Об основном уравнении для обратного оператора Штурма—Лиувилля с разрывным коэффициентом

Обложка

Цитировать

Полный текст

Аннотация

В работе рассматривается краевая задача для оператора Штурма—Лиувилля с разрывным коэффициентом. Получено основное уравнение обратной задачи для краевой задачи и доказана единственность его решения.

Полный текст

1. Введение. Рассмотрим краевую задачу

y +q(x)y= λ 2 ρ(x)y,0xπ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iabm yEayaafyaafaGaey4kaSIaamyCaiaaiIcacaWG4bGaaGykaiaadMha caaI9aGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaeqyWdiNaaGikai aadIhacaaIPaGaamyEaiaaiYcacaaMf8UaaGimaiabgsMiJkaadIha cqGHKjYOcqaHapaCcaaISaaaaa@4F93@  (1)

y(0)= y (π)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaaIWaGaaGykaiaai2daceWG5bGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaGaaGilaaaa@403A@  (2)

где q(x) L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaiaaiYca cqaHbpGCaeqaaOGaaGikaiaaicdacaaISaGaeqiWdaNaaGykaaaa@439A@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ вещественнозначная функция, λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37A7@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ комплексный параметр и

ρ(x)= 1, 0<xa, α 2 , a<xπ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaaGypamaaceaabaqbaeqabiGaaaqaaiaaigda caaISaaabaGaaGimaiaaiYdacaWG4bGaeyizImQaamyyaiaaiYcaae aacqaHXoqydaahaaWcbeqaaiaaikdaaaGccaaISaaabaGaamyyaiaa iYdacaWG4bGaeyizImQaeqiWdaNaaGilaaaaaiaawUhaaaaa@4D5E@  (3)

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ кусочно постоянная функция. Предположим, что a(1+α)>πα MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaaIXaGaey4kaSIaeqySdeMaaGykaiaai6dacqaHapaCcqaHXoqy aaa@3F9E@ .

Математические модели физических проблем, связанных с неоднородными средами, колебаниями, диффузией и т. д. представляют собой дифференциальные уравнения с разрывными коэффициентами (см. [1, 7–9, 12, 15, 20, 25]). Анализ таких проблем основан на спектральных свойствах задачи Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля с разрывными коэффициентами (см. [3, 16, 17, 19, 24]). Случай ρ(x)1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaeyyyIORaaGymaaaa@3C99@ был рассмотрен в [2, 4, 6, 18, 22]. Спектральные свойства оператора Штурма MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля с разрывными коэффициентами при различных граничных условиях были рассмотрены в [10, 11, 13, 14, 21, 23]. В [21] были рассмотрены спектральные свойства краевой задачи (1), (2), построен резольвентный оператор, получено разложение по собственным функциям и проведено обсуждение решения Вейля и функции Вейля.

В данной работе получено основное уравнение для краевой задачи (1), (2) и доказана единственность её решения. Кроме того, получена теорема единственности для решения обратной задачи со спектральными данными и функцией Вейля (см. [21]). Аналогичные задачи для уравнения (1) с различными граничными условиями анализировались в [11].

В [10] доказано, что решение φ(x,λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaaaa@3C7C@  уравнения (1) с начальными данными φ(0,λ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaaicdacaaISaGaeq4UdWMaaGykaiaai2dacaaIWaaaaa@3DBA@  и φ (0,λ)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOXdOMbau aacaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaaGypaiaaigdaaaa@3DC7@  можно представить следующим образом:

φ(x,λ)= φ 0 (x,λ)+ 0 μ + (x) A(x,t) sinλt λ dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaiaai2dacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBcaaIPaGaey 4kaSYaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcaca WG4bGaaGilaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaH7oaBcaWG0baabaGaeq4UdWgaaiaadsgacaWG0bGaaGilaaaa@5C60@  (4)

где A(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACA@  лежит в классе L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@  для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Эта функция выражается через коэффициент q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@  уравнения (1) формулой

d dx A(x, μ + (x))= 1 4 ρ(x) 1+ 1 ρ(x) q(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadIhaaaGaamyqaiaaiIcacaWG4bGaaGilaiab eY7aTnaaCaaaleqabaGaey4kaScaaOGaaGikaiaadIhacaaIPaGaaG ykaiaai2dadaWcaaqaaiaaigdaaeaacaaI0aWaaOaaaeaacqaHbpGC caaIOaGaamiEaiaaiMcaaSqabaaaaOWaaeWaaeaacaaIXaGaey4kaS YaaSaaaeaacaaIXaaabaWaaOaaaeaacqaHbpGCcaaIOaGaamiEaiaa iMcaaSqabaaaaaGccaGLOaGaayzkaaGaamyCaiaaiIcacaWG4bGaaG ykaiaaiYcaaaa@54BE@  (5)

где

φ 0 (x,λ)= 1 2 1+ 1 ρ(x) sinλ μ + (x) λ + 1 2 1 1 ρ(x) sinλ μ (x) λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdWMaaGyk aiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaGymai abgUcaRmaalaaabaGaaGymaaqaamaakaaabaGaeqyWdiNaaGikaiaa dIhacaaIPaaaleqaaaaaaOGaayjkaiaawMcaamaalaaabaGaci4Cai aacMgacaGGUbGaeq4UdWMaeqiVd02aaWbaaSqabeaacqGHRaWkaaGc caaIOaGaamiEaiaaiMcaaeaacqaH7oaBaaGaey4kaSYaaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa igdaaeaadaGcaaqaaiabeg8aYjaaiIcacaWG4bGaaGykaaWcbeaaaa aakiaawIcacaGLPaaadaWcaaqaaiGacohacaGGPbGaaiOBaiabeU7a SjabeY7aTnaaCaaaleqabaGaeyOeI0caaOGaaGikaiaadIhacaaIPa aabaGaeq4UdWgaaaaa@69AB@  (6)

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ решение уравнения (1) при q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BCE@ ,

μ + (x)=±x ρ(x) +a(1 ρ(x) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaW baaSqabeaacqGHRaWkaaGccaaIOaGaamiEaiaaiMcacaaI9aGaeyyS aeRaamiEamaakaaabaGaeqyWdiNaaGikaiaadIhacaaIPaaaleqaaO Gaey4kaSIaamyyaiaaiIcacaaIXaGaeS4eI02aaOaaaeaacqaHbpGC caaIOaGaamiEaiaaiMcaaSqabaGccaaIPaGaaGOlaaaa@4D37@  (7)

Характеристическая функция Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  задачи (1), (2) имеет вид

Δ(λ):=<φ(x,λ),ψ(x,λ)>=φ(x,λ) ψ (x,λ) φ (x,λ)ψ(x,λ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI6aGaaGypaiaaiYdacqaHgpGAcaaIOaGa amiEaiaaiYcacqaH7oaBcaaIPaGaaGilaiabeI8a5jaaiIcacaWG4b GaaGilaiabeU7aSjaaiMcacaaI+aGaaGypaiabeA8aQjaaiIcacaWG 4bGaaGilaiabeU7aSjaaiMcacuaHipqEgaqbaiaaiIcacaWG4bGaaG ilaiabeU7aSjaaiMcacqGHsislcuaHgpGAgaqbaiaaiIcacaWG4bGa aGilaiabeU7aSjaaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacqaH7o aBcaaIPaGaaGilaaaa@682C@

где Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  не зависит от x[0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabec8aWjaai2faaaa@3D6D@ . Подставляя x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@  и x=π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacqaHapaCaaa@3974@  в уравнение, получим

Δ(λ)=ψ(0,λ)= φ (π,λ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeqiYdKNaaGikaiaaicdacaaISaGa eq4UdWMaaGykaiaai2dacuaHgpGAgaqbaiaaiIcacqaHapaCcaaISa Gaeq4UdWMaaGykaiaai6caaaa@4A64@

Квадраты нулей λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  характеристической функции совпадают с собственными значениями краевой задачи (1), (2). Краевая задача (1), (2) имеет счетное множество простых собственных значений { λ n 2 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGOmaaaakiaai2haaaa@3B99@ . Для каждого λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  существует такая последовательность β n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaad6gaaeqaaaaa@38B3@ , что

ψ(x, λ n )= β n φ(x, λ n ), β n 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aiaai2dacqaHYoGydaWgaaWcbaGaamOBaaqabaGccqaHgpGAcaaIOa GaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGa aGilaiaaywW7cqaHYoGydaWgaaWcbaGaamOBaaqabaGccqGHGjsUca aIWaGaaGilaaaa@513E@  (8)

где ψ(x, λ n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aaaa@3DB6@  и φ(x, λ n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk aaaa@3DA5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ собственные функции краевой задачи (1), (2), соответствующие собственному значению λ n 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIYaaaaaaa@3983@ . Нормировочные коэффициенты равны

α n := 0 π ρ(x) φ 2 (x, λ n )dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaad6gaaeqaaOGaaGOoaiaai2dadaWdXaqabSqaaiaaicda aeaacqaHapaCa0Gaey4kIipakiabeg8aYjaaiIcacaWG4bGaaGykai abeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWGKbGaamiEaiaai6 caaaa@4E56@

Собственные функции, соответствующие различным собственным значениям, ортогональны. Собственные значения краевой задачи (1), (2) простые и

Δ ˙ ( λ n )=2 λ n α n β n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aacaaIOaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiaai2da cqGHsislcaaIYaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeqySde 2aaSbaaSqaaiaad6gaaeqaaOGaeqOSdi2aaSbaaSqaaiaad6gaaeqa aOGaaGilaaaa@4739@  (9)

где Δ ˙ (λ)= d dλ Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbai aacaaIOaGaeq4UdWMaaGykaiaai2dadaWcaaqaaiaadsgaaeaacaWG KbGaeq4UdWgaaiabfs5aejaaiIcacqaH7oaBcaaIPaaaaa@4357@ .

