qaaiaadshaaeqaaOGaey4kaSIabm4yayaaiaGaaGikaiaadIhacaaI SaGaamiDaiaaiMcaceWG1bGbaGaadaWgaaWcbaGaamiEaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadghagaqcaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGabmyDayaaiaGaaGypaiqadA gagaafgaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaa ywW7caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiopaaGaaaba Gaam4raaGaay5adaGaaGilaaaa@7D84@  (3.16)

u ˜ | t=0 = φ ˜ (x), u ˜ t | t=0 = ψ ˜ (x),x,= ,+ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaI8bWaaSbaaSqaai aadshacaaI9aGaaGimaaqabaGccaaI9aWaaacaaeaacqaHgpGAaiaa woWaaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UabmyDayaaiaWaaS baaSqaaiaadshaaeqaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaa icdaaeqaaOGaaGypamaaGaaabaGaeqiYdKhacaGLdmaacaaIOaGaam iEaiaaiMcacaaISaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiYcacaaMf8Uae8 xhHiLaaGypamaajmcabaGaeyOeI0IaeyOhIuQaaGilaiabgUcaRiab g6HiLcGaayzxaiaawUfaaiaaiYcaaaa@65E0@  (3.17)

где φ ˜ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ilamaaGaaabaGaeqiYdKhacaGLdmaaaaa@3782@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  нечётные продолжения соответственно φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ ,

f ^ (x,t)= f ^ (x,t) f ^ μ (x,t)+ f ^ (0) (x,t), L ^ μ(t)= f ^ μ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqHbaKaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2daceWGMbGbaKaacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiabgkHiTiqadAgagaqcamaaBaaaleaacqaH8o qBaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkceWG MbGbaKaadaahaaWcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGilaiaaywW7tuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiqb=jrimzaajaGaeqiVd0MaaG ikaiaadshacaaIPaGaaGypaiqadAgagaqcamaaBaaaleaacqaH8oqB aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@6593@

и правило выбора чётной по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функции f ^ (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@391F@  будет указано ниже. Если fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@ , то, очевидно, f ^ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37F7@ . В формуле решения u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) этих продолжений не будет.

Если из обеих частей уравнения (3.16) вычесть слагаемое c ˜ (x,t) u ˜ x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiqadwhagaacamaaBaaaleaacaWG4baabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@ , то придём к уравнению вида (3.16) с коэффициентом c ˜ (x,t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiabggMi6kaaicdaaaa@3948@  и новой правой частью

f ¯ ^ (x,t)= f ^ (x,t) c ˜ (x,t) u ˜ x (x,t)C( G ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2daceWGMbGbaqHbaKaacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgkHiTiqadogagaacaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGabmyDayaaiaWaaSbaaSqaaiaadIhaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGdbGaaG ikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcacaaISaaaaa@4FE9@

в котором вычитаемое c(x,t) u x (x,t) C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIXa aaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@440A@  непрерывно дифференцируемо и поэтому оно удовлетворяет интегральным требованиям гладкости (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Благодаря линейности этой задачи Коши её решение представимо в виде суммы u (x,t)= u ˜ 0 (x,t)+ u ^ 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2daceWG1bGbaGaadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadwhaga qcamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaaaaa@44A2@  решения u ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaaaaa@33AC@  задачи Коши (3.16), (3.17) при f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaI9aGaaGimaa aa@3450@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey iyIKRaaGimaaaa@36BD@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey iyIKRaaGimaaaa@36CE@  и решения u ^ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@33AE@  задачи Коши (3.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.17) при f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHGjsUcaaIWa aaaa@3550@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey yyIORaaGimaaaa@36BF@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey yyIORaaGimaaaa@36D0@ . Первая задача Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  с граничным режимом (2.3) при μ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaaGimaaaa@34F4@  становится первой смешанной задачей (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . С одной стороны, по теореме 2 статьи [5] существует единственное классическое решение u ˜ 0 C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa dEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3ACD@  этой первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Первая задача Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  равносильна этой первой смешанной задаче на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ , так как решение первой задачи Коши по формуле (4) из [20], т.е. по формуле (3.2) из теоремы 3.1, но с крышками над a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@ , равно u ˜ 0 (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaaa aa@3905@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@  (см. [11, c. 68 – 69]. Ниже перед леммой 3.1 показано, что характеристические треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с вершинами M(0,t),t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaISaGaamiDaiabgwMiZkaaicdaaaa@3A8C@ , на оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@  являются <<криволинейными>> равнобедренными. Следовательно, вершины P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  и Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  основания PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  симметричны относительно оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@ , начальные данные φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@  и ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaaaaa@344D@  нечётны по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , функции a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  чётны по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  и поэтому первые два слагаемых в (3.2) обращаются в ноль. Третье слагаемое в формуле (3.2) вида двойного повторного интеграла по ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  при f= f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaqegaqcai aai2dacaaIWaaaaa@3602@  тоже равно нулю.

Из условий согласования (2.5) при c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@ , f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaI9aGaaGimaa aa@3450@ , μ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaaGimaaaa@34F4@  для u ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaaaaa@33AC@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выводим условия

φ(0)=0, φ (0)=0,ψ(0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaiaaiYcacaaMf8UafqOXdOMbauGbauaacaaIOaGaaGim aiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaaic dacaaIPaGaaGypaiaaicdacaaIUaaaaa@473C@  (3.18)

Известно, что начальные данные φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  с условиями (3.18) всегда допускают на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@  гладкие нечётные продолжения φ ˜ C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@4397@ , ψ ˜ C 1 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@43A7@ . Это следует из [1, лемма 1]. Действительно, из нечётности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaaaaa@344D@  следует их непрерывность при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , так как φ(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaaaa@371A@ , ψ(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaaaa@372B@  в (3.18). Производные φ ˜ '(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG 4jaiaaiIcacaWG4bGaaGykaaaa@374F@ , ψ ˜ '(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaaG 4jaiaaiIcacaWG4bGaaGykaaaa@3760@  от этих нечётных начальных данных чётны и, следовательно, непрерывны при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ . Непрерывность второй производной φ ˜ ' (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGabG 4jayaafaGaaGikaiaadIhacaaIPaaaaa@375B@  при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  обеспечивает её нечётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и значение φ (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaqbgaqbaiaaiIcacaaIWa GaaGykaiaai2dacaaIWaaaaa@3731@  из (3.18). Поэтому, с другой стороны, первая задача Коши для уравнения (3.16)) с c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@  и f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHHjIUcaaIWa aaaa@3552@  при начальных данных φ ˜ C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@4397@ , ψ ˜ C 1 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@43A7@  в (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  имеет единственное решение u ˜ 0 C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIXaaaaOGaaGikamaa GaaabaGaam4raaGaay5adaGaaGykaaaa@39E7@  (см. [20]). Действительно, нечётная по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функция u ˜ 0 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@37C7@  непрерывна на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , так как u ˜ 0 (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaaa aa@3905@ , и чётная по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  её производная ( u ˜ 0 ) x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmyDayaaiaWaaSbaaSqaai aaicdaaeqaaOGaaGykamaaBaaaleaacaWG4baabeaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaaaa@3A5F@  всегда непрерывна на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Для сокращения доказательства теоремы 3.1 можно было бы положить коэффициент c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@  в (3.16).

Другая задача Коши при f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHGjsUcaaIWa aaaa@3550@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey yyIORaaGimaaaa@36BF@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey yyIORaaGimaaaa@36D0@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , очевидно, имеет единственным классическим решением двойной интеграл u ^ 1 (x,t)= F ^ (x,t) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeada ahaaWcbeqaaiaaikdaaaGccaaIOaGaam4ramaaBaaaleaacqGHEisP aeqaaOGaaGykaaaa@4493@  из [20] при f= f ¯ ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaqegaqcaa aa@3481@ :

F ^ (x,t)= 1 2 a ^ (x,t) ΔMPQ f ¯ ^ (s,τ) v ^ (s,τ)dsdτ= 1 2 a ^ (x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ¯ ^ (s,τ) v ^ (s,τ)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGabmyy ayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaWaa8quaeqale aacqGHuoarcaWGnbGaamiuaiaadgfaaeqaniabgUIiYdGcceWGMbGb aeHbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadsgacaWGZbGaaGjc VlaadsgacqaHepaDcaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiqadg gagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWc baGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXb qabSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSba aeaacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiY cacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4E aiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakiqadAgagaqe gaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamizaiaadohacaaISaaa aa@8D7A@

удовлетворяющий однородным начальным данным φ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ypaiaaicdaaaa@35BD@ , ψ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaaG ypaiaaicdaaaa@35CE@ , потому что этот двойной интеграл и его первая производная по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  при t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  равны F ^ (x,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaacaaIOaGaamiEaiaaiY cacaaIWaGaaGykaiaai2dacaaIWaaaaa@37EB@ , F ^ t (x,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaadaWgaaWcbaGaamiDaa qabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaai2dacaaIWaaa aa@391A@ . Чётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  этого интеграла F ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaaaaa@3298@  подтверждается чётностью по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  коэффициента a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , чётностью по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  его подинтегральной функции и равнобедренностью <<криволинейных>> характеристических треугольников ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с вершинами M(0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcaaaa@365D@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , на оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@ . Ниже в лемме 3.1 будет показана чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции Римана v ^ = v ^ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaI9aGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3972@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Таким образом, четное по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  решение u ^ 1 (x,t)= F ^ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3D7C@  всегда непрерывно по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , т.е. u ^ 1 C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DC@ . Более того, согласно теореме 2 из [5] при φ=ψ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaeqiYdKNaaGypai aaicdaaaa@3790@ , μ(t)= F ^ (0,t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaca aI9aGabmOrayaajaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGH iiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaG ilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa@4458@  решение F ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaaaaa@3298@  дважды непрерывно дифференцируемо в первой четверти u ^ 1 (x,t)= F ^ (x,t) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeada ahaaWcbeqaaiaaikdaaaGccaaIOaGaam4ramaaBaaaleaacqGHEisP aeqaaOGaaGykaaaa@4493@ , а в силу его четности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и во второй четверти плоскости (см. ниже предисловие к замечанию 3.1). Здесь применение теоремы 2 на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  из [5] основано на справедливости не только первых двух, но и третьего условия согласования из (2.5) при φ=ψ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaeqiYdKNaaGypai aaicdaaaa@3790@ , f= f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaafaiabgc Mi5kaaicdaaaa@36F6@ , c0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaeyiyIKRaaGimaaaa@3526@  и μ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHGjsUcaaIWaaaaa@35F4@ , а также интегральных требований гладкости (3.1) на f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ . От переноса слагаемого c ˜ u ˜ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaceWG1bGbaGaadaWgaa WcbaGaamiEaaqabaaaaa@34E6@  из левой части уравнения (3.16) в его правую часть это уравнение фактически не меняется. В дальнейшем мы увидим, что на гладкость правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  уравнения (2.1) дополнительные слагаемые f μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGMbWaaSbaaSqaaiabeY 7aTbqabaaaaa@3577@ , f (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaWbaaSqabeaacaaIOaGaaG imaiaaiMcaaaaaaa@34F4@  правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  уравнения (3.16) фактически не влияют, потому что в процессе решения смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) нашим новым методом компенсации они сокращаются (аннулируются).

В итоге, мы нашли суммарное решение u (x,t)= u ˜ 0 (x,t)+ u ^ 1 (x,t)C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2daceWG1bGbaGaadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadwhaga qcamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyicI4Saam4qaiaaiIcadaaiaaqaaiaadEeaaiaawoWaai aaiMcaaaa@49E1@ , C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3750@  вспомогательной задачи Коши (3.16), (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Отсюда и из чётности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений коэффициентов a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  и правой части f ¯ ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaaaaa@32CF@  на все x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@  также следует, что во второй четверти плоскости это классическое решение u C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aiixaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C57@  (см. ниже замечание 3.2).

Интегрируя аналог тождества (3.4) для любых u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaaaaa@32C6@ , v ^ C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DF@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@ , C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaaGaaabaGaam4raa Gaay5adaGaaGykaaaa@3578@  по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с любой вершиной M(x,t) G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgUcaRaqabaaaaa@39FE@  в верхней полуплоскости Osτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaam4Caiabes8a0baa@354E@ , мы имеем аналог формулы (3.4) решения задачи Коши (3.16), (3.17):

u (x,t)= ( a ^ u ˜ v ^ )(P)+( a ^ u ˜ v ^ )(Q) 2 a ^ (x,t) + 1 2 a ^ (x,t) P Q [H( u ˜ , v ^ )dsK( u ˜ , v ^ )dτ]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaiIcaceWGHbGbaKaaceWG 1bGbaGaaceWG2bGbaKaacaaIPaGaaGikaiaadcfacaaIPaGaey4kaS IaaGikaiqadggagaqcaiqadwhagaacaiqadAhagaqcaiaaiMcacaaI OaGaamyuaiaaiMcaaeaacaaIYaGabmyyayaajaGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOm aiqadggagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaape habeWcbaGaamiuaaqaaiaadgfaa0Gaey4kIipakiaaiUfacaWGibGa aGikaiqadwhagaacaiaaiYcaceWG2bGbaKaacaaIPaGaaGjcVlaads gacaWGZbGaeyOeI0Iaam4saiaaiIcaceWG1bGbaGaacaaISaGabmOD ayaajaGaaGykaiaadsgacqaHepaDcaaIDbGaey4kaScaaa@6AF7@

+ 1 2 a ^ (x,t) ΔMPQ f ^ (s,τ) v ^ (s,τ;x,t)dsdτ,(x,t) G ˜ =× 0,+ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGabmyyayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaWa a8quaeqaleaacqGHuoarcaWGnbGaamiuaiaadgfaaeqaniabgUIiYd GcceWGMbGbaqHbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa bmODayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaG4oaiaayIW7ca WG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWGZbGaaGjcVlaa dsgacqaHepaDcaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshaca aIPaGaeyicI48aaacaaeaacaWGhbaacaGLdmaacaaI9aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucqGHxdaTda qcJaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLDbGaay5waaGa aGOlaaaa@7578@  (3.19)

В силу единственности решения задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  функция (3.19) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  равна классическому решению (3.2). Аналогично множеству G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  в криволинейном интеграле по PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  формулы (3.19) подынтегральные функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328A@  и K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@328D@  однозначно определяются начальными данными φ ˜ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcadaaiaaqaaiaa dEeaaiaawoWaaiaaiMcaaaa@3A6E@ , ψ ˜ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcadaaiaaqaaiaa dEeaaiaawoWaaiaaiMcaaaa@3A7F@  и функцией Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  (см. рис. 2).

 

Рис. 2. Криволинейные характеристический и критический треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

 

Эта функция Римана на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  является решением задачи Гурса:

M ^ v ^ (s,τ) v ^ ττ (s,τ) ( a ^ 2 (s,τ) v ^ (s,τ)) ss ( b ^ (s,τ) v ^ (s,τ)) τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaacaaMi8UabmOD ayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabggMi6kqadA hagaqcamaaBaaaleaacqaHepaDcqaHepaDaeqaaOGaaGikaiaadoha caaISaGaeqiXdqNaaGykaiabgkHiTiaaiIcaceWGHbGbaKaadaahaa WcbeqaaiaaikdaaaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa bmODayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiMcada WgaaWcbaGaam4CaiaadohaaeqaaOGaeyOeI0IaaGikaiqadkgagaqc aiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaacaaIOa Gaam4CaiaaiYcacqaHepaDcaaIPaGaaGykamaaBaaaleaacqaHepaD aeqaaOGaeyOeI0caaa@7216@

( c ˜ (s,τ) v ^ (s,τ)) s + q ^ (s,τ) v ^ (s,τ)=0,(s,τ)ΔMPQ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIOaGabm4yayaaiaGaaG ikaiaadohacaaISaGaeqiXdqNaaGykaiqadAhagaqcaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcacaaIPaWaaSbaaSqaaiaadohaaeqaaO Gaey4kaSIabmyCayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGyk aiqadAhagaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI9a GaaGimaiaaiYcacaaMf8UaaGikaiaadohacaaISaGaeqiXdqNaaGyk aiabgIGiolabgs5aejaad2eacaWGqbGaamyuaiaaiYcaaaa@5C4D@  (3.20)

v ^ (s,τ) =exp{ t τ k ˜ 1 ( h 1 { g 1 (x,t),ρ},ρ)dρ}, g 1 (s,τ)= g 1 (x,t), v ^ (s,τ) =exp{ t τ k ˜ 2 ( h 2 { g 2 (x,t),ρ},ρ)dρ}, g 2 (s,τ)= g 2 (x,t),τ[0,t], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaceWG2bGbaKaaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaaabaGaaGypaiGacwgacaGG 4bGaaiiCaiaaiUhadaWdXbqabSqaaiaadshaaeaacqaHepaDa0Gaey 4kIipakiqadUgagaacamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG ObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaG ymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaH bpGCcaaI9bGaaGilaiabeg8aYjaaiMcacaaMi8Uaamizaiabeg8aYj aai2hacaaISaaabaGaaGzbVdqaaiaadEgadaWgaaWcbaGaaGymaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYcaaeaaceWG2bGbaKaacaaIOaGaam4CaiaaiYcacqaHepaDca aIPaaabaGaaGypaiGacwgacaGG4bGaaiiCaiaaiUhadaWdXbqabSqa aiaadshaaeaacqaHepaDa0Gaey4kIipakiqadUgagaacamaaBaaale aacaaIYaaabeaakiaaiIcacaWGObWaaSbaaSqaaiaaikdaaeqaaOGa aG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYcacqaHbpGCcaaI9bGaaGilaiabeg8aYjaa iMcacaaMi8Uaamizaiabeg8aYjaai2hacaaISaaabaGaaGzbVdqaai aadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGypaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaMf8UaeqiXdqNaeyic I4SaaG4waiaaicdacaaISaGaamiDaiaai2facaaISaaaaaaa@AA8D@  (3.21)

аналогичной задаче Гурса (3.10), (3.13) и с функциями k ˜ 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@3885@  на кривой QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и k ˜ 2 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@3886@  на кривой MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ , соответственно равными функциям k 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3876@  и k 2 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3877@ , в которых коэффициенты a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@  заменены на их четные продолжения a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , а коэффициент c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  на нечетное продолжение c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  c x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ . Формально сопряженный дифференциальный оператор M ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaaaaa@3D2E@  равен оператору M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinbaa@3C6C@  с коэффициентами a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  вместо коэффициентов a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@ . Задача Гурса (3.20), (3.21) имеет единственное решение v ^ (s,τ)= v ^ (s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaWG4bGaaGilaiaadshacaaIPaaaaa@41BB@ , непрерывное на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  и дважды непрерывно дифференцируемое на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [11, c. 129–135] (см. ниже замечание 3.2).

Ввиду (2.6) в каждой фиксированной точке M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@  тангенсы углов наклона касательных прямых к характеристикам двух семейств g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , отличаются лишь противоположными знаками dx/dt=( 1) i a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamiEaiaai+cacaWGKbGaam iDaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@402E@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , в силу чётности продолжения a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ . Следовательно, для любых вершин M(0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcaaaa@365D@ , t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@3438@ , на оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и, в частности, треугольники Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  являются криволинейными <<равнобедренными>>. Поэтому на рис. 2 характеристики g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaaaa@3AEA@  и g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@  при s<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGipaiaaicdaaaa@3435@  соответственно симметричны характеристикам g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@  и g 2 (s,τ)= C 2 , C 1 , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaOGaaGilaiaadoeadaWgaaWcbaGaaGymaaqaba GccaaISaGaam4qamaaBaaaleaacaaIYaaabeaakiabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifaaa@4C0E@ , при s>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGOpaiaaicdaaaa@3437@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ .

Покажем, что функция Римана v ^ = v ^ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaI9aGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3972@  является чётной по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функцией в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Лемма 3.1. Пусть выполняются предположения теоремы 3.1. Тогда для любой вершины M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@   G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHiiIZcaWGhbWaaSbaaSqaaiabgU caRaqabaaaaa@351B@  характеристического треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  решение v ^ (s,τ)= v ^ (s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaaMi8UaamiEaiaaiYcacaWG0bGaaGykaaaa@434C@  задачи Гурса (3.20), (3.21) на ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  является чётной по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функцией.

Доказательство. Главные дифференциальные части общего телеграфного уравнения (3.16) и его формально сопряженного уравнения (3.20), а ниже также модельного телеграфного уравнения (4.1) и его формально сопряженного уравнения одинаковые. Поэтому им соответствуют одни и те же дифференциальные уравнения характеристик (2.6) и, значит, одинаковые семейства характеристик g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FE4@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Для любой точки M(x,t) G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgUcaRaqabaaaaa@39FE@  строим характеристический треугольник Δ M ˜ P P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoardaaiaaqaaiaad2eaaiaawo WaaiqadcfagaqbamaaGaaabaGaamiuaaGaay5adaaaaa@3730@  с симметричной относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  вершиной M ˜ (x,t) G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiaaiI cacqGHsislcaWG4bGaaGilaiaadshacaaIPaGaeyicI48aaacaaeaa caWGhbaacaGLdmaaaaa@3B61@ , вершинами основания P ( h 2 { g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaaIOaGaeyOeI0Iaam iAamaaBaaaleaacaaIYaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3D10@ , 0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGyFaiaaiYcacaaIWaGaaG ykaaaa@35A1@ , P ˜ ( h 2 { g 2 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadcfaaiaawoWaaiaaiI cacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWc baGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG0bGaaG ykaiaaiYcacaaIWaGaaGyFaiaaiYcacaaIWaGaaGykaaaa@4260@  и криволинейными сторонами g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcaaaa@4014@ , g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcaaaa@4016@  (см. рис. 2). Докажем симметричность криволинейного треугольника Δ M ˜ P P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoardaaiaaqaaiaad2eaaiaawo WaaiqadcfagaqbamaaGaaabaGaamiuaaGaay5adaaaaa@3730@  треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  строго математически. Визуально это очевидно из рис. 2. Симметричность этих треугольников относительно Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  не вызывает сомнений только для прямых характеристик, так как в этом случае симметричность вершины P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadcfaaiaawoWaaaaa@3354@  вершине Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  вытекает из замечания 2.1, а вершина P' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaG4jaaaa@3343@  очевидно симметрична вершине P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  и для кривых характеристик.

Во-первых, из указанной выше <<равнобедренности>> криволинейных треугольников с вершинами на оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , τ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3504@ , следует взаимозаменяемость уравнений сторон-характеристик таких треугольников семейства g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaaaa@3AEA@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , на характеристики семейства g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaaaa@3CC2@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , и уравнений сторон-характеристик семейства g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , на характеристики семейства g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaaaa@3CC4@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , в верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Характеристику MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  уравнения g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F29@  ищем в виде g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaaaa@3CC2@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ . Подставляем сюда координаты точки M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@  и находим значение постоянной g 1 (s,τ)= C 1 = g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTiaadE gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYca caWG0bGaaGykaaaa@455B@ . Отсюда для характеристик MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ , M ˜ P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiqadc fagaqbaaaa@3432@  соответственно имеем два уравнения

g 1 (s,τ)= g 1 (x,t), g 1 (s,τ)= g 1 (x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISa GaamiDaiaaiMcacaaISaGaaGzbVlaadEgadaWgaaWcbaGaaGymaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGymaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcaaaa@5252@

из которых вытекает равенство g 1 (s,τ)= g 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaaaa@40DB@ , s0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyyzImRaaGimaaaa@3535@ , т.е. чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции g 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaa aa@3390@ . Иначе говоря, характеристика M ˜ P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiqadc fagaqbaaaa@3432@  симметрична характеристике MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. рис. 2). Согласно уравнениям характеристик MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  и M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  существуют их продолжения до пересечения с осью Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ . Если характеристику MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  уравнения g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F27@  искать в виде g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaaaa@3CC4@ , то подставляя сюда координаты точки M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@ , имеем значение постоянной g 2 (s,τ)= C 2 = g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgkHiTiaadE gadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYca caWG0bGaaGykaaaa@455E@ . Поэтому для характеристик MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  и M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  соответственно имеем два уравнения

g 2 (s,τ)= g 2 (x,t), g 2 (s,τ)= g 2 (x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISa GaamiDaiaaiMcacaaISaGaaGzbVlaadEgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@5258@

Из них следует равенство g 2 (s,τ)= g 2 (s,τ),s0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaiaaiYcacaWGZbGaeyyzImRaaGimaaaa@450B@ , т.е. чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции g 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaa aa@3391@ . Итак, характеристика M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  симметрична характеристике MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. рис. 2). В итоге, мы обосновали чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  характеристик уравнения (3.20) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ :

g 1 (s,τ)= g 1 (s,τ), g 2 (s,τ)= g 2 (s,τ),s,τ0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaiaaiYcacaaMf8Uaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaam4zam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaGilaiabes8a0jaa iMcacaaISaGaaGzbVlaadohacaaISaGaeqiXdqNaeyyzImRaaGimai aai6caaaa@5B2E@  (3.22)

Во-вторых, в (3.21) нечётность c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  меняет знак слагаемого в c ˜ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaaaaa@378C@  из k ˜ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaaaaa@33A3@  на противоположный для выражения c ˜ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislceWGJbGbaGaacaaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaaaaa@3879@  из k ˜ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaaaaa@33A4@  и наоборот. Взаимная чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  одной из функций k ˜ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaaaaa@33A3@ , k ˜ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaaaaa@33A4@ , указанных после (3.13) (см. уравнения (3.11) и (3.21), по отношению к другой из них, вытекает из чётности a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , нечётности c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  в (3.21) и чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  характеристик (3.22) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ :

k ˜ 1 (s,τ)= k ˜ 2 (s,τ), k ˜ 2 (s,τ)= k ˜ 1 (s,τ),(s,τ)ΔMPQ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaeyOeI0Iaam4CaiaaiYcacqaHepaDcaaIPaGaaGyp aiqadUgagaacamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaG ilaiabes8a0jaaiMcacaaISaGaaGzbVlqadUgagaacamaaBaaaleaa caaIYaaabeaakiaaiIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiM cacaaI9aGabm4AayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dohacaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UaaGikaiaadohaca aISaGaeqiXdqNaaGykaiabgIGiolabgs5aejaad2eacaWGqbGaamyu aiaai6caaaa@5FC7@  (3.23)

Из симметрии характеристик M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@ , M ˜ P' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiaadc facaaINaaaaa@34D7@  соответственно характеристикам MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@ , MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  ввиду (3.22) и (3.23) имеем чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  данных Гурса (3.21).