Теорема 1 (см. 21). Нули λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@  характеристической функции Δ(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A72@  имеют следующее асимптотическое разложение:

λ n = λ n 0 + d n λ n 0 + k n n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiabgUcaRmaalaaabaGaamizamaaBaaaleaacaWGUb aabeaaaOqaaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGc cqGHRaWkdaWcaaqaaiaadUgadaWgaaWcbaGaamOBaaqabaaakeaaca WGUbaaaiaaiYcaaaa@487F@

где λ n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIWaaaaaaa@3981@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нули функции

Δ 0 (λ)= 1 2 (α+1)cosλ μ + (π) 1 2 (α1)cosλ μ (π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaaicdaaeqaaOGaaGikaiabeU7aSjaaiMcacaaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaacaaIOaGaeqySdeMaey4kaSIaaGymai aaiMcaciGGJbGaai4BaiaacohacqaH7oaBcqaH8oqBdaahaaWcbeqa aiabgUcaRaaakiaaiIcacqaHapaCcaaIPaGaeyOeI0YaaSaaaeaaca aIXaaabaGaaGOmaaaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMca ciGGJbGaai4BaiaacohacqaH7oaBcqaH8oqBdaahaaWcbeqaaiabgk HiTaaakiaaiIcacqaHapaCcaaIPaaaaa@5E6C@

и

d n = h + sin λ n 0 μ + (π)+ h sin λ n 0 μ (π) 1 2 (α+1) μ + (π)sin λ n 0 μ + (π)+ 1 2 (α1) μ (π)sin λ n 0 μ (π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGUbaabeaakiaai2dacqGHsisldaWcaaqaaiaadIgadaah aaWcbeqaaiabgUcaRaaakiGacohacaGGPbGaaiOBaiabeU7aSnaaDa aaleaacaWGUbaabaGaaGimaaaakiabeY7aTnaaCaaaleqabaGaey4k aScaaOGaaGikaiabec8aWjaaiMcacqGHRaWkcaWGObWaaWbaaSqabe aacqGHsislaaGcciGGZbGaaiyAaiaac6gacqaH7oaBdaqhaaWcbaGa amOBaaqaaiaaicdaaaGccqaH8oqBdaahaaWcbeqaaiabgkHiTaaaki aaiIcacqaHapaCcaaIPaaabaGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaacaaIOaGaeqySdeMaey4kaSIaaGymaiaaiMcacqaH8oqBda ahaaWcbeqaaiabgUcaRaaakiaaiIcacqaHapaCcaaIPaGaci4Caiaa cMgacaGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq iVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqiWdaNaaGykaiab gUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiabeg7aHjabgk HiTiaaigdacaaIPaGaeqiVd02aaWbaaSqabeaacqGHsislaaGccaaI OaGaeqiWdaNaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaale aacaWGUbaabaGaaGimaaaakiabeY7aTnaaCaaaleqabaGaeyOeI0ca aOGaaGikaiabec8aWjaaiMcaaaaaaa@8A73@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ ограниченная последовательность, { k n } l 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadU gadaWgaaWcbaGaamOBaaqabaGccaaI9bGaeyicI4SaamiBamaaBaaa leaacaaIYaaabeaaaaa@3D75@ .

Теорема 2 (см. 21).

1. Система собственных функций {φ(x, λ n )} n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeA 8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaa kiaaiMcacaaI9bWaaSbaaSqaaiaad6gacqGHLjYScaaIXaaabeaaaa a@4351@  краевой задачи (1), (2) полна в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@ .

2. Если f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ абсолютно непрерывная функция на отрезке [0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiWdaNaaGyxaaaa@3AEC@  и f(0)= f (π)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaaIWaGaaGykaiaai2daceWGMbGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaaaaa@3F5E@ , то

f(x)= n=1 a n φ(x, λ n ), a n = 1 α n 0 π f(t)φ(t, λ n )ρ(t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGym aaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaabe aakiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaaiMcacaaISaGaaGzbVlaadggadaWgaaWcbaGaamOBaa qabaGccaaI9aWaaSaaaeaacaaIXaaabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaaaakmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRi I8aOGaamOzaiaaiIcacaWG0bGaaGykaiabeA8aQjaaiIcacaWG0bGa aGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacqaHbpGCca aIOaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaaa@6900@  (10)

причем ряд сходится равномерно на [0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiWdaNaaGyxaaaa@3AEC@ .

3. При f(x) L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOmaiaaiYca cqaHbpGCaeqaaOGaaGikaiaaicdacaaISaGaeqiWdaNaaGykaaaa@438F@  ряд в (10) сходится в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@  и, кроме того, выполняется равенство Парсеваля:

0 π |f(x )| 2 ρ(x)dx= n=1 α n a n 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaaI8bGaamOzaiaaiIca caWG4bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqaHbpGCca aIOaGaamiEaiaaiMcacaWGKbGaamiEaiaai2dadaaeWbqabSqaaiaa d6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOGaeqySde2aaS baaSqaaiaad6gaaeqaaOWaaqWaaeaacaWGHbWaaSbaaSqaaiaad6ga aeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaaGOlaa aa@5790@

2. Основное уравнение.

Теорема 3. Для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@  ядро A(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ACA@ из представления (4) удовлетворяет следующему линейному функционально-интегральному уравнению:

2 1+ ρ(t) A(x, μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(x,2at)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaamiEaiaaiYcacqaH8oqBda ahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaGykaiaaiMcacqGH RaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiabeg8aYjaaiIcaca aIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaaGcbaGaaGymaiab gUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0Iaam iDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaWG4bGaaGilaiaaikda caWGHbGaeyOeI0IaamiDaiaaiMcacqGHRaWkaaa@5FCD@

+F(x,t)+ 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξ=0,0<t<x, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam OraiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqa leaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcaca WG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiab e67a4jaaiMcacaWGgbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe6 7a4jaaiYcacaWG0bGaaGykaiaadsgacqaH+oaEcaaI9aGaaGimaiaa iYcacaaMf8UaaGimaiaaiYdacaWG0bGaaGipaiaadIhacaaISaaaaa@5C33@ (11)

где

F 0 (x,t)= n=1 φ 0 (t, λ n )sin λ n x α n λ n φ 0 (t, λ n 0 )sin λ n 0 x α n 0 λ n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG UbaabeaakiaadIhaaeaacqaHXoqydaWgaaWcbaGaamOBaaqabaGccq aH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaH gpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7o aBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMga caGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaamiEaa qaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaakiabeU7aSnaa DaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaacaaISa aaaa@72DB@  (12)

F(x,t)= 1 2 1+ 1 ρ(x) F 0 ( μ + (x),t)+ 1 2 1 1 ρ(x) F 0 ( μ (x),t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIXaaaba WaaOaaaeaacqaHbpGCcaaIOaGaamiEaiaaiMcaaSqabaaaaaGccaGL OaGaayzkaaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH8o qBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG4bGaaGykaiaaiYca caWG0bGaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaae WaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaWaaOaaaeaacqaH bpGCcaaIOaGaamiEaiaaiMcaaSqabaaaaaGccaGLOaGaayzkaaGaam OramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH8oqBdaahaaWcbeqa aiabgkHiTaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG0bGaaGykai aaiYcaaaa@64C2@  (13)

λ n 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aa0 baaSqaaiaad6gaaeaacaaIWaWaaWbaaeqabaGaaGOmaaaaaaaaaa@3A5F@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ собственные значения, α n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaad6gaaeaacaaIWaaaaaaa@396C@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нормировочные константы краевой задачи (1), (2) с q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BCE@ .

Доказательство. Согласно (4) имеем

φ 0 (x,λ)=φ(x,λ) 0 μ + (x) A(x,t) sinλt λ dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdWMaaGyk aiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacqaH7oaBcaaIPaGaey OeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcaca WG4bGaaGilaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaH7oaBcaWG0baabaGaeq4UdWgaaiaadsgacaWG0bGaaGOlaaaa@5C6D@  (14)

Из (4) и (14) получаем:

n=1 N φ(x, λ n ) φ 0 (t, λ n ) α n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqa aiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUb aabeaakiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaaba GaeqySde2aaSbaaSqaaiaad6gaaeqaaaaakiaai2daaaa@4F77@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n + φ 0 (t, λ n ) α n 0 μ + (x) A(x,ξ) sin λ n ξ λ n dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgUcaRmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabe aaaaGcdaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabeaacqGH RaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGaaGikai aadIhacaaISaGaeqOVdGNaaGykamaalaaabaGaci4CaiaacMgacaGG UbGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaaaakiaadsgacqaH+oaEaiaawIcacaGL PaaacaaI9aaaaa@79CB@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + n=1 N φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdW2aa0baaSqa aiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaai aaicdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7a SnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWc baGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaai aad6gaaeaacaaIWaaaaaaakiabgUcaRaaa@86C8@

+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaG ilaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaWGKbGaeqOVdGNaey4kaSYaa8qmaeqaleaacaaIWaaaba GaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaGykaaqd cqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaaiMcada aeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoa kmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGyk aiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaG imaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGim aaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGccaWGKb GaeqOVdGNaaGilaaaa@ADF4@

n=1 N φ(x, λ n ) φ 0 (t, λ n ) α n = n=1 N φ(x, λ n )φ(t, λ n ) α n 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqa aiabeA8aQjaaiIcacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUb aabeaakiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGa amiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaaba GaeqySde2aaSbaaSqaaiaad6gaaeqaaaaakiaai2dadaaeWbqabSqa aiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaaba GaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOB aaqabaaaaOGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaW baaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGykaaqdcqGHRiI8aOGa amyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiMcadaaeWbqabSqaai aad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaabaGa eqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG Ubaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaki abeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaWGKbGaeqOVdGNaaGOl aaaa@93AC@