В-третьих, известен факт: производная от нечётной (чётной) функции является (чётной) нечётной функцией. Если функция v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  чётна по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ , то в уравнении (3.20) дифференциальный оператор M ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaaaaa@3D2E@  чётен по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , так как его коэффициенты a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  чётны, коэффициент c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  нечётен по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  и

( c ˜ (s,τ) v ^ (s,τ)) s = c ˜ s (s,τ) v ^ (s,τ)+ c ˜ (s,τ) v ^ s (s,τ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabm4yayaaiaGaaGikaiabgk HiTiaadohacaaISaGaeqiXdqNaaGykaiqadAhagaqcaiaaiIcacqGH sislcaWGZbGaaGilaiabes8a0jaaiMcacaaIPaWaaSbaaSqaaiaado haaeqaaOGaaGypaiqadogagaacamaaBaaaleaacaWGZbaabeaakiaa iIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaaca aIOaGaeyOeI0Iaam4CaiaaiYcacqaHepaDcaaIPaGaey4kaSIabm4y ayaaiaGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiqadA hagaqcamaaBaaaleaacaWGZbaabeaakiaaiIcacqGHsislcaWGZbGa aGilaiabes8a0jaaiMcacaaI9aaaaa@61C0@

= c ˜ s (s,τ) v ^ (s,τ) c ˜ (s,τ) v ^ s (s,τ)= c ˜ s (s,τ) v ^ (s,τ)+ c ˜ (s,τ) v ^ s (s,τ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGabm4yayaaiaWaaSbaaSqaai aadohaaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiqadAha gaqcaiaaiIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcacqGHsi slceWGJbGbaGaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmOD ayaajaWaaSbaaSqaaiaadohaaeqaaOGaaGikaiabgkHiTiaadohaca aISaGaeqiXdqNaaGykaiaai2daceWGJbGbaGaadaWgaaWcbaGaam4C aaqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgUcaRiqadogagaac aiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaadaWgaa WcbaGaam4CaaqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa aGypaaaa@6B3B@

=( c ˜ (s,τ) v ^ (s,τ )) s ,s>0,τ0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiqadogagaacaiaaiI cacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaacaaIOaGaam4C aiaaiYcacqaHepaDcaaIPaGaaGykamaaBaaaleaacaWGZbaabeaaki aaiYcacaaMf8Uaam4Caiaai6dacaaIWaGaaGilaiabes8a0jabgwMi ZkaaicdacaaIUaaaaa@4B3A@

Чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  уравнения (3.20) и данных Гурса (3.21) влечёт чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  единственного достаточно гладкого решения задачи Гурса (3.20), (3.21). Отсутствие чётности решения задачи Гурса (3.20), (3.21) во внутренних точках из ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и на основании PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  противоречит чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  уравнения (3.20), а на боковых сторонах MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  и MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  установленной чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  данных Гурса (3.21).

На рис. 2 в критическом треугольнике Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  уравнениями пунктирной линии Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@ , симметричной куску характеристики Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaacaWGqbaaaa@3374@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , очевидно, служат уравнения

g 1 (s,τ)= g 1 (x,t),s= h 1 { g 1 (x,t),τ}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcacaaISaGaaGzbVlaadohacaaI9aGaamiAamaaBaaaleaacaaI XaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikai abgkHiTiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyF aiaai6caaaa@520F@

Существуют другие равносильные уравнения кривой Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@  в терминах g 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaa aa@3390@  и h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaa aa@3391@ . В плоскости Osτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaam4Caiabes8a0baa@354E@  неявное уравнение g 1 (s,τ)= g 1 (0, h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaISaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4A5B@ , конечно, описывает кривую Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@ , проходящую через точку Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaaaa@329F@  (см. рис. 2). Таким образом, по определению обратной функции кривая Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@  также задается явным уравнением

s= h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),τ},0τ h (2) [0, g 2 (x,t)]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadIgadaWgaaWcba GaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaa iIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcacaaIYaGaaG ykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2facaaIPaGaaG ilaiabes8a0jaai2hacaaISaGaaGzbVlaaicdacqGHKjYOcqaHepaD cqGHKjYOcaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcca aIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGOlaaaa@6058@  (3.24)

Отсюда мы находим другой вид тех же координат точек P ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaaicdacaaISaGaamiAamaaCaaaleqabaGaaGikaiaaik dacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4zamaaBaaaleaacaaI YaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxaiaaiM cacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcaaaa@4BEF@  и P( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiabgkHiTiaadIgada WgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiaaicdacaaI9bGaaGilaiaaicdacaaIPaaaaa@4CD0@ .

Выше показано, что функция (3.19) является решением u C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@3811@ , C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3750@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@  задачи Коши (3.16), (3.17), а функция Римана v ^ C( G ˜ ), C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaiaaiYcacaWGdbWaaWba aSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIukabe aakiaaiMcaaaa@3E50@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  чётным по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  решением задачи Гурса (3.20), (3.21) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. [11, c. 129–135]). Из её чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  следует v ^ C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aiixaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C4D@ . Из решения (3.19) задачи Коши на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  выведем решение смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

В формуле (3.19) за счёт нечетности начального данного φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@  и чётности произведения a ^ v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaMi8UabmODayaaja aaaa@354F@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  значение произведения a ^ u ˜ v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaMi8UabmyDayaaia GaaGjcVlqadAhagaqcaaaa@37E9@  в точке P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  равно его значению в симметричной точке P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaaaaa@329E@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , взятому с противоположным знаком. Поэтому согласно (3.24) первое слагаемое из (3.21) совпадает с первым слагаемым формулы (3.3), в котором берутся значения функции

u ˜ ( h 1 { g 1 (x,t),0},0)=φ( h 1 { g 1 (x,t),0}), u ˜ ( h 2 { g 2 (x,t),0},0)=φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2 hacaaISaGaaGimaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIgadaWg aaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI 9bGaaGykaiaaiYcacaaMf8UabmyDayaaiaGaaGikaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9b GaaGilaiaaicdacaaIPaGaaGypaiabgkHiTiabeA8aQjaaiIcacaWG ObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaG ymaaqabaGccaaIOaGaaGimaiaaiYcacaWGObWaaWbaaSqabeaacaaI OaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaiaaiMcacaaISaaaaa@7D88@

т.е. в первом слагаемом из (3.3) подразумевается значение функции

u ˜ ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0)=φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaaicdacaaISaGaamiAamaaCaaaleqabaGaaGikaiaaik dacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4zamaaBaaaleaacaaI YaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxaiaaiM cacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcacaaI9aGaeqOX dOMaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7bGaam4zam aaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadIgadaah aaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilai aadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai2facaaIPaGaaGilaiaaicdacaaI9bGaaGykaiaai6 caaaa@6734@

В формуле (3.19) интеграл по основанию PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  треугольника равен сумме трёх интегралов по отрезкам PO MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaam4taaaa@3366@ , O P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGabmiuayaafaaaaa@3372@  и P Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaWGrbaaaa@3374@ , первые два из которых сокращаются из-за нечетности обоих начальных данных φ ˜ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ilamaaGaaabaGaeqiYdKhacaGLdmaaaaa@3782@ , чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  коэффициентов a ^ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaISaGabmOyayaaja aaaa@3460@  и, согласно обоснованной выше лемме 3.1, чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@ . Таким образом, интеграл по PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  формулы (3.19) при dτ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiXdqNaaGypaiaaicdaaa a@35EC@  равен интегралу по P Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaWGrbaaaa@3374@  от H( u ˜ , v ^ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiqadwhagaacaiaaiY caceWG2bGbaKaacaaIPaaaaa@36B9@  и, следовательно, второе слагаемое из (3.19) становится вторым слагаемым из (3.3) благодаря координатам точки P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaaaaa@329E@  из (3.24). Сужением на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  последнего слагаемого из (3.19) с двойным интегралом имеем следующее слагаемое, за указанными выше, решения (3.3), так как двойной интеграл по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  из (3.19) совпадает с двойным повторным интегралом от произведения правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  уравнения (3.16) на функцию Римана v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@  с модулем |s| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4CaiaaiYhaaaa@34C1@  их первой переменной s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ . В нём вместо двойного интеграла по треугольнику Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  от произведения функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  и v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@  фактически дважды берётся двойной интеграл по треугольнику Δ Q O P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGpbGaaG jcVlqadcfagaqbaaaa@374C@  из G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  благодаря их четности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ .

Существование единственного классического решения u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbaaaa@32D2@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  взято из теоремы 2 статьи [5], где для него обоснована достаточность гладкости на φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  из (2.4), (3.1). В доказательстве теоремы 2 из [5] о корректности задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) для общего телеграфного уравнения (2.1) используются теорема 1 из [5] для модельного телеграфного уравнения (см. ниже (4.1)), обобщение метода продолжения по параметру Шаудера (см. [4, 8, 21]) и теоремы повышения гладкости сильных решений из [8]. Метод продолжения по параметру основан на том, что линейное общее телеграфное уравнение (2.1) отличается от линейного модельного телеграфного уравнения (4.1) младшими членами, т.е. слагаемыми с первыми производными u t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshaaeqaaa aa@33DC@ , u x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaa aa@33E0@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ . Поэтому при коэффициентах a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3D04@  гладкости (2.4), (3.1) на φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  хватает для дважды непрерывной дифференцируемости решения (3.19) задачи Коши (3.16), (3.17) и первых трех слагаемых из (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , так как функция Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  тоже дважды непрерывно дифференцируема на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  (см. 11, c. 129–135] (см. ниже замечание 3.2). В формуле (3.3) классического решения нашей задачи на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  отсутствуют значения продолжений a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , f ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqHbaKaaaaa@32D2@  для x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ , потому что эти продолжения оказались формальными благодаря знаку модуля |s| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4CaiaaiYhaaaa@34C1@  в функциях f (|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaIOaGaaGiFaiaado hacaaI8bGaaGilaiabes8a0jaaiMcaaaa@39A7@  и v(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaa@399C@ .