Используя последние два соотношения, находим

n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaqadaqa amaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaa WcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcba GaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGa aGimaaaaaaaakiaawIcacaGLPaaacaaI9aaaaa@6746@

= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 + 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWa aeWaaeaadaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacaWG4bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiaadIhacaaISaGaeq4UdW2aa0baaSqa aiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaai aaicdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaa8qmaeqaleaacaaI WaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaG ykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaa iMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaey yeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaa baGaaGimaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaaba GaaGimaaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGc caWGKbGaeqOVdGNaey4kaScaaa@998D@

+ 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ+ 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaG ilaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaWGKbGaeqOVdGNaey4kaSYaa8qmaeqaleaacaaIWaaaba GaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGykaaqd cqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiMcada aeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoa kmaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaa BaaaleaacaWGUbaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaaca WGUbaabeaakiabeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaWGKbGa eqOVdGNaaGilaaaa@AA14@

или

Φ N (x,t)= I N1 (x,t)+ I N2 (x,t)+ I N3 (x,t)+ I N4 (x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aGaamysamaaBaaaleaacaWGobGaaGymaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadMeadaWgaaWcbaGaamOt aiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRa WkcaWGjbWaaSbaaSqaaiaad6eacaaIZaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaey4kaSIaamysamaaBaaaleaacaWGobGaaG inaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaaaa@5B3C@  (15)

где

Φ N (x,t)= n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacaWGobaani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdOMaaGikaiaadIhacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQjaaiI cacaWG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca aeaacqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaeyOeI0YaaSaaae aacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiYca cqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO 2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2a a0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDa aaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaacaaISaaa aa@6E90@

I N1 (x,t)= n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6 eaa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGa aGimaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaa qaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqa aiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilai abeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGA daWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaaaOGaayjkaiaawMcaaiaaiYcaaa a@707F@

I N2 (x,t)= 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGA daWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMgacaGG UbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeqOVdGhaba GaeqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacqaH+oaEcaaISaaaaa@6CB7@

I N3 (x,t)= 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaG4maaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaeWaaeaadaWcaaqa aiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilai abeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaciGGZbGaaiyAaiaa c6gacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccqaH+oaEaeaacqaHXo qydaWgaaWcbaGaamOBaaqabaGccqaH7oaBdaWgaaWcbaGaamOBaaqa baaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqaba GccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaa icdaaaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aa0baaSqaai aad6gaaeaacaaIWaaaaOGaeqOVdGhabaGaeqySde2aa0baaSqaaiaa d6gaaeaacaaIWaaaaOGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWa aaaaaaaOGaayjkaiaawMcaaiaadsgacqaH+oaEcaaISaaaaa@84F9@

I N4 (x,t)= 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGobGaaGinaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadshacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadshacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBai aai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGA caaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca aIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaad6gaaeqa aOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaaaakiaadsgacqaH+oaEcaaIUaaaaa@68DB@

Из (12) и (13) легко находим

F(x,t)= n=1 φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaqahabeWcbaGaamOB aiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcdaqadaqaamaala aabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaa leaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaa qabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaai aaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaa kiaawIcacaGLPaaacaaIUaaaaa@6F58@

Пусть f(x)AC(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgIGiolaadgeacaWGdbGaaGikaiaaicdacaaI SaGaeqiWdaNaaGyxaaaa@4118@ , f(0)= f (π)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaaIWaGaaGykaiaai2daceWGMbGbauaacaaIOaGaeqiWdaNaaGyk aiaai2dacaaIWaaaaa@3F5E@ . Согласно формуле разложения (10) получаем, что

n=1 0 π f(t)ρ(t) φ(x, λ n )φ(t, λ n ) α n dt=f(x), n=1 0 π f(t)ρ(t) φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaapeda beWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIcaca WG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaalaaabaGaeqOX dOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaaleaa caWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqaba aaaOGaamizaiaadshacaaI9aGaamOzaiaaiIcacaWG4bGaaGykaiaa iYcacaaMf8+aaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEi sPa0GaeyyeIuoakmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGH RiI8aOGaamOzaiaaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0b GaaGykamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGik aiaadIhacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaO GaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGa aGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaae aacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaamizaiaa dshacaaI9aGaamOzaiaaiIcacaWG4bGaaGykaaaa@912E@   (16)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Согласно (16) имеем

lim N max 0xπ 0 π f(t)ρ(t) Φ N (x,t)dt = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaawafabeWcbaGaaGimaiabgsMiJkaadIhacqGHKjYOcqaHapaCae qakeaaciGGTbGaaiyyaiaacIhaaaWaaqWaaeaadaWdXaqabSqaaiaa icdaaeaacqaHapaCa0Gaey4kIipakiaadAgacaaIOaGaamiDaiaaiM cacqaHbpGCcaaIOaGaamiDaiaaiMcacqqHMoGrdaWgaaWcbaGaamOt aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG0b aacaGLhWUaayjcSdGaaGypaaaa@601F@

= lim N max 0xπ 0 π f(t)ρ(t) n=1 N φ(x, λ n )φ(t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaeq iWdahabeGcbaGaciyBaiaacggacaGG4baaamaaemaabaWaa8qmaeqa leaacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaads hacaaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaqadaqaamaala aabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaaGykaiabeA8aQjaaiIcacaWG0bGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGa amOBaaqabaaaaOGaeyOeI0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiEaiaaiYcacqaH7oaBdaqhaaWcbaGaamOB aaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaI WaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aaaaaakiaawIcacaGLPaaacaWGKbGaamiDaaGaay5bSlaawIa7aiab gsMiJcaa@8BCC@

lim N max 0xπ 0 π f(t)ρ(t) n=1 N φ(x, λ n )φ(t, λ n ) α n dtf(x) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aay buaeqaleaacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMga caGGTbaaamaaceaabaWaaybuaeqaleaacaaIWaGaeyizImQaamiEai abgsMiJkabec8aWbqabOqaaiGac2gacaGGHbGaaiiEaaaadaabdaqa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaS aaaeaacqaHgpGAcaaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGa amOBaaqabaGccaaIPaGaeqOXdOMaaGikaiaadshacaaISaGaeq4UdW 2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaa caWGUbaabeaaaaGccaWGKbGaamiDaiabgkHiTiaadAgacaaIOaGaam iEaiaaiMcaaiaawEa7caGLiWoaaiaawUhaaiabgUcaRaaa@787C@

+ max 0xπ 0 π f(t)ρ(t) n=1 N φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dtf(x) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacq GHRaWkdaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQaeqiW dahabeGcbaGaciyBaiaacggacaGG4baaamaaemaabaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaaabCaeqaleaacaWGUb GaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcdaWcaaqaaiabeA8a QnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcba GaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaaiaa d6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaeyOeI0IaamOzaiaaiI cacaWG4bGaaGykaaGaay5bSlaawIa7aaGaayzFaaGaaGypaiaaicda caaIUaaaaa@758F@  (17)

 Ясно, что

lim N 0 π f(t)ρ(t) I N1 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D6@

= lim N 0 π f(t)ρ(t) n=1 N φ 0 (x, λ n ) φ 0 (t, λ n ) α n φ 0 (x, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dt= 0 π f(t)ρ(t)F(x,t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIu oakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGc caaIOaGaamiEaiaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGcca aIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHn aaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqaaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiabeU7aSnaaDa aaleaacaWGUbaabaGaaGimaaaakiaaiMcacqaHgpGAdaWgaaWcbaGa aGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaam OBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0baaSqaaiaad6ga aeaacaaIWaaaaaaaaOGaayjkaiaawMcaaiaadsgacaWG0bGaaGypam aapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaa iIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadAeaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG0baaaa@9236@  (18)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Из (6) получаем, что

sinλξ λ = φ 0 (ξ,λ), ξ<a, 2α 1+α φ 0 ξ α +a a α ,λ + 1α 1+α φ 0 (2aξ,λ), ξ>a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaEaeaacqaH7oaBaaGaaGyp amaaceaabaqbaeaabiabaaaabaaabaGaeqOXdO2aaSbaaSqaaiaaic daaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBcaaIPaGaaGilaaqa aiaaywW7aeaacqaH+oaEcaaI8aGaamyyaiaaiYcaaeaaaeaadaWcaa qaaiaaikdacqaHXoqyaeaacaaIXaGaey4kaSIaeqySdegaaiabeA8a QnaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEae aacqaHXoqyaaGaey4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqa aiabeg7aHbaacaaISaGaeq4UdWgacaGLOaGaayzkaaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaaGOmaiaadg gacqGHsislcqaH+oaEcaaISaGaeq4UdWMaaGykaiaaiYcaaeaacaaM f8oabaGaeqOVdGNaaGOpaiaadggacaaIUaaaaaGaay5Eaaaaaa@7C57@  (19)

Принимая во внимание (19) и (16), находим

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= lim N 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dadaGfqbqabSqaaiaad6eacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaa8qmaeqaleaacaaIWa aabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG4bGaaGyk aaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaeyye IuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai aadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGa aGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaaba GaaGimaaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGa aGimaaaakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaGcca aMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiaai2daaaa@9ADC@