Из установленной выше гладкости решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39E9@  вида (3.19) задачи Коши (3.16), (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  следует дважды непрерывная дифференцируемость по t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@  следа справа u (0,t)= lim x+0 u (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaGfqbqabSqaaiaadIhacqGHsgIRcqGH RaWkcaaIWaaabeGcbaGaciiBaiaacMgacaGGTbaaaiqadwhagaafai aaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4467@  решения (3.19) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ . Поскольку решение (3.19) этой задачи Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  совпадает с суммой первых трёх слагаемых из (3.3), то этот след равен

u (0,t)= (auv)( h 1 { g 1 (0,t),0},0)(auv)( h 1 { g 1 (0, h (2) [0, g 2 (0,t)]),0},0) 2a(0,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaiIcacaWGHbGaaGjcVlaa dwhacaaMi8UaamODaiaaiMcacaaIOaGaamiAamaaBaaaleaacaaIXa aabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2hacaaISaGaaG imaiaaiMcacqGHsislcaaIOaGaamyyaiaayIW7caWG1bGaaGjcVlaa dAhacaaIPaGaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaa dIgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaaIWa GaaGilaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaai2facaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaabaGaaGOmaiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaaaacqGHRaWkaaa@7462@

+ 1 2a(0,t) h 1 { g 1 (0, h (2) [0, g 2 (0,t)]),0} h 1 { g 1 (0,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaa qaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaa caaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaig daaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGim aiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aO GaaG4waiabeI8a5jaaiIcacaWGZbGaaGykaiaadAhacaaIOaGaam4C aiaaiYcacaaIWaGaaGykaiabgkHiTiabeA8aQjaaiIcacaWGZbGaaG ykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGil aiaaicdacaaIPaGaey4kaSIaamOyaiaaiIcacaWGZbGaaGilaiaaic dacaaIPaGaeqOXdOMaaGikaiaadohacaaIPaGaamODaiaaiIcacaWG ZbGaaGilaiaaicdacaaIPaGaaGyxaiaayIW7caWGKbGaam4CaiabgU caRaaa@8563@

+ 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f (|s|,τ)v(|s|,τ;0,t)ds,(x,t) G + . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGimaiaaiYcacaWG0bGaaGykaiaayIW7caWGKbGaam4Cai aaiYcacaaMf8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZ caWGhbWaaSbaaSqaaiabgUcaRaqabaGccaaIUaaaaa@7C60@

В этом следе два первых слагаемых обращаются в ноль, потому что в них h (2) [0, g 2 (0,t)]=t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaIDbGaaG ypaiaadshaaaa@3FAA@  согласно второй формуле обращения из (3.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ . Запишем его в виде суммы

u (0,t)= Ψ ˜ (t)+ F ˜ (0) (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaaiaaqaaiabfI6azbGaay5adaGaaGik aiaadshacaaIPaGaey4kaSYaaacaaeaacaWGgbaacaGLdmaadaahaa WcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiIcacaWG0bGaaGykaiaa iYcaaaa@43EF@  (3.25)

где функции

Ψ ˜ (t)= 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} [ f ^ (s,τ) f ^ μ (s,τ)] v ^ (s,τ;0,t)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabfI6azbGaay5adaGaaG ikaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikdacaWG HbGaaGikaiaaicdacaaISaGaamiDaiaaiMcaaaWaa8qCaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWd XbqabSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaS baaeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaa iYcacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG 4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakiaaiUface WGMbGbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0Ia bmOzayaajaWaaSbaaSqaaiabeY7aTbqabaGccaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGyxaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaaIWaGaaGilaiaadshacaaIPaGaaGjcVlaads gacaWGZbGaaGilaaaa@7D9A@

F ˜ (0) (t)= 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f ^ (0) (s,τ) v ^ (s,τ;0,t)ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaadshacaaIPaGa aGypamaalaaabaGaaGymaaqaaiaaikdacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcaaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqd cqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaaiaadIgada WgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYaaabeaa caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9b aabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaaqa aiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaGilai abes8a0jaai2haa0Gaey4kIipakiqadAgagaqcamaaCaaaleqabaGa aGikaiaaicdacaaIPaaaaOGaaGikaiaadohacaaISaGaeqiXdqNaaG ykaiqadAhagaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiUdacaaI WaGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWGZbGaaGOlaaaa@770C@

В (3.3) в качестве чётной по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функции f ^ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3504@  берем значение оператора L ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaaaaa@3C5A@  на следе:

L ^ u (0,t) u tt (0,t)+ b ^ (x,t) u t (0,t)+ q ^ (x,t) u (0,t)= f ^ (0) (x,t),(x,t) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaGaaGjcVlqadwhagaafaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaeyyyIORabmyDayaauaWaaSbaaS qaaiaadshacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIabmOyayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiM caceWG1bGbaqbadaWgaaWcbaGaamiDaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiabgUcaRiqadghagaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGabmyDayaauaGaaGikaiaaicdacaaISaGaamiD aiaaiMcacaaI9aGabmOzayaajaWaaWbaaSqabeaacaaIOaGaaGimai aaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaM f8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZdaaiaaqaai aadEeaaiaawoWaaiaai6caaaa@74C2@  (3.26)

Согласно представлению (3.25) функция f ˜ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3503@  должна удовлетворять уравнению

f ^ (0) (x,t) F ˜ tt (0) (t) b ^ (x,t) F ˜ t (0) (t) q ^ (x,t) F ˜ (0) (t)= L ^ Ψ ˜ (t),(x,t) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyOeI0YaaacaaeaacaWGgbaacaGLdmaadaqhaaWcbaGaamiDaiaads haaeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDaiaaiMcacqGH sislceWGIbGbaKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaaGa aabaGaamOraaGaay5adaWaa0baaSqaaiaadshaaeaacaaIOaGaaGim aiaaiMcaaaGccaaIOaGaamiDaiaaiMcacqGHsislceWGXbGbaKaaca aIOaGaamiEaiaaiYcacaWG0bGaaGykamaaGaaabaGaamOraaGaay5a daWaaWbaaSqabeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDai aaiMcacaaI9aWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqaacuWFsectgaqcamaaGaaabaGaeuiQdKfacaGLdmaacaaIOaGaam iDaiaaiMcacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyicI48aaacaaeaacaWGhbaacaGLdmaacaaIUaaaaa@75E5@

Здесь полагаем

F ˜ tt (0) (t)= Y ˜ (t), F ˜ t (0) (t)= 0 t Y ˜ (δ)dδ, F ˜ t (0) (t)= 0 t (tδ) Y ˜ (δ)dδ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaDa aaleaacaWG0bGaamiDaaqaaiaaiIcacaaIWaGaaGykaaaakiaaiIca caWG0bGaaGykaiaai2daceWGzbGbaGaacaaIOaGaamiDaiaaiMcaca aISaGaaGzbVpaaGaaabaGaamOraaGaay5adaWaa0baaSqaaiaadsha aeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI9a Waa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGabmywayaa iaGaaGikaiabes7aKjaaiMcacaWGKbGaeqiTdqMaaGilaiaaywW7da aiaaqaaiaadAeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGikaiaa icdacaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaapedabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakiaaiIcacaWG0bGaeyOeI0Ia eqiTdqMaaGykaiqadMfagaacaiaaiIcacqaH0oazcaaIPaGaamizai abes7aKbaa@6C54@

и получаем систему интегрального уравнения Вольтерра второго рода и алгебраического уравнения

Y ˜ (t)= 0 t [(δt) q ^ (x,t) b ^ (x,t)] Y ˜ (δ)dδ+ Z ˜ (x,t), f ^ (0) (x,t) Z ˜ (x,t)= L ^ Ψ ˜ (t),x,t0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabmywayaaiaGaaG ikaiaadshacaaIPaGaaGypamaapehabeWcbaGaaGimaaqaaiaadsha a0Gaey4kIipakiaaiUfacaaIOaGaeqiTdqMaeyOeI0IaamiDaiaaiM caceWGXbGbaKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHi TiqadkgagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxai qadMfagaacaiaaiIcacqaH0oazcaaIPaGaamizaiabes7aKjabgUca RiqadQfagaacaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaa qaaiqadAgagaqcamaaCaaaleqabaGaaGikaiaaicdacaaIPaaaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislceWGAbGbaGaaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2datuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiqb=jrimzaajaWaaacaaeaacq qHOoqwaiaawoWaaiaaiIcacaWG0bGaaGykaiaaiYcacaWG4bGaeyic I48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiuaacqGFDe IucaaISaGaamiDaiabgwMiZkaaicdacaaIUaaaaaaa@891E@  (3.27)

Непрерывность функции f ^ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3504@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  вытекает из уравнения (3.26) и непрерывности его коэффициентов на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Из теории интегральных уравнений хорошо известно, что для непрерывной Z ˜ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37EA@  существует единственное непрерывное решение Y ˜ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGzbGbaGaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37E9@  уравнения Вольтерра второго рода системы (3.27). По значению Y ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGzbGbaGaaaaa@32AA@  единственным образом выводятся сначала дважды непрерывно дифференцируемая функция F ˜ (0) (t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaadshacaaIPaGa eyicI4Saam4qamaaCaaaleqabaGaaGOmaaaakmaajicabaGaaGimai aaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaaaaa@4115@ , как решение задачи Коши для уравнения F ˜ tt (0) (t)= Y ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaDa aaleaacaWG0bGaamiDaaqaaiaaiIcacaaIWaGaaGykaaaakiaaiIca caWG0bGaaGykaiaai2daceWGzbGbaGaacaaIOaGaamiDaiaaiMcaaa a@3E02@  с очевидными начальными условиями F ˜ (0) (0)= F ˜ t (0) (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaaicdacaaIPaGa aGypamaaGaaabaGaamOraaGaay5adaWaa0baaSqaaiaadshaaeaaca aIOaGaaGimaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacaaI9aGaaGim aaaa@4102@ , и затем единственная функция f ^ (0) C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiabgIGiolaadoeacaaIOaWaaacaaeaacaWG hbaacaGLdmaacaaIPaaaaa@3A4D@ . Находим функцию Z ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaaaaa@32AB@  из второго алгебраического уравнения системы (3.27) и имеем её единственное решение { Y ˜ , Z ˜ } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGabmywayaaiaGaaGilaiqadQ fagaacaiaai2haaaa@365A@ .

Итак, выше мы преобразовали все слагаемые из (3.19) в первые три слагаемые из (3.3). Вычитаем след формулы (3.19) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  из формулы (3.19), прибавляем граничное данное μ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C8A@  и получаем классическое решение исходной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  вида

u + (x,t)= u (x,t) u (0,t)+μ(t) C 2 ( G + ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWG1bGbaqba caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTiqadwhagaafai aaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqiVd0MaaGik aiaadshacaaIPaGaeyicI4Saam4qamaaCaaaleqabaGaaGOmaaaaki aaiIcacaWGhbWaaSbaaSqaaiabgUcaRaqabaGccaaIPaGaaGilaaaa @4FD1@  (3.28)

 которое совпадает с решением (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из теоремы 3.1. Выражение (3.28), очевидно, удовлетворяет уравнению (2.1) и граничному режиму (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Единственные решения краевых задач могут иметь разные виды и формы записи.

Мы убедились в дважды непрерывной дифференцируемости функций (3.2) в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.3) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . В теореме 1 из [5] непрерывность решений на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  и их частных производных до второго порядка включительно на характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  подробно и строго обоснована в случае модельного телеграфного уравнения (см. ниже уравнение (4.1)). В нашей первой смешанной задаче для общего телеграфного уравнения (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) достаточность условий согласования (2.5) для дважды непрерывной дифференцируемости функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba aaaa@33D0@  вида (3.2) в замыкании G ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadEeadaWgaaWcbaGaey OeI0cabeaaaaaaaa@33B3@  множества G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и функции u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  вида (3.3) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  на характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  можно вывести из достаточности условий согласования для модельного уравнения в теореме 1 из [5]. Во-первых, первые два наших условия согласования из (2.5) и теоремы 1 из [5] совпадают. Во-вторых, для общего телеграфного уравнения (2.1), из левой и правой частей которого вычитаем слагаемые

a 1 (x,t) a t (x,t) u t (x,t)+a(x,t) a x (x,t) u x (x,t),b(x,t) u t (x,t)+c(x,t) u x (x,t)+q(x,t)u(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaWbaaSqabeaacqGHsislca aIXaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHbWaaSba aSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHRaWkcaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadkgacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiDaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadogacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadghacaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYcaaaa@7C6D@

записываем третье условие согласования из теоремы 1 статьи [5] для правой части

f ˜ (x,t)=f(x,t) a 1 (x,t) a t (x,t) u t (x,t)a(x,t) a x (x,t) u x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHsislcaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHbWaaSbaaSqaaiaa dshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaS baaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca cqGHsislcaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHb WaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHsislaaa@63E7@

b(x,t) u t (x,t)c(x,t) u x (x,t)q(x,t)u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGIbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGJbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGXbGaaGikai aadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGa amiDaiaaiMcaaaa@54FF@

и получаем третье условие согласования из (2.5) для смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3):

μ (0)= S ˜ f ˜ (0,0)+ a 2 (0,0) φ (0)+ a 1 (0,0) a t (0,0)ψ(0)+a(0,0) a x (0,0) φ (0)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqbgaqbaiaaiIcacaaIWa GaaGykaiaai2daceWGtbGbaGaacqGHHjIUceWGMbGbaGaacaaIOaGa aGimaiaaiYcacaaIWaGaaGykaiabgUcaRiaadggadaahaaWcbeqaai aaikdaaaGccaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiqbeA8aQzaa fyaafaGaaGikaiaaicdacaaIPaGaey4kaSIaamyyamaaCaaaleqaba GaeyOeI0IaaGymaaaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGa amyyamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaaic dacaaIPaGaeqiYdKNaaGikaiaaicdacaaIPaGaey4kaSIaamyyaiaa iIcacaaIWaGaaGilaiaaicdacaaIPaGaamyyamaaBaaaleaacaWG4b aabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGafqOXdOMbauaa caaIOaGaaGimaiaaiMcacaaI9aaaaa@685B@

=f(0,0)+ a 2 (0,0) φ (0)b(0,0)ψ(0)c(0,0) φ (0)q(0,0)φ(0)S. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOzaiaaiIcacaaIWaGaaG ilaiaaicdacaaIPaGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGafqOXdOMbauGbauaaca aIOaGaaGimaiaaiMcacqGHsislcaWGIbGaaGikaiaaicdacaaISaGa aGimaiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMcacqGHsislcaWGJb GaaGikaiaaicdacaaISaGaaGimaiaaiMcacuaHgpGAgaqbaiaaiIca caaIWaGaaGykaiabgkHiTiaadghacaaIOaGaaGimaiaaiYcacaaIWa GaaGykaiabeA8aQjaaiIcacaaIWaGaaGykaiabggMi6kaadofacaaI Uaaaaa@607E@

В доказательстве теоремы 2 статьи [5] единственность классического решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  обоснована от противного с помощью энергетического неравенства для её обобщенного сильного решения (см. [8]). Более того, в настоящей статье единственность этого классического решения задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) также следует из способа получения формул Римана (3.14) и (3.19) также, как в [11, с. 139] (см. замечание 3.2).