= lim N 0 π f(t)ρ(t) 0 a A(x,ξ) n=1 N φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daWdXaqabSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqh aaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaci4CaiaacMgacaGGUb Gaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeqOVdGhabaGa eqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaeq4UdW2aa0baaS qaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeqOVdGNaaGjc VlaadsgacaWG0bGaey4kaScaaa@7AA4@

+ 2α 1+α lim N 0 π f(t)ρ(t) a αxαa+a A(x,ξ) n=1 N φ 0 (t, λ n 0 ) φ 0 ξ α +a a α , λ n 0 α n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIYaGaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaGf qbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAai aac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahaniabgUIiYdGc caWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaadshacaaIPa Waa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHiTiabeg7a HjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaGikaiaadI hacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAdaWgaaWcba GaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGa amOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOWaaeWaaeaadaWcaaqaaiabe67a4bqaaiabeg7aHbaacqGHRaWk caWGHbGaeyOeI0YaaSaaaeaacaWGHbaabaGaeqySdegaaiaaiYcacq aH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaaakiaawIcacaGLPaaa aeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaaGjcVl aadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRaWkaaa@8CF7@

+ 1α 1+α lim N 0 π f(t)ρ(t) a αxαa+a A(x,ξ) n=1 N φ 0 (t, λ n 0 ) φ 0 (2aξ, λ n 0 ) α n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaaciGGSb GaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahaniab gUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaads hacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiaadIhacaaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaa i2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaSaaaeaacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaqh aaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaai aaicdaaeqaaOGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGil aiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaaeaacq aHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOGaaGjcVlaadsga cqaH+oaEcaaMi8UaamizaiaadshacaaI9aaaaa@893A@

= 0 a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 (ξ, λ n 0 ) α n 0 dtdξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeq iWdahaniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNa aGikaiaadshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaae aacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGim aaaaaaGccaWGKbGaamiDaiaadsgacqaH+oaEcqGHRaWkaaa@6EF3@

+ 2α 1+α a αxαa+a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 ξ α +a a α , λ n 0 α n 0 dtdξ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIYaGaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWd XaqabSqaaiaadggaaeaacqaHXoqycaWG4bGaeyOeI0IaeqySdeMaam yyaiabgUcaRiaadggaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaa iYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiWdahani abgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGikaiaa dshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEi sPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakmaabmaa baWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiabgk HiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaISaGaeq4UdW2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaGccaGLOaGaayzkaaaabaGaeqySde 2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaamiz aiabe67a4jabgUcaRaaa@82EE@

+ 1α 1+α a αxαa+a A(x,ξ) 0 π f(t)ρ(t) n=1 φ 0 (t, λ n 0 ) φ 0 (2aξ, λ n 0 ) α n 0 dtdξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7a HbaadaWdXaqabSqaaiaadggaaeaacqaHXoqycaWG4bGaeyOeI0Iaeq ySdeMaamyyaiabgUcaRiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeq iWdahaniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNa aGikaiaadshacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaae aacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiYcacqaH7oaBda qhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaaabaGaeqySde2aa0ba aSqaaiaad6gaaeaacaaIWaaaaaaakiaadsgacaWG0bGaamizaiabe6 7a4jaai2daaaa@7F31@

= 0 a A(x,ξ)f(ξ)dξ+ 2α 1+α a αxαa+a A(x,ξ)f ξ α +a a α dξ+ 1α 1+α a αxαa+a A(x,ξ)f(2aξ)dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaGaamOzaiaaiIcacqaH+oaEcaaIPa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGOmaiabeg7aHbqaaiaa igdacqGHRaWkcqaHXoqyaaWaa8qmaeqaleaacaWGHbaabaGaeqySde MaamiEaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIi YdGccaWGbbGaaGikaiaadIhacaaISaGaeqOVdGNaaGykaiaadAgada qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaaacaGLOaGaayzkaa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGymaiabgkHiTiabeg7a HbqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmaeqaleaacaWGHbaaba GaeqySdeMaamiEaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbaa niabgUIiYdGccaWGbbGaaGikaiaadIhacaaISaGaeqOVdGNaaGykai aadAgacaaIOaGaaGOmaiaadggacqGHsislcqaH+oaEcaaIPaGaamiz aiabe67a4jaai6caaaa@8DF0@

Выполнив подстановку

ξ α +a a α ξ ,2aξ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiabgkHiTmaalaaabaGa amyyaaqaaiabeg7aHbaacqGHsgIRcuaH+oaEgaqbaiaaiYcacaaMf8 UaaGOmaiaadggacqGHsislcqaH+oaEcqGHsgIRcuaH+oaEgaqbgaqb aaaa@4CC8@

получим

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 a A(x,ξ)f(ξ)dξ+ 2 α 2 1+α a x A(x,α ξ αa+a)f( ξ )d ξ + 1α 1+α αx+αa+a a A(x,2a ξ )f( ξ )d ξ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacqaH+oaEcaaIPaGaamOzaiaaiIcacqaH+oaEcaaIPa Gaamizaiabe67a4jabgUcaRmaalaaabaGaaGOmaiabeg7aHnaaCaaa leqabaGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmae qaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG 4bGaaGilaiabeg7aHjqbe67a4zaafaGaeyOeI0IaeqySdeMaamyyai abgUcaRiaadggacaaIPaGaamOzaiaaiIcacuaH+oaEgaqbaiaaiMca caWGKbGafqOVdGNbauaacqGHRaWkdaWcaaqaaiaaigdacqGHsislcq aHXoqyaeaacaaIXaGaey4kaSIaeqySdegaamaapedabeWcbaGaeyOe I0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadggacqGHRaWkcaWGHb aabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGaaGilaiaa ikdacaWGHbGaeyOeI0IafqOVdGNbauGbauaacaaIPaGaamOzaiaaiI cacuaH+oaEgaqbgaqbaiaaiMcacaWGKbGafqOVdGNbauGbauaacaaI Uaaaaa@8911@

Поскольку A(x,2a ξ )0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaaikdacaWGHbGaeyOeI0IafqOVdGNbauGbauaa caaIPaGaeyyyIORaaGimaaaa@40BD@  при 2aξ>αxαa+a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg gacqGHsislcqaH+oaEcaaI+aGaeqySdeMaamiEaiabgkHiTiabeg7a HjaadggacqGHRaWkcaWGHbaaaa@42E3@ , имеем

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 a A(x,t)f(t)dt+ 2 α 2 1+α a x A(x,αtαa+a)f(t)dt+ 1α 1+α 0 a A(x,2at)f(t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadAgacaaIOaGaamiDaiaaiMcaca WGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaiabeg7aHnaaCaaaleqa baGaaGOmaaaaaOqaaiaaigdacqGHRaWkcqaHXoqyaaWaa8qmaeqale aacaWGHbaabaGaamiEaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG4bGa aGilaiabeg7aHjaadshacqGHsislcqaHXoqycaWGHbGaey4kaSIaam yyaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadshacqGH RaWkdaWcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaS IaeqySdegaamaapedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipa kiaadgeacaaIOaGaamiEaiaaiYcacaaIYaGaamyyaiabgkHiTiaads hacaaIPaGaamOzaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGOl aaaa@7990@

Следовательно,

lim N 0 π f(t)ρ(t) I N2 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D7@

= 0 x 2ρ(t) 1+ ρ(t) A(x, μ + (t))f(t)dt+ 0 x 1 ρ(2at) 1+ ρ(2at) A(x,2at)f(t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaGOm aiabeg8aYjaaiIcacaWG0bGaaGykaaqaaiaaigdacqGHRaWkdaGcaa qaaiabeg8aYjaaiIcacaWG0bGaaGykaaWcbeaaaaGccaWGbbGaaGik aiaadIhacaaISaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOa GaamiDaiaaiMcacaaIPaGaamOzaiaaiIcacaWG0bGaaGykaiaadsga caWG0bGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRi I8aOWaaSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGa aGOmaiaadggacqGHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacq GHRaWkdaGcaaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaa dshacaaIPaaaleqaaaaakiaadgeacaaIOaGaamiEaiaaiYcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaGaamOzaiaaiIcacaWG0bGaaGyk aiaadsgacaWG0baaaa@75FC@  (20)

равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ . Из (12) заключаем, что следующее предельное соотношение выполняется равномерно на x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@ :

lim N 0 π f(t)ρ(t) I N3 (x,t)dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaiodaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2daaaa@52D8@

= lim N 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 N φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaki aadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMca daWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabeaacqGHRaWkaa GaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGaaGikaiaadIha caaISaGaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXa aabaGaamOtaaqdcqGHris5aOWaaeWaaeaadaWcaaqaaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaamOBaaqabaGccqaH+oaEaeaacqaHXoqydaWgaaWcba GaamOBaaqabaGccqaH7oaBdaWgaaWcbaGaamOBaaqabaaaaOGaeyOe I0YaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaam iDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaI PaGaci4CaiaacMgacaGGUbGaeq4UdW2aa0baaSqaaiaad6gaaeaaca aIWaaaaOGaeqOVdGhabaGaeqySde2aa0baaSqaaiaad6gaaeaacaaI WaaaaOGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaaaOGaay jkaiaawMcaaiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGa aGypaaaa@9700@

= 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIca caWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaapedabeWcba GaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaamiE aiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaaiYcacqaH+o aEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisP a0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaG imaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWcbaGaamOB aaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaai aad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaad6gaaeqa aOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTmaalaaaba GaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGa eq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiGacohaca GGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiab e67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaaaakiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIcacaGLPaaa caaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaaaa@8F52@

= 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξdt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape dabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzaiaaiIca caWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaapedabeWcba GaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaamiE aiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiEaiaaiYcacqaH+o aEcaaIPaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaE caaISaGaamiDaiaaiMcacaaMi8Uaamizaiabe67a4jaayIW7caWGKb GaamiDaiaai6caaaa@5F71@  (21)

При помощи теоремы о вычетах и формул (8) (9) находим:

lim N 0 π f(t)ρ(t) I N4 (x,t)dt= lim N 0 π f(t)ρ(t) 0 μ + (t) A(t,ξ) n=1 N φ(x, λ n )sin λ n ξ α n λ n dξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaisdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dadaGfqbqabSqaaiaad6eacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGikaiaadsha caaIPaGaeqyWdiNaaGikaiaadshacaaIPaWaa8qmaeqaleaacaaIWa aabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaaiIcacaWG0bGaaGyk aaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaGilaiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiaad6eaa0Gaeyye IuoakmaalaaabaGaeqOXdOMaaGikaiaadIhacaaISaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7a SnaaBaaaleaacaWGUbaabeaakiabe67a4bqaaiabeg7aHnaaBaaale aacaWGUbaabeaakiabeU7aSnaaBaaaleaacaWGUbaabeaaaaGccaaM i8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiaai2daaaa@96FE@

=2 lim N 0 π f(t)ρ(t) λ n N ψ x, λ n Δ ˙ ( λ n ) 0 μ + (t) A(t,ξ)sin λ n ξdξdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaabuaeqaleaadaabdaqaaiabeU7aSnaaBaaaba GaamOBaaqabaaacaGLhWUaayjcSdGaeyizImQaamOtaaqab0Gaeyye IuoakmaalaaabaGaeqiYdK3aaeWaaeaacaWG4bGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaaiqbfs5aezaa caGaaGikaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaaWaa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWc baGaamOBaaqabaGccqaH+oaEcaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiaai2daaaa@81D4@

=2 lim N 0 π f(t)ρ(t) λ n N Re s λ= λ n ψ(x,λ) Δ(λ) 0 μ + (t) A(t,ξ)sinλξdξ dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaabuaeqaleaadaabdaqaaiabeU7aSnaaBaaaba GaamOBaaqabaaacaGLhWUaayjcSdGaeyizImQaamOtaaqab0Gaeyye IuoakiaadkfacaWGLbGaam4CamaaBaaaleaacqaH7oaBcaaI9aGaeq 4UdW2aaSbaaeaacaWGUbaabeaaaeqaaOWaamWaaeaadaWcaaqaaiab eI8a5jaaiIcacaWG4bGaaGilaiabeU7aSjaaiMcaaeaacqqHuoarca aIOaGaeq4UdWMaaGykaaaadaWdXaqabSqaaiaaicdaaeaacqaH8oqB daahaaqabeaacqGHRaWkaaGaaGikaiaadshacaaIPaaaniabgUIiYd GccaWGbbGaaGikaiaadshacaaISaGaeqOVdGNaaGykaiGacohacaGG PbGaaiOBaiabeU7aSjabe67a4jaadsgacqaH+oaEaiaawUfacaGLDb aacaWGKbGaamiDaiaai2daaaa@852E@

=2 lim N 0 π f(t)ρ(t) 1 2πi Γ N ψ(x,λ) Δ(λ) 0 μ + (t) A(t,ξ)sinλξdξdλdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTiaaikdadaGfqbqabSqaaiaad6eacqGHsgIRcqGHEisPaeqakeaa ciGGSbGaaiyAaiaac2gaaaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGMbGaaGikaiaadshacaaIPaGaeqyWdiNaaGik aiaadshacaaIPaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadM gaaaWaa8qfaeqaleaacqqHtoWrdaWgaaqaaiaad6eaaeqaaaqab0Ga eSyeUhTaey4kIipakmaalaaabaGaeqiYdKNaaGikaiaadIhacaaISa Gaeq4UdWMaaGykaaqaaiabfs5aejaaiIcacqaH7oaBcaaIPaaaamaa pedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaaca aIOaGaamiDaiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaamiDaiaa iYcacqaH+oaEcaaIPaGaci4CaiaacMgacaGGUbGaeq4UdWMaeqOVdG Naamizaiabe67a4jaadsgacqaH7oaBcaWGKbGaamiDaiaai2daaaa@7E0F@

= lim N 0 π f(t)ρ(t) 1 πi Γ N ψ(x,λ) Δ(λ) exp{|Imλ| μ + (t)|}exp |Imλ| μ + (t) × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaawafabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey 4kIipakiaadAgacaaIOaGaamiDaiaaiMcacqaHbpGCcaaIOaGaamiD aiaaiMcadaWcaaqaaiaaigdaaeaacqaHapaCcaWGPbaaamaapubabe WcbaGaeu4KdC0aaSbaaeaacaWGobaabeaaaeqaniablgH7rlabgUIi YdGcdaWcaaqaaiabeI8a5jaaiIcacaWG4bGaaGilaiabeU7aSjaaiM caaeaacqqHuoarcaaIOaGaeq4UdWMaaGykaaaaciGGLbGaaiiEaiaa cchacaaI7bGaaGiFaiaadMeacaWGTbGaeq4UdWMaaGiFaiabeY7aTn aaCaaaleqabaGaey4kaScaaOGaaGikaiaadshacaaIPaGaaGiFaiaa i2haciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTiaaiYhacaWGjb GaamyBaiabeU7aSjaaiYhacqaH8oqBdaahaaWcbeqaaiabgUcaRaaa kiaaiIcacaWG0bGaaGykaaGaay5Eaiaaw2haaiabgEna0caa@840A@

× 0 μ + (t) A(t,ξ)sinλξdξdλdt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaE caWGKbGaeqOVdGNaamizaiabeU7aSjaadsgacaWG0bGaaGypaaaa@53EE@

= 0 π f(t)ρ(t) lim N ( 1 πi Γ N ψ(x,λ) Δ(λ) exp |Imλ| μ + (t) exp |Imλ| μ + (t) × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOz aiaaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykamaawa fabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaacaaIOaWaaSaaaeaacaaIXaaabaGaeqiWdaNaamyAaaaada WdvaqabSqaaiabfo5ahnaaBaaabaGaamOtaaqabaaabeqdcqWIr4E0 cqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOaGaamiEaiaaiYcacqaH7o aBcaaIPaaabaGaeuiLdqKaaGikaiabeU7aSjaaiMcaaaGaciyzaiaa cIhacaGGWbWaaiWaaeaacaaI8bGaamysaiaad2gacqaH7oaBcaaI8b GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiMca aiaawUhacaGL9baaciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTi aaiYhacaWGjbGaamyBaiabeU7aSjaaiYhacqaH8oqBdaahaaWcbeqa aiabgUcaRaaakiaaiIcacaWG0bGaaGykaaGaay5Eaiaaw2haaiabgE na0caa@83DB@

× 0 μ + (t) A(t,ξ)sinλξdξdλ)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aa8 qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey4kaScaaiaa iIcacaWG0bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIcacaWG0bGaaG ilaiabe67a4jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBcqaH+oaE caWGKbGaeqOVdGNaamizaiabeU7aSjaaiMcacaWGKbGaamiDaiaaiY caaaa@5490@  (22)

 где контур Γ N ={λ:|λ|=| λ N 0 |+β/2} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaS baaSqaaiaad6eaaeqaaOGaaGypaiaaiUhacqaH7oaBcaaI6aGaaGiF aiabeU7aSjaaiYhacaaI9aGaaGiFaiabeU7aSnaaDaaaleaacaWGob aabaGaaGimaaaakiaaiYhacqGHRaWkcqaHYoGycaaIVaGaaGOmaiaa i2haaaa@4BB2@  ориентирован против часовой стрелки, а N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ достаточно большое число. Принимая во внимание формулы

ψ(x,λ)=O e |Imλ|( μ + (π) μ + (x)) ,|λ|,|Δ(λ)| C δ e |Imλ| μ + (π) ,λ G δ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaISaGaeq4UdWMaaGykaiaai2dacaWGpbWaaeWaaeaa caWGLbWaaWbaaSqabeaacaaI8bGaamysaiaad2gacqaH7oaBcaaI8b GaaGikaiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaeqiWdaNa aGykaiabgkHiTiabeY7aTnaaCaaabeqaaiabgUcaRaaacaaIOaGaam iEaiaaiMcacaaIPaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caaI 8bGaeq4UdWMaaGiFaiabgkziUkabg6HiLkaaiYcacaaMf8UaaGzbVl aaiYhacqqHuoarcaaIOaGaeq4UdWMaaGykaiaaiYhacqGHLjYScaWG dbWaaSbaaSqaaiabes7aKbqabaGccaWGLbWaaWbaaSqabeaacaaI8b Gaamysaiaad2gacqaH7oaBcaaI8bGaeqiVd02aaWbaaeqabaGaey4k aScaaiaaiIcacqaHapaCcaaIPaaaaOGaaGilaiaaywW7cqaH7oaBcq GHiiIZcaWGhbWaaSbaaSqaaiabes7aKbqabaGccaaISaaaaa@811A@