Устойчивость классического решения u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba aaaa@33D0@  вида (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  вида (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) подробно описана в [5]. При любом 0<T<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadsfacaaI8aGaey 4kaSIaeyOhIukaaa@372F@  решение (3.2) непрерывно зависит в банаховом пространстве X (1) = C 2 ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaam4qamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWGhbWaa0baaSqaaiaadsfaaeaacqGHsislaaGccaaIPaaaaa@3BA1@  от φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  в произведении Y (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E8@  банаховых пространств C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO WaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfa aaaa@3950@ , C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO WaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfa aaaa@394F@ , C ^ ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadoeaaiaawkWaaiaaiI cacaWGhbWaa0baaSqaaiaadsfaaeaacqGHsislaaGccaaIPaaaaa@3775@ , где множества G T = G T G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaa0baaSqaaiaadsfaaeaacq GHsislaaGccaaI9aGaam4ramaaBaaaleaacaWGubaabeaakiabgMIi hlaadEeadaWgaaWcbaGaeyOeI0cabeaaaaa@3AAB@ , G T ={(x,t) G :0x<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaO GaaGypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGi olaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiQdacaaIWaGaeyizIm QaamiEaiaaiYdacqGHRaWkcqGHEisPaaa@44B5@ , 0tT} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfacaaI9baaaa@38BA@ , с нормами из [5]:

u (x,t) C 2 ( G T ) = sup (x,t) G T 0p+j2 p+j u(x,t) p x j t , φ(x) C 2 0,+ = sup 0x<+ m=0 2 d m φ(x) d x m ,ψ(x) C 1 0,+ = sup 0x<+ m=0 1 d m ψ(x) d x m , f(x,t) C ^ ( G T ) = sup (x,t) G T |f(x,t)|+ i=1 2 0p+j1 p+j H i (x,t) p x j t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWabaaabaqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDamaaBaaaleaacqGHsislaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qam aaCaaabeqaaiaaikdaaaGaaGikaiaadEeadaqhaaqaaiaadsfaaeaa cqGHsislaaGaaGykaaqabaGccaaI9aWaaybuaeqaleaacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaqhaaqaaiaadsfa aeaacqGHsislaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaaqafabe WcbaGaaGimaiabgsMiJkaadchacqGHRaWkcaWGQbGaeyizImQaaGOm aaqab0GaeyyeIuoakmaaemaabaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaadchacqGHRaWkcaWGQbaaaOGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaOGaam iEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGLhWUa ayjcSdGaaGilaaqaaiab=vIiqjabeA8aQjaaiIcacaWG4bGaaGykai ab=vIiqnaaBaaaleaacaWGdbWaaWbaaeqabaGaaGOmaaaadaqcIaqa aiaaicdacaaISaGaey4kaSIaeyOhIukacaGLBbGaay5waaaabeaaki aai2dadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaaGipaiabgUca Riabg6HiLcqabOqaaiGacohacaGG1bGaaiiCaaaadaaeWbqabSqaai aad2gacaaI9aGaaGimaaqaaiaaikdaa0GaeyyeIuoakmaaemaabaWa aSaaaeaacaWGKbWaaWbaaSqabeaacaWGTbaaaOGaeqOXdOMaaGikai aadIhacaaIPaaabaGaamizaiaadIhadaahaaWcbeqaaiaad2gaaaaa aaGccaGLhWUaayjcSdGaaGilaiaaywW7cqWFLicucqaHipqEcaaIOa GaamiEaiaaiMcacqWFLicudaWgaaWcbaGaam4qamaaCaaabeqaaiaa igdaaaWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5wai aawUfaaaqabaGccaaI9aWaaybuaeqaleaacaaIWaGaeyizImQaamiE aiaaiYdacqGHRaWkcqGHEisPaeqakeaaciGGZbGaaiyDaiaacchaaa WaaabCaeqaleaacaWGTbGaaGypaiaaicdaaeaacaaIXaaaniabggHi LdGcdaabdaqaamaalaaabaGaamizamaaCaaaleqabaGaamyBaaaaki abeI8a5jaaiIcacaWG4bGaaGykaaqaaiaadsgacaWG4bWaaWbaaSqa beaacaWGTbaaaaaaaOGaay5bSlaawIa7aiaaiYcaaeaacqWFLicuca WGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWc baWaaecaaeaacaWGdbaacaGLcmaacaaIOaGaam4ramaaDaaabaGaam ivaaqaaiabgkHiTaaacaaIPaaabeaakiaai2dadaGfqbqabSqaaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaDaaaba GaamivaaqaaiabgkHiTaaaaeqakeaaciGGZbGaaiyDaiaacchaaaWa aeWaaeaacaaI8bGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGiFaiabgUcaRmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGa aGOmaaqdcqGHris5aOGaaGjcVpaaqafabeWcbaGaaGimaiabgsMiJk aadchacqGHRaWkcaWGQbGaeyizImQaaGymaaqab0GaeyyeIuoakmaa emaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadchacqGHRaWkca WGQbaaaOGaamisamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaO GaamiEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGL hWUaayjcSdaacaGLOaGaayzkaaGaaGOlaaaaaaa@112C@  (3.29)

При любом 0<T<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadsfacaaI8aGaey 4kaSIaeyOhIukaaa@372F@  решение (3.3) непрерывно зависит в банаховом пространстве X (2) = C 2 ( G T + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaI9aGaam4qamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWGhbWaa0baaSqaaiaadsfaaeaacqGHRaWkaaGccaaIPaaaaa@3B97@  от φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  в произведении Y (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E9@  банаховых пространств C 2 [0, ϒ T ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaG4waiaaicdacaaISaGaeuO0de6aaSbaaSqaaiaadsfaaeqaaOGa aGyxaaaa@39C4@ , C 1 [0, ϒ T ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaG4waiaaicdacaaISaGaeuO0de6aaSbaaSqaaiaadsfaaeqaaOGa aGyxaaaa@39C3@ , C 2 [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaG4waiaaicdacaaISaGaamivaiaai2faaaa@378D@ , C ^ ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadoeaaiaawkWaaiaaiI cacaWGhbWaaWbaaSqabeaacaWGubaaaOGaaGykaaaa@3688@  с нормами из [5]:

u + (x,t) C 2 ( G T + ) = max (x,t) G T + 0p+j2 p+j u(x,t) p x j t ,φ(x) C 2 [0, ϒ T ] = max 0x ϒ T m=0 2 d m φ(x) d x m , ψ(x) C 1 [0, ϒ T ] = max 0x ϒ T m=0 1 d m ψ(x) d x m ,μ(t) C 2 [0,T] = max 0tT m=0 2 d m μ(t) d t m , f(x,t) C ^ ( G T ) = max (x,t) G T |f(x,t)|+ i=1 2 0p+j1 p+j H i (x,t) p x j t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWabaaabaqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDamaaBaaaleaacqGHRaWkaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qam aaCaaabeqaaiaaikdaaaGaaGikaiaadEeadaqhaaqaaiaadsfaaeaa cqGHRaWkaaGaaGykaaqabaGccaaI9aWaaybuaeqaleaacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaqhaaqaaiaadsfa aeaacqGHRaWkaaaabeGcbaGaciyBaiaacggacaGG4baaamaaqafabe WcbaGaaGimaiabgsMiJkaadchacqGHRaWkcaWGQbGaeyizImQaaGOm aaqab0GaeyyeIuoakmaaemaabaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaadchacqGHRaWkcaWGQbaaaOGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaOGaam iEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGLhWUa ayjcSdGaaGilaiaaywW7cqWFLicucqaHgpGAcaaIOaGaamiEaiaaiM cacqWFLicudaWgaaWcbaGaam4qamaaCaaabeqaaiaaikdaaaGaaG4w aiaaicdacaaISaGaeuO0de6aaSbaaeaacaWGubaabeaacaaIDbaabe aakiaai2dadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQa euO0de6aaSbaaeaacaWGubaabeaaaeqakeaaciGGTbGaaiyyaiaacI haaaWaaabCaeqaleaacaWGTbGaaGypaiaaicdaaeaacaaIYaaaniab ggHiLdGcdaabdaqaamaalaaabaGaamizamaaCaaaleqabaGaamyBaa aakiabeA8aQjaaiIcacaWG4bGaaGykaaqaaiaadsgacaWG4bWaaWba aSqabeaacaWGTbaaaaaaaOGaay5bSlaawIa7aiaaiYcaaeaacqWFLi cucqaHipqEcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaam4q amaaCaaabeqaaiaaigdaaaGaaG4waiaaicdacaaISaGaeuO0de6aaS baaeaacaWGubaabeaacaaIDbaabeaakiaai2dadaGfqbqabSqaaiaa icdacqGHKjYOcaWG4bGaeyizImQaeuO0de6aaSbaaeaacaWGubaabe aaaeqakeaaciGGTbGaaiyyaiaacIhaaaWaaabCaeqaleaacaWGTbGa aGypaiaaicdaaeaacaaIXaaaniabggHiLdGcdaabdaqaamaalaaaba GaamizamaaCaaaleqabaGaamyBaaaakiabeI8a5jaaiIcacaWG4bGa aGykaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaWGTbaaaaaaaOGaay 5bSlaawIa7aiaaiYcacaaMf8Uae8xjIaLaeqiVd0MaaGikaiaadsha caaIPaGae8xjIa1aaSbaaSqaaiaadoeadaahaaqabeaacaaIYaaaai aaiUfacaaIWaGaaGilaiaadsfacaaIDbaabeaakiaai2dadaGfqbqa bSqaaiaaicdacqGHKjYOcaWG0bGaeyizImQaamivaaqabOqaaiGac2 gacaGGHbGaaiiEaaaadaaeWbqabSqaaiaad2gacaaI9aGaaGimaaqa aiaaikdaa0GaeyyeIuoakmaaemaabaWaaSaaaeaacaWGKbWaaWbaaS qabeaacaWGTbaaaOGaeqiVd0MaaGikaiaadshacaaIPaaabaGaamiz aiaadshadaahaaWcbeqaaiaad2gaaaaaaaGccaGLhWUaayjcSdGaaG ilaaqaaiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiab=vIiqnaaBaaaleaadaqiaaqaaiaadoeaaiaawkWaaiaaiIcaca WGhbWaaWbaaeqabaGaamivaaaacaaIPaaabeaakiaai2dadaGfqbqa bSqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ram aaCaaabeqaaiaadsfaaaaabeGcbaGaciyBaiaacggacaGG4baaamaa bmaabaGaaGiFaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYhacqGHRaWkdaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaa ikdaa0GaeyyeIuoakiaayIW7daaeqbqabSqaaiaaicdacqGHKjYOca WGWbGaey4kaSIaamOAaiabgsMiJkaaigdaaeqaniabggHiLdGcdaab daqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbGaey4kaSIaam OAaaaakiaadIeadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaqaaiabgkGi2oaaCaaaleqabaGaamiCaaaaki aadIhacqGHciITdaahaaWcbeqaaiaadQgaaaGccaWG0baaaaGaay5b SlaawIa7aaGaayjkaiaawMcaaiaai6caaaaaaa@3D4A@  (3.30)

Здесь

G T + = G T G + , ϒ T = h 1 { g 1 ( h 2 { g 2 (0,0),T},T),0}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaa0baaSqaaiaadsfaaeaacq GHRaWkaaGccaaI9aGaam4ramaaCaaaleqabaGaamivaaaakiabgMIi hlaadEeadaWgaaWcbaGaey4kaScabeaakiaaiYcacaaMf8UaeuO0de 6aaSbaaSqaaiaadsfaaeqaaOGaaGypaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcaca WGObWaaSbaaSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiaaiYcaca WGubGaaGyFaiaaiYcacaWGubGaaGykaiaaiYcacaaIWaGaaGyFaiaa iYcaaaa@5683@

G T ={(x,t) G : g 1 (x,t) g 1 ( h 2 { g 2 (0,0),T},T),0tT}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaWbaaSqabeaacaWGubaaaO GaaGypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGi olaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiQdacaWGNbWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH KjYOcaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaa kiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGilaiaadsfacaaI9b GaaGilaiaadsfacaaIPaGaaGilaiaaysW7caaIWaGaeyizImQaamiD aiabgsMiJkaadsfacaaI9bGaaGOlaaaa@5F84@

Кроме того, устойчивость решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  по данным φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  вытекает из его существования и единственности в силу теоремы Банаха о замкнутом графике.

Необходимость требований гладкости (2.4) и условий согласования (2.5) установлена нами перед теоремой 3.1. В [5] для зависящих от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  доказана необходимость (обязательность) гладкости (3.1) для дважды непрерывной дифференцируемости интеграла F(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@ , которым в теореме 3.1 становятся интегралы в третьих слагаемых из (3.2) и (3.3) при функциях va1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyyyIORaamyyaiabggMi6k aaigdaaaa@37EB@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Дважды непрерывная дифференцируемость интегралов из (3.2) и (3.3), содержащих правую часть f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  не зависит от непрерывно дифференцируемых решений v C 1 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3F50@  задач Гурса (3.10), (3.13) и (3.20), (3.21) и от дважды непрерывно дифференцируемого коэффициента a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , и функций g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaaaaa@352A@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@  (см. ниже замечание 3.1). Доказательство того, что для функций f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  требования (3.1) гарантируют дважды непрерывную дифференцируемость интеграла F C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@399F@  имеется в [5]. Поэтому необходимость гладкости (3.1) на непрерывные fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  следует из дважды непрерывной дифференцируемости функции F C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@399F@  (см. [10, 15, 16]).

Для непрерывной правой части fC 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaajicaba GaaGimaiaaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaaaaa@3ACC@ , зависящей только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , интегральные требования гладкости (3.1) автоматически выполняются (см. [10, 15, 16]).

Следствие 3.1. Если непрерывная правая часть f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  зависит только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , то утверждение теоремы 3.1 справедливо без требований гладкости (3.1).

Исследования автора минимальной гладкости правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  модельного телеграфного уравнения (см. ниже уравнение (4.1)) для дважды непрерывной дифференцируемости его частного решения F(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@  в [15, 16] указывают на то, что требования гладкости (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выполняются для непрерывно дифференцируемых f C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BE@  и даже тех непрерывных f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@ , у которых частные производные интегралов H i (x,t)/x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWGibWaaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiEaaaa@3C41@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или H i (x,t)/t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWGibWaaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiDaaaa@3C3D@  по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , из (3.1) непрерывны на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. следствие 3.2). Поэтому такая же справедливость гладкости (3.1) распространяется на коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , функции g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGa aGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C4B@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , и функцию Римана v(s,τ) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaI OaGaam4ramaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3EA7@ .

Замечание 3.1. В теореме 3.1 для непрерывной правой части fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  гладкость (3.1) равносильна гладкости (см. [5, 15, 16]):

0 t f(| h i { g i (x,t),τ}|,τ)dτ C 1 ( G ),i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGccaaMi8UaamOzaiaaiIcacaaI8bGaamiAamaaBaaa leaacaWGPbaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyF aiaaiYhacaaISaGaeqiXdqNaaGykaiaayIW7caWGKbGaeqiXdqNaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGhbWaaSba aSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7caWGPbGaaGypai aaigdacaaISaGaaGOmaiaai6caaaa@5D38@  (3.31)

Следствие 3.2. В теореме 3.1 принадлежность интегралов (3.1) и интегралов (3.31) из предыдущего замечания 3.1 множеству C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@374F@  равносильна их принадлежности множеству C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  или множеству C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@ , где C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ( C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  множества непрерывных (непрерывно дифференцируемых) по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и непрерывно дифференцируемых (непрерывных) по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [15, 16]).

Замечание 3.2. Используя соответственно чётность и нечётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений коэффициентов a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39C9@  уравнения (2.1) и дополнительные предположения a x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3925@ , b x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3926@ , c(0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@37F4@ , q x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3935@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , можно аналогичными рассуждениями из доказательства теоремы 3.1 показать a ^ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , b ^ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , c ˜ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , q ^ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38F4@ . При таких коэффициентах вспомогательная задача Коши (3.16), (3.17) имеет единственное классическое решение u C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@3904@  и задача Гурса (3.20), (3.21) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функцию Римана v ^ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38FA@ . Такая гладкость функций u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbaaaa@32D2@ , v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  избыточна для решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

4. Модельная первая смешанная задача. Из теоремы 3.1 вывести классическое решение и критерий корректности первой смешанной задачи для модельного телеграфного уравнения:

L ˜ u(x,t) u tt (x,t) a 2 (x,t) u xx (x,t) a 1 (x,t) a t (x,t) u t (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae8NeHWeacaGLdmaacaaMi8UaamyD aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyyyIORaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaiaadIha aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGHb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislaaa@6FC6@

a(x,t) a x (x,t) u x (x,t)= f ˜ (x,t),(x,t) G ˙ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaae qaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGabmOzayaa iaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Sabm4rayaacaWaaSba aSqaaiabg6HiLcqabaGccaaISaaaaa@54E6@  (4.1)

при начальных условиях (2.2) и граничном режиме (2.3).

Так же, как и выше, из постановки смешанной задачи (4.1), (2.2), (2.3) и определения 2.1 следуют необходимые условия гладкости (2.4) исходных данных и условия согласования:

φ(0)=μ(0),ψ(0)= μ (0), S ˜ f ˜ (0,0)+ a 2 (0,0) φ (0)+ a 1 (0,0) a t (0,0)ψ(0)+a(0,0) a x (0,0) φ (0)= μ (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaeqOXdOMaaGikai aaicdacaaIPaGaaGypaiabeY7aTjaaiIcacaaIWaGaaGykaiaaiYca caaMf8UaeqiYdKNaaGikaiaaicdacaaIPaGaaGypaiqbeY7aTzaafa GaaGikaiaaicdacaaIPaGaaGilaaqaaiqadofagaacaiabggMi6kqa dAgagaacaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaey4kaSIaam yyamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaaicda caaIPaGafqOXdOMbauGbauaacaaIOaGaaGimaiaaiMcacqGHRaWkca WGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaaicdacaaI SaGaaGimaiaaiMcacaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikai aaicdacaaISaGaaGimaiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMca cqGHRaWkcaWGHbGaaGikaiaaicdacaaISaGaaGimaiaaiMcacaWGHb WaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaaicdacaaISaGaaGimaiaa iMcacuaHgpGAgaqbaiaaiIcacaaIWaGaaGykaiaai2dacuaH8oqBga qbgaqbaiaaiIcacaaIWaGaaGykaiaai6caaaaaaa@7C60@  (4.2)

Найдём формулы классического решения и критерий корректности по Адамару первой смешанной задачи (4.1), (2.2), (2.3) из формул Римана (3.2), (3.3) и критерия корректности первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3), полученных нами выше в теореме 3.1.

Теорема 4.1 [5]. Пусть коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ . Первая смешанная задача (4.1), (2.2), (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  имеет единственное и устойчивое по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaaaaa@32B7@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  тогда и только тогда, когда выполняются требования гладкости (2.4), (3.1) при f= f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaacaaaa@3469@  и условия согласования (4.2). Этим классическим решением задачи (4.1), (2.2), (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  является функция

u ^ (x,t)= φ( h 2 { g 2 (x,t),0})+φ( h 1 { g 1 (x,t),0}) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaeyOeI0 cabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaa baGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiabgUcaRiabeA8aQj aaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcacaaIWaGaaGyFaiaaiMcaaeaacaaIYaaaaiabgUcaRaaa@5828@

+ 1 2 h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(ν) a(ν,0) dν+ 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(s,τ) ds,(x,t) G , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4E aiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGym aaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGc daWcaaqaaiabeI8a5jaaiIcacqaH9oGBcaaIPaaabaGaamyyaiaaiI cacqaH9oGBcaaISaGaaGimaiaaiMcaaaGaaGjcVlaadsgacqaH9oGB cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qC aeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI SaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiU hacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcdaWcaaqaai qadAgagaacaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaacaWG HbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaacaaMi8Uaamizai aadohacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyicI4Saam4ramaaBaaaleaacqGHsislaeqaaOGaaGilaaaa@9A9F@  (4.3)

u ^ + (x,t)= φ( h 1 { g 1 (x,t),0})φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaey4kaS cabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaa baGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiabgkHiTiabeA8aQj aaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWg aaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiYcacaWGObWaaWbaaS qabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaGyFaiaaiMcaaeaacaaI YaaaaiabgUcaRaaa@635A@

+ 1 2 h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0} h 1 { g 1 (x,t),0} ψ(ν) a(ν,0) dν+ 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds+μ( h (2) [0, g 2 (x,t)])+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4E aiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadI gadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaI SaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIga daWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyF aaqdcqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOaGaeqyVd4MaaGykaa qaaiaadggacaaIOaGaeqyVd4MaaGilaiaaicdacaaIPaaaaiaayIW7 caWGKbGaeqyVd4Maey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaada WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaMi8Uaamiz aiabes8a0naapehabeWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG 4EaiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiabes8a0jaai2haaeaacaWGObWaaSbaaeaaca aIXaaabeaacaaI7bGaam4zamaaBaaabaGaaGymaaqabaGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqdcqGHRi I8aOWaaSaaaeaaceWGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8bGa aGilaiabes8a0jaaiMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaiaayIW7caWGKbGaam4CaiabgUca RiabeY7aTjaaiIcacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiM caaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiabgU caRaaa@B090@

+ 1 2 0 h (2) [0, g 2 (x,t)] dτ h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds,(x,t) G + . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaaGimaaqaaiaadIgadaahaaqabeaacaaI OaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBaaaba GaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaa niabgUIiYdGccaaMi8Uaamizaiabes8a0naapehabeWcbaGaamiAam aaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqa aiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaacaaIOaGaaGOmai aaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqa baGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiY cacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4E aiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakmaalaaabaGa bmOzayaaiaGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDca aIPaaabaGaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGaeqiX dqNaaGykaaaacaaMi8UaamizaiaadohacaaISaGaaGzbVlaaiIcaca WG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaBaaaleaacqGH RaWkaeqaaOGaaGOlaaaa@8B4A@  (4.4)

Доказательство. Сначала выведем формулы (4.3), (4.4) формального решения первой смешанной задачи (4.1), (2.2), (2.3) на множествах G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из формул Римана (3.2), (3.3).

1 Множество G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . В случае модельного телеграфного уравнения (4.1) решением v ^ C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DF@ , C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaaGaaabaGaam4raa Gaay5adaGaaGykaaaa@3578@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@  соответствующих задач Гурса (3.10), (3.13) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.20), (3.21) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из теоремы 3.1 служит функция Римана из [9]:

v ^ (s,τ)=v(|s|,τ)= v ^ (s,τ;x,t)= a(|x|,t) a(|s|,τ) ,(s,τ) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiaadAhacaaIOaGaaGiFaiaadohacaaI 8bGaaGilaiabes8a0jaaiMcacaaI9aGabmODayaajaGaaGikaiaado hacaaISaGaeqiXdqNaaG4oaiaayIW7caWG4bGaaGilaiaadshacaaI PaGaaGypamaalaaabaGaamyyaiaaiIcacaaI8bGaamiEaiaaiYhaca aISaGaamiDaiaaiMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaGiF aiaaiYcacqaHepaDcaaIPaaaaiaaiYcacaaMf8UaaGikaiaadohaca aISaGaeqiXdqNaaGykaiabgIGiopaaGaaabaGaam4raaGaay5adaGa aGOlaaaa@667C@

В этом также можно убедиться подстановкой этой функции Римана в телеграфные уравнения (3.10), (3.20)) и условия Гурса (3.13), (3.21) при коэффициентах b ^ (s,τ)= a ^ 1 (s,τ) a ^ τ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiabgkHiTiqadggagaqcamaaCaaaleqa baGaeyOeI0IaaGymaaaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiM caceWGHbGbaKaadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGa aGilaiabes8a0jaaiMcaaaa@48B6@ , c ˜ (s,τ)= a ^ (s,τ) a ^ s (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiabgkHiTiqadggagaqcaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcaceWGHbGbaKaadaWgaaWcbaGaam4Caa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@460A@  и q ^ (s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiaaicdaaaa@391C@ . Других функций Римана этих задач Гурса не существует, так как решение каждой задачи Гурса единственно и задача Гурса (3.10), (3.13) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  частный случай задачи Гурса (3.20), (3.21) на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Подставляем функцию Римана v(s,τ)=a(|x|,t)/a(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWGHbGaaGikaiaaiYhacaWG4bGaaGiFaiaa iYcacaWG0bGaaGykaiaai+cacaWGHbGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaa@47DD@  в решение (3.2):