где G δ ={λ:|λ λ n 0 |δ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqaH0oazaeqaaOGaaGypaiaaiUhacqaH7oaBcaaI6aGaaGiF aiabeU7aSjabgkHiTiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaa aakiaaiYhacqGHLjYScqaH0oazcaaI9baaaa@4995@ , δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@3798@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ достаточно малое положительное число (см. [21]), а также [22, Lemma 1.3.1], т.е. соотношение

lim |λ| max 0tπ exp |Imλ| μ + (t) 0 μ + (t) A(t,ξ)sinλξdξdλ =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaI8bGaeq4UdWMaaGiFaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaadaGfqbqabSqaaiaaicdacqGHKjYOcaWG0bGaey izImQaeqiWdahabeGcbaGaciyBaiaacggacaGG4baaaiGacwgacaGG 4bGaaiiCamaacmaabaGaeyOeI0IaaGiFaiaadMeacaWGTbGaeq4UdW MaaGiFaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaGikaiaadsha caaIPaaacaGL7bGaayzFaaWaaqWaaeaadaWdXaqabSqaaiaaicdaae aacqaH8oqBdaahaaqabeaacqGHRaWkaaGaaGikaiaadshacaaIPaaa niabgUIiYdGccaWGbbGaaGikaiaadshacaaISaGaeqOVdGNaaGykai GacohacaGGPbGaaiOBaiabeU7aSjabe67a4jaadsgacqaH+oaEcaWG KbGaeq4UdWgacaGLhWUaayjcSdGaaGypaiaaicdacaaISaaaaa@79D1@

получаем из (22) предельное равенство

lim N 0 π f(t)ρ(t) I N4 (x,t)dt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGobGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzai aaiIcacaWG0bGaaGykaiabeg8aYjaaiIcacaWG0bGaaGykaiaadMea daWgaaWcbaGaamOtaiaaisdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@544B@  (23)

Умножая обе части (15) на ρ(x)f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadIhacaaIPaGaamOzaiaaiIcacaWG4bGaaGykaaaa@3D62@ , интегрируя от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@37B0@ , переходя к пределу при N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgk ziUkabg6HiLcaa@3A24@  и применяя (17), (18), (20), (21) и (23), получим

0 x 2ρ(t) 1+ ρ(t) A(x, μ + (t))f(t)dt+ 0 x 1 ρ(2at) 1+ ρ(2at) A(x,2at)f(t)dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaIYaGaeqyW diNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaakaaabaGaeq yWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaIOaGaamiE aiaaiYcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0b GaaGykaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamizaiaadsha cqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcda WcaaqaaiaaigdacqGHsisldaGcaaqaaiabeg8aYjaaiIcacaaIYaGa amyyaiabgkHiTiaadshacaaIPaaaleqaaaGcbaGaaGymaiabgUcaRm aakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaamiDaiaa iMcaaSqabaaaaOGaamyqaiaaiIcacaWG4bGaaGilaiaaikdacaWGHb GaeyOeI0IaamiDaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaamiz aiaadshacqGHRaWkaaa@7617@

+ 0 π f(t)ρ(t)F(x,t)dt+ 0 π f(t)ρ(t) 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiWdahaniabgUIiYdGccaWGMbGaaGik aiaadshacaaIPaGaeqyWdiNaaGikaiaadshacaaIPaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaWd XaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipakiaadAgacaaIOa GaamiDaiaaiMcacqaHbpGCcaaIOaGaamiDaiaaiMcadaWdXaqabSqa aiaaicdaaeaacqaH8oqBdaahaaqabeaacqGHRaWkaaGaaGikaiaadI hacaaIPaaaniabgUIiYdGccaWGbbGaaGikaiaadIhacaaISaGaeqOV dGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaeqOVdG NaaGilaiaadshacaaIPaGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamiz aiaadshacaaI9aGaaGimaiaai6caaaa@74BF@

Поскольку f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  можно выбрать произвольно, получаем

2ρ(t) 1+ ρ(t) A(x, μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(x,2at)+F(x,t)++ 0 μ + (x) A(x,ξ) F 0 (ξ,t)dξ=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeaca aIOaGaamiEaiaaiYcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaa iIcacaWG0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsi sldaGcaaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadsha caaIPaaaleqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaG ikaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyq aiaaiIcacaWG4bGaaGilaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiM cacqGHRaWkcaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH RaWkcqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaH8oqBdaahaaqabe aacqGHRaWkaaGaaGikaiaadIhacaaIPaaaniabgUIiYdGccaWGbbGa aGikaiaadIhacaaISaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaG imaaqabaGccaaIOaGaeqOVdGNaaGilaiaadshacaaIPaGaamizaiab e67a4jaai2dacaaIWaGaaGOlaaaa@83AD@

3. Теоремы для решения обратной задачи.

Лемма 1. Для каждого фиксированного x(0,π] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiabec8aWjaai2faaaa@3D3A@  уравнение (11) имеет единственное решение A(x,) L 2 0, μ + (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqa aiaaikdaaeqaaOWaaeWaaeaacaaIWaGaaGilaiabeY7aTnaaCaaale qabaGaey4kaScaaOGaaGikaiaadIhacaaIPaaacaGLOaGaayzkaaaa aa@478C@ .

Доказательство. При x>a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWGHbaaaa@389E@  можем переписать уравнение (11) следующим образом:

L x A(x,)+ K x A(x,)=F(x,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaakiaadgeacaaIOaGaamiEaiaaiYcacqGHflY1 caaIPaGaey4kaSIaam4samaaBaaaleaacaWG4baabeaakiaadgeaca aIOaGaamiEaiaaiYcacqGHflY1caaIPaGaaGypaiabgkHiTiaadAea caaIOaGaamiEaiaaiYcacqGHflY1caaIPaGaaGilaaaa@4FC3@

где

( L x f)(t)= f(t)+ 1α 1+α f(2at), ta<x, 2 1+α f(αtαa+a), a<t<x, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dadaGabaqaauaabaqacqaaaaqaaaqaaiaadAgacaaIOa GaamiDaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsislcqaHXoqy aeaacaaIXaGaey4kaSIaeqySdegaaiaadAgacaaIOaGaaGOmaiaadg gacqGHsislcaWG0bGaaGykaiaaiYcaaeaacaaMf8oabaGaamiDaiab gsMiJkaadggacaaI8aGaamiEaiaaiYcaaeaaaeaadaWcaaqaaiaaik daaeaacaaIXaGaey4kaSIaeqySdegaaiaadAgacaaIOaGaeqySdeMa amiDaiabgkHiTiabeg7aHjaadggacqGHRaWkcaWGHbGaaGykaiaaiY caaeaacaaMf8oabaGaamyyaiaaiYdacaWG0bGaaGipaiaadIhacaaI SaaaaaGaay5Eaaaaaa@6D0E@  (24)

( K x f)(t)= 0 αxαa+a f(ξ) F 0 (ξ,t)dξ,0<t<x. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dadaWdXaqabSqaaiaaicdaaeaacqaHXoqycaWG4bGaey OeI0IaeqySdeMaamyyaiabgUcaRiaadggaa0Gaey4kIipakiaadAga caaIOaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGcca aIOaGaeqOVdGNaaGilaiaadshacaaIPaGaamizaiabe67a4jaaiYca caaMf8UaaGimaiaaiYdacaWG0bGaaGipaiaadIhacaaIUaaaaa@5CB8@  (25)

Докажем, что оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  обратим, т.е. имеет ограниченный обратный оператор в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@ .

Рассмотрим уравнение

( L x f)(t)=ϕ(t),ϕ(t) L 2 (0,π), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGMbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dacqaHvpGzcaaIOaGaamiDaiaaiMcacaaISaGaaGzbVl abew9aMjaaiIcacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiYcacqaHapaCcaaIPaGaaGilaa aa@508B@

т.е.

f(t)+ 1α 1+α f(2at)=ϕ(t), ta<x, 2 1+α f(αtαa+a)=ϕ(t), a<t<x. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGaeaaaaeaaaeaacaWGMbGaaGikaiaadshacaaIPaGaey4kaSYa aSaaaeaacaaIXaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg 7aHbaacaWGMbGaaGikaiaaikdacaWGHbGaeyOeI0IaamiDaiaaiMca caaI9aGaeqy1dyMaaGikaiaadshacaaIPaGaaGilaaqaaiaaywW7ae aacaWG0bGaeyizImQaamyyaiaaiYdacaWG4bGaaGilaaqaaaqaamaa laaabaGaaGOmaaqaaiaaigdacqGHRaWkcqaHXoqyaaGaamOzaiaaiI cacqaHXoqycaWG0bGaeyOeI0IaeqySdeMaamyyaiabgUcaRiaadgga caaIPaGaaGypaiabew9aMjaaiIcacaWG0bGaaGykaiaaiYcaaeaaca aMf8oabaGaamyyaiaaiYdacaWG0bGaaGipaiaadIhacaaIUaaaaaGa ay5Eaaaaaa@6F71@

Таким образом, получаем

f(t)=( L x 1 ϕ)(t)= ϕ(t) 1α 2 ϕ t+αa+a α , t<a, 1+α 2 ϕ t+αaa α , t>a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamitamaaDaaaleaacaWG4baa baGaeyOeI0IaaGymaaaakiabew9aMjaaiMcacaaIOaGaamiDaiaaiM cacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaacqaHvpGzcaaIOaGa amiDaiaaiMcacqGHsisldaWcaaqaaiaaigdacqGHsislcqaHXoqyae aacaaIYaaaaiabew9aMnaabmaabaWaaSaaaeaacqGHsislcaWG0bGa ey4kaSIaeqySdeMaamyyaiabgUcaRiaadggaaeaacqaHXoqyaaaaca GLOaGaayzkaaGaaGilaaqaaiaaywW7aeaacaWG0bGaaGipaiaadgga caaISaaabaaabaWaaSaaaeaacaaIXaGaey4kaSIaeqySdegabaGaaG OmaaaacqaHvpGzdaqadaqaamaalaaabaGaamiDaiabgUcaRiabeg7a HjaadggacqGHsislcaWGHbaabaGaeqySdegaaaGaayjkaiaawMcaai aaiYcaaeaacaaMf8oabaGaamiDaiaai6dacaWGHbGaaGOlaaaaaiaa wUhaaaaa@74E9@