(auv)( h 2 { g 2 (x,t),0},0)+(auv)( h 1 { g 1 (x,t),0},0) 2a(x,t) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaiIcacaWGHbGaamyDai aadAhacaaIPaGaaGikaiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI 7bGaam4zamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilai aadshacaaIPaGaaGilaiaaicdacaaI9bGaaGilaiaaicdacaaIPaGa ey4kaSIaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaamiAam aaBaaaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGimai aai2hacaaISaGaaGimaiaaiMcaaeaacaaIYaGaamyyaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaaaiaai2daaaa@5DE5@

= 1 2a(x,t) a(x,t) a(s,τ) a(s,τ) u(s,τ )| τ=0 s= h 2 { g 2 (x,t),0} +a(x,t) a(s,τ) a(s,τ) u(s,τ )| τ=0 s= h 1 { g 1 (x,t),0} = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWadaqa aiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaalaaabaGaam yyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaacaWGHbGaaGik aiaadohacaaISaGaeqiXdqNaaGykaaaacaWG1bGaaGikaiaadohaca aISaGaeqiXdqNaaGykaiaaiYhadaqhaaWcbaGaeqiXdqNaaGypaiaa icdaaeaacaWGZbGaaGypaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiU hacaWGNbWaaSbaaeaacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcacaaIWaGaaGyFaaaakiabgUcaRiaadggacaaIOa GaamiEaiaaiYcacaWG0bGaaGykamaalaaabaGaamyyaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcaaeaacaWGHbGaaGikaiaadohacaaISa GaeqiXdqNaaGykaaaacaWG1bGaaGikaiaadohacaaISaGaeqiXdqNa aGykaiaaiYhadaqhaaWcbaGaeqiXdqNaaGypaiaaicdaaeaacaWGZb GaaGypaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSba aeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiY cacaaIWaGaaGyFaaaaaOGaay5waiaaw2faaiaai2daaaa@8C09@

= 1 2 u(s,τ )| τ=0 s= h 2 { g 2 (x,t),0} +u(s,τ )| τ=0 s= h 1 { g 1 (x,t),0} = φ( h 2 { g 2 (x,t),0})+φ( h 1 { g 1 (x,t),0}) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaaaadaWadaqaaiaadwhacaaIOaGaam4CaiaaiYcacqaHepaDcaaI PaGaaGiFamaaDaaaleaacqaHepaDcaaI9aGaaGimaaqaaiaadohaca aI9aGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqa aiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilai aaicdacaaI9baaaOGaey4kaSIaamyDaiaaiIcacaWGZbGaaGilaiab es8a0jaaiMcacaaI8bWaa0baaSqaaiabes8a0jaai2dacaaIWaaaba Gaam4Caiaai2dacaWGObWaaSbaaeaacaaIXaaabeaacaaI7bGaam4z amaaBaaabaGaaGymaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaaISaGaaGimaiaai2haaaaakiaawUfacaGLDbaacaaI9aWaaSaa aeaacqaHgpGAcaaIOaGaamiAamaaBaaaleaacaaIYaaabeaakiaaiU hacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaaISaGaaGimaiaai2hacaaIPaGaey4kaSIaeqOXdO MaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaa BaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiaaicdacaaI9bGaaGykaaqaaiaaikdaaaGaaGilaaaa@8546@  (4.5)

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s)v(s,0)ds= 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s) a(x,t) a(s,0) ds= 1 2 h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s) a(s,0) ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa amiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaaik daaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicda caaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgada WgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaaicdacaaI9baaniabgUIiYdGccqaHipqEcaaIOaGaam4Cai aaiMcacaWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMcacaaMi8Ua amizaiaadohacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiaadggaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqabSqaaiaadIga daWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyF aaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaae aacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca caaIWaGaaGyFaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadohacaaIPa WaaSaaaeaacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaeaa caWGHbGaaGikaiaadohacaaISaGaaGimaiaaiMcaaaGaamizaiaado hacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaa dIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYa aabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGa aGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaS baaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa iYcacaaIWaGaaGyFaaqdcqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOa Gaam4CaiaaiMcaaeaacaWGHbGaaGikaiaadohacaaISaGaaGimaiaa iMcaaaGaamizaiaadohacaaISaaaaa@B394@

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [φ(s) v τ (s,0)b(s,0)φ(s)v(s,0)]ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkHiTiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4Eai aadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqOXdO MaaGikaiaadohacaaIPaGaamODamaaBaaaleaacqaHepaDaeqaaOGa aGikaiaadohacaaISaGaaGimaiaaiMcacqGHsislcaWGIbGaaGikai aadohacaaISaGaaGimaiaaiMcacqaHgpGAcaaIOaGaam4CaiaaiMca caWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMcacaaIDbGaaGjcVl aadsgacaWGZbGaaGypaaaa@713F@

= 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} φ(s)[ a(x,t) a τ (s,0) a 2 (s,0) a 1 (s,0) a τ (s,0)a(x,t) a(s,0) ]ds=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqa bSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaae aacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca caaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhaca WGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aOGaeqOXdOMaaGikai aadohacaaIPaGaaG4wamaalaaabaGaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyyamaaBaaaleaacqaHepaDaeqaaOGaaGikai aadohacaaISaGaaGimaiaaiMcaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaaGikaiaadohacaaISaGaaGimaiaaiMcaaaGaeyOeI0YaaS aaaeaacaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaa dohacaaISaGaaGimaiaaiMcacaWGHbWaaSbaaSqaaiabes8a0bqaba GccaaIOaGaam4CaiaaiYcacaaIWaGaaGykaiaadggacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaaqaaiaadggacaaIOaGaam4CaiaaiYcaca aIWaGaaGykaaaacaaIDbGaamizaiaadohacaaI9aGaaGimaiaaiYca aaa@84F4@

1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ)v(s,τ)ds= 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(x,t) a(s,τ) ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa aGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8 qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaa BaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaa iUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcceWGMbGb aGaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamODaiaaiIcaca WGZbGaaGilaiabes8a0jaaiMcacaWGKbGaam4Caiaai2dadaWcaaqa aiaaigdaaeaacaaIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshaca aIPaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaa yIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYa aabeaacaaI7bGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgada WgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaa caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9b aaniabgUIiYdGcceWGMbGbaGaacaaIOaGaam4CaiaaiYcacqaHepaD caaIPaWaaSaaaeaacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiM caaeaacaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaacaWG KbGaam4Caiaai2daaaa@A6A1@

= 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(s,τ) ds,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaaaadaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaM i8Uaamizaiabes8a0naapehabeWcbaGaamiAamaaBaaabaGaaGOmaa qabaGaaG4EaiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaeaacaWGObWaaS baaeaacaaIXaaabeaacaaI7bGaam4zamaaBaaabaGaaGymaaqabaGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaa qdcqGHRiI8aOWaaSaaaeaaceWGMbGbaGaacaaIOaGaam4CaiaaiYca cqaHepaDcaaIPaaabaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0j aaiMcaaaGaaGjcVlaadsgacaWGZbGaaGilaiaaywW7caaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaWgaaWcbaGaeyOeI0 cabeaakiaai6caaaa@70CB@

Эти равенства указывают на то, что решение (3.2) становится решением (4.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ .

2. Множество G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Вывод первых трёх слагаемых решения (4.4) из формулы Римана (3.3) аналогичен равенствам (4.5). Согласно нашему выводу формулы Римана (3.3) классического решения u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  его последний интеграл, равный значению предпоследнего двойного интеграла по ΔMPG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadEeaaa a@3597@  при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , имеет величину

U(x,t) 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f ˜ (|s|,τ)v(|s|,τ;0,t)ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamyyai aaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapehabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qCae qaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaaBaaa baGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaISa GaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUha caWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimaiaaiYcacaWG0b GaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcceWGMbGbaGaa caaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0jaaiMcacaWG2b GaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaI7aGaaGjc VlaaicdacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadohacaaI9a aaaa@86BA@

= 1 2a(0,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ)v(|s|,τ;x,t)ds | x=0 ,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaaaa daqadaqaamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaki aayIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaI YaaabeaacaaI7bGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIga daWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaniabgUIiYdGcceWGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8b GaaGilaiabes8a0jaaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiF aiaaiYcacqaHepaDcaaI7aGaaGjcVlaadIhacaaISaGaamiDaiaaiM cacaaMi8UaamizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaSqa aiaadIhacaaI9aGaaGimaaqabaGccaaISaGaaGzbVlaaiIcacaWG4b GaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaBaaaleaacqGHRaWk aeqaaOGaaGilaaaa@84C1@

так как в (3.3) функция f = f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaI9aGabmOzayaaia aaaa@3484@ , поскольку в [5] решение задачи (4.1), (2.2), (2.3) получено методом характеристик, а не нашим методом компенсации правой частью уравнения. Подставляем функцию v(|s|,τ)=a(|x|,t)/a(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaGaaGypaiaadggacaaIOaGaaGiFaiaa dIhacaaI8bGaaGilaiaadshacaaIPaGaaG4laiaadggacaaIOaGaaG iFaiaadohacaaI8bGaaGilaiabes8a0jaaiMcaaaa@49E9@  и меняем порядок интегрирования:

a(0,t) 2a(0,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 = 1 2 0 t dτ h 1 { g 1 (x,t),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadggacaaIOa GaaGimaiaaiYcacaWG0bGaaGykaaqaaiaaikdacaWGHbGaaGikaiaa icdacaaISaGaamiDaiaaiMcaaaWaaeWaaeaadaWdXbqabSqaaiaaic daaeaacaWG0baaniabgUIiYdGccaaMi8Uaamizaiabes8a0naapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiabes8a0jaai2haaeaacaWGObWaaSbaaeaacaaIXaaabeaacaaI7b Gaam4zamaaBaaabaGaaGymaaqabaGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaGaeqiXdqNaaGyFaaqdcqGHRiI8aOWaaSaaaeaace WGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0jaa iMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHep aDcaaIPaaaaiaayIW7caWGKbGaam4CaaGaayjkaiaawMcaaiaaiYha daWgaaWcbaGaamiEaiaai2dacaaIWaaabeaakiaai2dadaWcaaqaai aaigdaaeaacaaIYaaaamaabmaabaWaa8qCaeqaleaacaaIWaaabaGa amiDaaqdcqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaai aadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaI XaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHep aDcaaI9baabaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEga daWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiabes8a0jaai2haa0Gaey4kIipakmaalaaabaGabmOzayaa iaGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaIPaaaba GaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGaeqiXdqNaaGyk aaaacaaMi8UaamizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaS qaaiaadIhacaaI9aGaaGimaaqabaGccaaIUaaaaa@B71A@

Сначала во внешнем повторном интеграле делаем замену переменной интегрирования

τ ˜ = h (2) [0, g 2 (x,τ)],τ0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaISaGaaGzbVlabes8a0jabgwMiZkaaicda caaISaaaaa@48D3@  (4.6)

и приходим к повторному двойному интегралу

U(x,t) 1 2 0 h (2) [0, g 2 (x,t)] d τ ˜ h 1 { g 1 (x,t),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcba GaaGimaaqaaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGa aG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikai aadIhacaaISaGaamiDaiaaiMcacaaIDbaaniabgUIiYdGccaaMi8Ua amizaiqbes8a0zaaiaWaaeWaaeaadaWdXbqabSqaaiaadIgadaWgaa qaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaba GaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaa ikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes 8a0jaai2haa0Gaey4kIipakmaalaaabaGabmOzayaaiaGaaGikaiaa iYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaIPaaabaGaamyyaiaaiI cacaaI8bGaam4CaiaaiYhacaaISaGaeqiXdqNaaGykaaaacaaMi8Ua amizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaSqaaiaadIhaca aI9aGaaGimaaqabaGccaaISaaaaa@8D69@  (4.7)

так как внешний нижний предел интегрирования равен τ ˜ = h (2) [0, g 2 (x,τ )]| x=0,τ=0 =τ | τ=0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiaadIhacaaI9aGaaGim aiaaiYcacqaHepaDcaaI9aGaaGimaaqabaGccaaI9aGaeqiXdqNaaG iFamaaBaaaleaacqaHepaDcaaI9aGaaGimaaqabaGccaaI9aGaaGim aaaa@51D9@  по второму тождеству обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ , внешний верхний предел интегрирования равен τ ˜ = h (2) [0, g 2 (x,τ )]| τ=t = h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiabes8a0jaai2dacaWG 0baabeaakiaai2dacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiM caaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@538C@  и из тождества h (2) [0, g 2 (x,τ )]| x=0 =τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaGykaiaai2faca aI8bWaaSbaaSqaaiaadIhacaaI9aGaaGimaaqabaGccaaI9aGaeqiX dqhaaa@453F@ , τ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3602@ , в (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  следует равенство

d τ ˜ = h (2) [0, g 2 (x,τ)] τ | x=0 dτ=dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGafqiXdqNbaGaacaaI9aWaaS aaaeaacqGHciITcaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMca aaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaeqiXdqNaaGykaiaai2faaeaacqGHciIT cqaHepaDaaGaaGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaO Gaamizaiabes8a0jaai2dacaWGKbGaeqiXdqNaaGOlaaaa@51B3@

Здесь производная по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@  и след при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  коммутируют. В функции h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@  уже x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , потому что к функции y 2 = g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaaa@3A63@  обратной функцией при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  является функция

t= h (2) [x, y 2 ]| x=0 = h (2) [0, y 2 ]= h (2) [0, g 2 (x,t)],t0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadIgadaahaaWcbe qaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaWG4bGaaGilaiaadMha daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGiFamaaBaaaleaacaWG4b GaaGypaiaaicdaaeqaaOGaaGypaiaadIgadaahaaWcbeqaaiaaiIca caaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadMhadaWgaaWcba GaaGOmaaqabaGccaaIDbGaaGypaiaadIgadaahaaWcbeqaaiaaiIca caaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2fa caaISaGaaGzbVlaadshacqGHLjYScaaIWaGaaGOlaaaa@5CCF@

Итак, после замены (4.6) в интеграле U(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@426C@  верхний предел интегрирования t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  внешнего повторного интеграла при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  стал равным h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@  в (4.7). Поэтому во внутреннем повторном интеграле из U(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@426C@  замена (4.6) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  равносильна замене t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@ . Кроме того, во внутреннем повторном интеграле из (4.7) замена (4.6) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  равносильна замене τ ˜ = h (2) [0, g 2 (x,τ )]| x=0 =τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiaadIhacaaI9aGaaGim aaqabaGccaaI9aGaeqiXdqhaaa@47DA@ , τ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3602@ , по второй формуле обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ . В результате этих замен находим

U(x,t) 1 2 0 h (2) [0, g 2 (x,t)] d τ ˜ h 1 { g 1 (0, h (2) [0, g 2 (x,t)]), τ ˜ } h 2 { g 2 (x,t), τ ˜ } f ˜ (|s|, τ ˜ ) a(|s|, τ ˜ ) ds,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcba GaaGimaaqaaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGa aG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikai aadIhacaaISaGaamiDaiaaiMcacaaIDbaaniabgUIiYdGccaaMi8Ua amizaiqbes8a0zaaiaGaaGjcVpaapehabeWcbaGaamiAamaaBaaaba GaaGymaaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIca caaIWaGaaGilaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaa GaaG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiYcacuaHep aDgaacaiaai2haaeaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGafqiXdqNbaGaacaaI9baaniabgUIiYdGcdaWcaaqa aiqadAgagaacaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGafqiXdq NbaGaacaaIPaaabaGaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaI SaGafqiXdqNbaGaacaaIPaaaaiaayIW7caWGKbGaam4CaiaaiYcaca aMf8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGhbWa aSbaaSqaaiabgUcaRaqabaGccaaISaaaaa@9EBA@  (4.8)

так как по первой формуле обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  пределы интегрирования равны

h 2 { g 2 (0,t),τ}= h 2 { g 2 (0, h (2) [0, g 2 (x,t)]), τ ˜ }= h 2 { g 2 (x,t), τ ˜ }, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGypaiaadIgada WgaaWcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiqbes8a0zaaiaGaaGyFaiaai2dacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacuaHepaDgaacaiaa i2hacaaISaaaaa@640F@

h 1 { g 1 (0,t),τ}= h 1 { g 1 (0, h (2) [0, g 2 (x,t)]), τ ˜ }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGypaiaadIgada WgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiqbes8a0zaaiaGaaGyFaiaai6caaaa@56E2@

В граничном данном μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  формулы (3.3) можно тоже заменить t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@ , т.е. μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  на μ( h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4148@ . Граничное данное μ( h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4148@  для μ(t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaacaaIWaGa aGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa@3EE8@  и интеграл (4.8) служат классическими решениями однородного модельного телеграфного уравнения (4.1) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ , так как они имеют вид слагаемого F 2 ( g 2 (x,t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xbWB0aaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiMcaaaa@4683@  для всех F 2 C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xbWB0aaSbaaSqaaiaaikdaaeqaaOGaeyic I4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy0H MmaeXbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risjaaiMcaaaa@4E8B@ , общего интеграла уравнения (4.1) при f ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaI9aGaaGimaaaa@3438@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  из [5, 15, 16].

Из теоремы 3.1 следует дважды непрерывная дифференцируемость найденных из общих формул Римана (3.2) и (3.3) решений (4.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ , (4.4) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  и (4.3), (4.4) на критической характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  для первой смешанной задачи (4.1), (2.2), (2.3), а также критерий её корректности. Эта гладкость решений (4.3), (4.4) и критерий корректности задачи (4.1), (2.2), (2.3) подробно и конструктивно исследованы в [5]. Теорема доказана.

Замечание 4.1. При доказательстве теорем 1 и 2 в [5] была показана только достаточность требований гладкости (3.1). Их необходимость также подтверждают работы автора [15, 16]. В [1] нет формулы (4.4) решения задачи (4.1), (2.2), (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ .

Следствие 4.1. Если непрерывная правая часть f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaaaaa@32B7@  зависит только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , то утверждение теоремы 4.1 справедливо без требований гладкости (3.1).

Для непрерывной правой части f ˜ C 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacqGHiiIZcaWGdbWaaK GiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa @3ADB@ , зависящей только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , интегральные требования гладкости (3.1) автоматически выполняются (см. [10, 15, 16]).

Замечание 4.2. В теореме 4.1, где a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , для зависящей от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  и непрерывной правой части f ˜ C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacqGHiiIZcaWGdbGaaG ikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@38DB@  гладкость (3.1) равносильна гладкости (3.31) из замечания 3.1 (см. [5, 10, 15, 16]).

Следствие 4.2. В теореме 4.1 принадлежность интегралов (3.1) и равносильных интегралов (3.31)( множеству C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@374F@  эквивалентна их принадлежности множеству C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  или множеству C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@ , где C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ( C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  множества непрерывных (непрерывно дифференцируемых) по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и непрерывно дифференцируемых (непрерывных) по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  ([10, 15, 16]).

5. Заключение. Получены формулы Римана (3.2), (3.3) единственного и устойчивого классического решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  и критерий (2.4), (2.5), (3.31) корректности по Адамару первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) для общего линейного неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. Эти формулы Римана содержат неявные функции характеристик уравнения (2.1). Из формул Римана (3.2), (3.3) и критерия корректности (2.4), (2.5), (3.31) выведены уже известные формулы классического решения (4.3), (4.4) и критерий корректности (2.4), (3.31), (4.2) первой смешанной задачи (4.1), (2.2), (2.3) для неоднородного модельного телеграфного уравнения со специальными переменными коэффициентами в первой четверти плоскости, которые ранее были установлены автором в [5]. Последние результаты служат подтверждением справедливости полученных формул Римана (3.2), (3.3) и критерия корректности (2.4), (2.5), (3.31) настоящей работы.

×

Об авторах

Федор Егорович Ломовцев

Белорусский государственный университет

Автор, ответственный за переписку.
Email: lomovcev@bsu.by
Белоруссия, Минск

Список литературы

  1. Барановская С. Н. О классическом решении первой смешанной задачи для одномерного гиперболического уравнения/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук. — Минск: БГУ, 1991.
  2. Владимиров В. С. Обобщенные функции в математической физике. — М.: Наука, 1976.
  3. Корнев В. В. Резольвентный подход к методу Фурье в смешанной задаче для неоднородного волнового уравнения// Изв. Саратов. ун-та. Нов. сер. Сер. Мат. Мех. Информ. — 2016. — 16, № 4. — С. 403–412.
  4. Ладыженская О. А. Краевые задачи математической физики. — М.: Наука, 1973.
  5. Ломовцев Ф. Е. Первая смешанная задача для общего телеграфного уравнения с переменными коэффициентами на полупрямой// Ж. Белорус. гос. ун-та. Мат. Информ. — 2021. — № 1. — С. 18–38.
  6. Ломовцев Ф. Е. Метод вспомогательных смешанных задач для полуограниченной струны// Тез. докл. Междунар. мат. конф. ≪VI Богдановские чтения по обыкновенным дифференциальным уравнениям≫ (Минск, 7–10 декабря 2015 г.). — Минск: Ин-т мат. НАН Беларуси, 2015. — 2. — С. 74–75.
  7. Ломовцев Ф. Е. Глобальная теорема корректности по Адамару первой смешанной задачи для волнового уравнения в полуполосе плоскости// Весн. Гродз. дзярж. ˘ун-та iм. Я. Купалы. Сер. 2. — 2021. —11, № 1. — С. 68–82.
  8. Ломовцев Ф. Е. О необходимых и достаточных условиях однозначной разрешимости задачи Коши для гиперболических дифференциальных уравнений второго порядка с переменной областью определения операторных коэффициентов// Диффер. уравн. — 1992. — 28, № 5. — С. 873–886.
  9. Ломовцев Ф. Е. Задача Гурса для сопряжённого модельного телеграфного уравнения со скоростью a(x, t) в верхней полуплоскости// Вестн. Полоцк. гос. ун-та. Сер. С. Фундам. науки. — 2022. — № 4. — С. 92–102.
  10. Новиков Е. Н. Смешанные задачи для уравнения вынужденных колебаний ограниченной струны при нестационарных граничных условиях с первой и второй косыми производными. — Минск: Ин-т мат. НАН Беларуси, 2017.
  11. Тихонов А. Н. Уравнения математической физики. — М.: Наука, 2004.
  12. Хромов А. П. Классическое и обобщенное решения смешанной задачи для неоднородного волнового уравнения// Докл. РАН. — 2019. — 484, № 1. — С. 18–20.
  13. Хромов А. П. Необходимые и достаточные условия существования классического решения смешанной задачи для однородного волнового уравнения в случае суммируемого потенциала// Диффер. уравн. — 2019. — 55, № 5. — С. 717–731.
  14. Чернятин В. А. Обоснование метода Фурье в смешанной задаче для уравнений в частных производных / Препринт. — Киев: Ин-т мат. АН УССР, 1990.
  15. Lomovtsev F. E. Conclusion of the smoothness criterion for the right-hand side of the model telegraph equation with the rate a(x, t) by the correction method// Мат. Междунар. конф. ≪XXXIV Воронежская весенняя математическая школа ≪Понтрягинские чтения-XXХII≫ (Воронеж, 3-9 мая 2021 г.). — Воронеж: Изд. дом ВГУ, 2021. — С. 284–287.
  16. Lomovtsev F. Е. The smoothness criterion for the classical solution to inhomogeneous model telegraph equation at the rate a(x, t) on the half-line// Тр. 10 Междунар. науч. семин. AMADE-2021 (Минск, 13–17 сентября 2021Ёг.). — Минск: БГУ, 2022. — С. 43–53.
  17. Lomovtsev F. E. Global correctness theorem of the first mixed problem for the model telegraph equation at the rate a(x, t) in the half-strip of the plane// Весн. Гродз. дзярж. ˘ун-та iм. Я. Купалы. Сер. 2. — 2021. — 11, № 3. — С. 13–26.
  18. Lomovtsev F. E. Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on the segment// Пробл. физ. мат. техн. — 2022. — № 1 (50). — С. 62–73.
  19. Lomovtsev F. E. Riemann formula of the classical solution to the first mixed problem for the general telegraph equation with variable coefficients on the half-line// Тез. докл. Междунар. мат. конф. ≪VII Богдановские чтения по обыкновенным дифференциальным уравнениям≫ (Минск, 1-4 июня 2021 г.). — Минск: Ин-т мат. НАН Беларуси, 2021. — С. 201–203.
  20. Lomovtsev F. E. Generalized Riemann formula of the classical solution to the Cauchy problem for the general telegraph equation with variable coefficients// Мат. Междунар. конф. ≪XXXIV Воронежская весенняя математическая школа ≪Понтрягинские чтения-XXХII≫ (Воронеж, 3-9 мая 2021 г.). — Воронеж: Изд. дом ВГУ, 2021. — С. 288–289.
  21. Schauder J. Über lineare elliptiche Differentialgleichungen zweiter Ordnung// Math. Z. — 1934. — 38. — P. 257–282.
  22. Schwartz L. Theorie des distributions. — Paris: Hermann, 1950–1951.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Криволинейный характеристический треугольник  в .

Скачать (583KB)
3. Рис. 2. Криволинейные характеристический и критический треугольники  и  в .

Скачать (733KB)

© Ломовцев Ф.Е., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».