Покажем, что

f L 2 = L x 1 ϕ L 2 Cϕ L 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGmbWa aSbaaeaacaaIYaaabeaaaeqaaOGaaGypaiab=vIiqjaadYeadaqhaa WcbaGaamiEaaqaaiabgkHiTiaaigdaaaGccqaHvpGzcqWFLicudaWg aaWcbaGaamitamaaBaaabaGaaGOmaaqabaaabeaakiabgsMiJkaado eacqWFLicucqaHvpGzcqWFLicudaWgaaWcbaGaamitamaaBaaabaGa aGOmaaqabaaabeaakiaai6caaaa@5307@

Действительно,

0 π |f(t )| 2 dt= 0 a ϕ(t) 1α 2 ϕ t+αa+a α 2 dt+ a π 1+α 2 ϕ t+αaa α 2 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGccaaI8bGaamOzaiaaiIca caWG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam iDaiaai2dadaWdXaqabSqaaiaaicdaaeaacaWGHbaaniabgUIiYdGc daabdaqaaiabew9aMjaaiIcacaWG0bGaaGykaiabgkHiTmaalaaaba GaaGymaiabgkHiTiabeg7aHbqaaiaaikdaaaGaeqy1dy2aaeWaaeaa daWcaaqaaiabgkHiTiaadshacqGHRaWkcqaHXoqycaWGHbGaey4kaS Iaamyyaaqaaiabeg7aHbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoa daahaaWcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaapedabe WcbaGaamyyaaqaaiabec8aWbqdcqGHRiI8aOWaaqWaaeaadaWcaaqa aiaaigdacqGHRaWkcqaHXoqyaeaacaaIYaaaaiabew9aMnaabmaaba WaaSaaaeaacaWG0bGaey4kaSIaeqySdeMaamyyaiabgkHiTiaadgga aeaacqaHXoqyaaaacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadshacqGHKjYOaaa@7F35@

2 0 a ϕ(t) 2 dt+2 1α 2 2 0 a ϕ t+αa+a α 2 dt+ 1+α 2 2 a π ϕ t+αaa α 2 dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmamaapedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakmaaemaa baGaeqy1dyMaaGikaiaadshacaaIPaaacaGLhWUaayjcSdWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadshacqGHRaWkcaaIYaWaaeWaaeaa daWcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIYaaaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakmaapedabeWcbaGaaGimaaqa aiaadggaa0Gaey4kIipakmaaemaabaGaeqy1dy2aaeWaaeaadaWcaa qaaiabgkHiTiaadshacqGHRaWkcqaHXoqycaWGHbGaey4kaSIaamyy aaqaaiabeg7aHbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaa WcbeqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRmaabmaabaWaaSaa aeaacaaIXaGaey4kaSIaeqySdegabaGaaGOmaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaaeaacqaH apaCa0Gaey4kIipakmaaemaabaGaeqy1dy2aaeWaaeaadaWcaaqaai aadshacqGHRaWkcqaHXoqycaWGHbGaeyOeI0Iaamyyaaqaaiabeg7a HbaaaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaaik daaaGccaWGKbGaamiDaiabgsMiJcaa@837E@

2 0 π |ϕ(t )| 2 dt+ α 1α 2 2 a αa+a α |ϕ(t )| 2 dt+α 1+α 2 2 a π+αaa α |ϕ(t )| 2 dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG OmamaapedabeWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaaGiF aiabew9aMjaaiIcacaWG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaik daaaGccaWGKbGaamiDaiabgUcaRmaalaaabaGaeqySde2aaeWaaeaa caaIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaadaWdXaqabSqaaiaadggaaeaadaWcaaqa aiabeg7aHjaadggacqGHRaWkcaWGHbaabaGaeqySdegaaaqdcqGHRi I8aOGaaGiFaiabew9aMjaaiIcacaWG0bGaaGykaiaaiYhadaahaaWc beqaaiaaikdaaaGccaWGKbGaamiDaiabgUcaRiabeg7aHnaabmaaba WaaSaaaeaacaaIXaGaey4kaSIaeqySdegabaGaaGOmaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGcdaWdXaqabSqaaiaadggaae aadaWcaaqaaiabec8aWjabgUcaRiabeg7aHjaadggacqGHsislcaWG HbaabaGaeqySdegaaaqdcqGHRiI8aOGaaGiFaiabew9aMjaaiIcaca WG0bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamiD aiaai6caaaa@7FC7@

Положим ϕ(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadshacaaIPaGaaGypaiaaicdaaaa@3B9A@  для t>π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacqaHapaCaaa@3971@ . Тогда

0 π f(t) 2 dtC 0 π ϕ(t) 2 dt=Cϕ(t) L 2 (0,π) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeqiWdahaniabgUIiYdGcdaabdaqaaiaadAgacaaI OaGaamiDaiaaiMcaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaa GccaWGKbGaamiDaiabgsMiJkaadoeadaWdXaqabSqaaiaaicdaaeaa cqaHapaCa0Gaey4kIipakmaaemaabaGaeqy1dyMaaGikaiaadshaca aIPaaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dshacaaI9aGaam4qaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabew 9aMjaaiIcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSba aeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacqaHapaCcaaIPaaabe aakiaai6caaaa@68DA@

Таким образом, оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  обратим в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@ . Согласно [?, Theorem~3] достаточно доказать, что уравнение

2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at)+ 0 μ + (x) A(ξ) F 0 (ξ,t)dξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaa caaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacq GHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqa aiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaale qaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGyk aiabgUcaRmaapedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaai abgUcaRaaacaaIOaGaamiEaiaaiMcaa0Gaey4kIipakiaadgeacaaI OaGaeqOVdGNaaGykaiaadAeadaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiaadshacaaIPaGaamizaiabe67a4jaai2dacaaI Waaaaa@731E@  (26)

имеет лишь тривиальное решение A(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGykaiaai2dacaaIWaaaaa@3A98@ .

Пусть A(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG0bGaaGykaaaa@3917@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ нетривиальное решение уравнения (26). Тогда

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 0 μ + (x) A(ξ) F 0 (ξ,t)dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGik aiaadshacaaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey 4kaSYaaOaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcaca WG0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGc aaqaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPa aaleqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaa ikdacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiI cacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaGa eyyXIC9aa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGaey 4kaScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiIca cqaH+oaEcaaIPaGaamOramaaBaaaleaacaaIWaaabeaakiaaiIcacq aH+oaEcaaISaGaamiDaiaaiMcacaaMi8Uaamizaiabe67a4jaayIW7 caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@84B6@

Из (12) следует, что

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 μ + (x) A(ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiVd02aaWbaaeqabaGa ey4kaScaaiaaiIcacaWG4bGaaGykaaqdcqGHRiI8aOGaamyqaiaaiI cacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaa cqGHEisPa0GaeyyeIuoakmaabmaabaWaaSaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacqaH7oaBdaWgaaWc baGaamOBaaqabaGccaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeqOVdGhabaGaeqySde2aaSbaaSqaaiaa d6gaaeqaaOGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTm aalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadsha caaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykai GacohacaGGPbGaaiOBaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiabe67a4bqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaGimaa aakiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaaaakiaawIca caGLPaaacaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgU caRaaa@9897@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 μ + (x) A(ξ) n=1 φ 0 (t, λ n )sin λ n ξ α n λ n φ 0 (t, λ n 0 )sin λ n 0 ξ α n 0 λ n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiabeY7aTnaaCaaabeqaaiabgUcaRaaaca aIOaGaamiEaiaaiMcaa0Gaey4kIipakiaadgeacaaIOaGaeqOVdGNa aGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukani abggHiLdGcdaqadaqaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicda aeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaacaWG Ubaabeaakiabe67a4bqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaki abeU7aSnaaBaaaleaacaWGUbaabeaaaaGccqGHsisldaWcaaqaaiab eA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU 7aSnaaDaaaleaacaWGUbaabaGaaGimaaaakiaaiMcaciGGZbGaaiyA aiaac6gacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccqaH+o aEaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaGccqaH7oaB daqhaaWcbaGaamOBaaqaaiaaicdaaaaaaaGccaGLOaGaayzkaaGaaG jcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacaaI9aGaaGimaiaa i6caaaa@9E78@

Из (7) и (19) получаем

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccaaMi8Ua amizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa@7847@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaa cqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+o aEcaaMi8UaamizaiaadshacqGHRaWkaaa@7CD1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIYaGaeqySdegabaGaaG ymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaaleaacaaI WaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey 4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeq OXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaale aacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGa amiDaiabgUcaRaaa@8C27@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGOmaiabeg7aHbqaaiaaigdacqGHRaWk cqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaGaaGilaiabeU7aSn aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabeA8aQnaaBaaa leaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaale aacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqa baaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRa Wkaaa@90B1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIXaGaeyOeI0IaeqySde gabaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaa leaacaaIWaaabeaakmaabmaabaGaaGOmaiaadggacqGHsislcqaH+o aEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzk aaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISa Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaa BaaaleaacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiabgUcaRaaa@88A9@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGymaiabgkHiTiabeg7aHbqaaiaaigda cqGHRaWkcqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaa qabaGcdaqadaqaaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGilaiab eU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaa BaaaleaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaam OBaaqabaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamizaiaadsha cqGHsislaaa@8D3E@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaa WcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaa baGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaam iDaiabgkHiTaaa@7A8E@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaaki aaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaa aaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsisl aaa@7F18@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIYaGaeqySdegabaGaaG ymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaaleaacaaI WaaabeaakmaabmaabaWaaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey 4kaSIaamyyaiabgkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaacaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGLOaGaay zkaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGaeqySde 2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeqOV dGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8DB4@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 2α 1+α φ 0 ξ α +a a α , λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGOmaiabeg7aHbqaaiaaigdacqGHRaWk cqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeqOVdGhabaGaeqySdegaaiabgUcaRiaadgga cqGHsisldaWcaaqaaiaadggaaeaacqaHXoqyaaGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGimaaaaaOGaayjkaiaawMcaaiabeA8a QnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSn aaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDaaaleaa caWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7ca WGKbGaamiDaiabgkHiTaaa@923E@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n 0 φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaeqySdeMaamiEaiabgkHi Tiabeg7aHjaadggacqGHRaWkcaWGHbaaniabgUIiYdGccaWGbbGaaG ikaiabe67a4jaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaIXaGaeyOeI0IaeqySde gabaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQnaaBaaa leaacaaIWaaabeaakmaabmaabaGaaGOmaiaadggacqGHsislcqaH+o aEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGL OaGaayzkaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGa eqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKb GaeqOVdGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8A36@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a αxαa+a A(ξ) n=1 1α 1+α φ 0 2aξ, λ n 0 φ 0 (t, λ n ) α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiabeg7aHjaadIhacqGHsislcqaHXoqyca WGHbGaey4kaSIaamyyaaqdcqGHRiI8aOGaamyqaiaaiIcacqaH+oaE caaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0 GaeyyeIuoakmaalaaabaGaaGymaiabgkHiTiabeg7aHbqaaiaaigda cqGHRaWkcqaHXoqyaaWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaa qabaGcdaqadaqaaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGilaiab eU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaaaOGaayjkaiaawMcaai abeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiab eU7aSnaaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDa aaleaacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaa yIW7caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@900C@

После подстановки

ξ ξ α +a a α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey OKH46aaSaaaeaacqaH+oaEaeaacqaHXoqyaaGaey4kaSIaamyyaiab gkHiTmaalaaabaGaamyyaaqaaiabeg7aHbaaaaa@425F@

в третьем, четвертом, девятом и десятом интегралах и подстановки

ξ2αξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey OKH4QaaGOmaiabeg7aHjabgkHiTiabe67a4baa@3EAE@

в пятом, шестом, одиннадцатом и двенадцатом двойных интегралах получим

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaWgaa WcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaO GaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGccaaMi8Ua amizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa@7847@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaa cqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+o aEcaaMi8UaamizaiaadshacqGHRaWkaaa@7CD1@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacq aH+oaEcaaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaa baGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaikdacqaHXoqydaahaa WcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqySdegaamaalaaa baGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiY cacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaS qaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaa beaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgU caRaaa@8358@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiaadgeacaaIOa GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqOVdGNaaGyk aiaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaaIYaGaeqySde2aaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2a aSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaa beaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaG jcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHRaWkaaa@87E2@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacqGHsislcqaHXoqycaWG4bGaey4kaSIa eqySdeMaamyyaiabgUcaRiaadggaaeaacaWGHbaaniabgUIiYdGcca WGbbGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcda WcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaSIaeqyS degaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai abe67a4jaaiYcacqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaGa eqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq 4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaa leaacaWGUbaabeaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKb GaamiDaiabgUcaRaaa@8967@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaeyOeI0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadg gacqGHRaWkcaWGHbaabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiabe67a4jaaiMcadaaeWbqabSqaaiaad6 gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaI XaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWcaa qaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaI SaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGykaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaBaaa leaacaWGUbaabeaakiaaiMcaaeaacqaHXoqydaWgaaWcbaGaamOBaa qabaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGH sislaaa@8DFC@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH+oaEcaaIPaWaaabCaeqaleaacaWGUbGaaGypai aaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaa WcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaaDaaaleaacaWGUbaa baGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaam iDaiabgkHiTaaa@7A8E@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 a A(ξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadggaa0Gaey4kIipakiaadgeacaaIOa GaeqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWa aabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaaki aaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGim aaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaa aaaOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsisl aaa@7F18@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOGa amyqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacq aH+oaEcaaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaa baGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaikdacqaHXoqydaahaa WcbeqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqySdegaamaalaaa baGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiY cacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOX dO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW 2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaaqaaiabeg7aHnaa DaaaleaacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4j aayIW7caWGKbGaamiDaiabgkHiTaaa@859F@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) a x A( μ + (ξ)) n=1 2 α 2 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiaadgeacaaIOa GaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaeqOVdGNaaGyk aiaaiMcadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaaIYaGaeqySde2aaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiabgUcaRiabeg7aHbaadaWcaaqaaiabeA8aQn aaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2a a0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiabeA8aQnaaBaaale aacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaa caWGUbaabaGaaGimaaaakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaam OBaaqaaiaaicdaaaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamiz aiaadshacqGHsislaaa@8A29@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacqGHsislcqaHXoqycaWG4bGaey4kaSIa eqySdeMaamyyaiabgUcaRiaadggaaeaacaWGHbaaniabgUIiYdGcca WGbbGaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdGNaaGykamaaqaha beWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLdGcda WcaaqaaiaaigdacqGHsislcqaHXoqyaeaacaaIXaGaey4kaSIaeqyS degaamaalaaabaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikai abe67a4jaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaicdaaaGc caaIPaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshaca aISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIPaaaaaGcbaGaeqyS de2aa0baaSqaaiaad6gaaeaacaaIWaaaaaaakiaayIW7caWGKbGaeq OVdGNaaGjcVlaadsgacaWG0bGaeyOeI0caaa@8AF4@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) αx+αa+a a A(2aξ) n=1 1α 1+α φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaeyOeI0IaeqySdeMaamiEaiabgUcaRiabeg7aHjaadg gacqGHRaWkcaWGHbaabaGaamyyaaqdcqGHRiI8aOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiabe67a4jaaiMcadaaeWbqabSqaaiaad6 gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaacaaI XaGaeyOeI0IaeqySdegabaGaaGymaiabgUcaRiabeg7aHbaadaWcaa qaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaI SaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGykaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7a SnaaDaaaleaacaWGUbaabaGaaGykaaaaaOqaaiabeg7aHnaaDaaale aacaWGUbaabaGaaGimaaaaaaGccaaMi8Uaamizaiabe67a4jaayIW7 caWGKbGaamiDaiaai2dacaaIWaGaaGOlaaaa@90CA@

Отсюда имеем

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 ξ, λ n φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIYaGaeqyWdiNaaGikaiabe67a4jaaiMcaaeaacaaIXa Gaey4kaSYaaOaaaeaacqaHbpGCcaaIOaGaeqOVdGNaaGykaaWcbeaa aaGccaWGbbGaaGikaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaG ikaiabe67a4jaaiMcacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaa igdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOWaaeWaaeaacqaH+oaEcaaISaGaeq4UdW2aaSba aSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeqOXdO2aaSbaaSqaai aaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaSbaaSqaaiaa d6gaaeqaaOGaaGykaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaa GccaaMi8Uaamizaiabe67a4jaayIW7caWGKbGaamiDaiabgUcaRaaa @8914@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG Omaiabeg8aYjaaiIcacqaH+oaEcaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiabe67a4jaaiMcaaSqabaaaaOGaamyqai aaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacqaH+oaE caaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacq aHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+oaE caaMi8UaamizaiaadshacqGHRaWkaaa@8D7A@

+ 0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmai aadggacqGHsislcqaH+oaEcaaIPaaaleqaaaGcbaGaaGymaiabgUca RmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdG NaaGykaaWcbeaaaaGccaWGbbGaaGikaiaaikdacaWGHbGaeyOeI0Ia eqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG 0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcaaeaacq aHXoqydaWgaaWcbaGaamOBaaqabaaaaOGaaGjcVlaadsgacqaH+oaE caaMi8UaamizaiaadshacqGHRaWkaaa@8D7A@

+ 0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n ) φ 0 (t, λ n ) α n dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG ymaiabgkHiTmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOe I0IaeqOVdGNaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaai abeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiMcaaSqa baaaaOGaamyqaiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMca cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiDaiaaiYcacq aH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIPaaabaGaeqySde2aaSba aSqaaiaad6gaaeqaaaaakiaayIW7caWGKbGaeqOVdGNaaGjcVlaads gacaWG0bGaeyOeI0caaa@920F@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIYaGaeqyWdiNaaGikaiabe67a4jaaiMcaaeaacaaIXa Gaey4kaSYaaOaaaeaacqaHbpGCcaaIOaGaeqOVdGNaaGykaaWcbeaa aaGccaWGbbGaaGikaiabeY7aTnaaCaaaleqabaGaey4kaScaaOGaaG ikaiabe67a4jaaiMcacaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaa igdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaeqOXdO2aaSbaaS qaaiaaicdaaeqaaOGaaGikaiabe67a4jaaiYcacqaH7oaBdaqhaaWc baGaamOBaaqaaiaaicdaaaGccaaIPaGaeqOXdO2aaSbaaSqaaiaaic daaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaaiaad6ga aeaacaaIPaaaaaGcbaGaeqySde2aa0baaSqaaiaad6gaaeaacaaIWa aaaaaakiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGaeyOe I0caaa@8A7D@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 2ρ(ξ) 1+ ρ(ξ) A( μ + (ξ)) n=1 φ 0 (ξ, λ n 0 ) φ 0 (t, λ n 0 ) α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG Omaiabeg8aYjaaiIcacqaH+oaEcaaIPaaabaGaaGymaiabgUcaRmaa kaaabaGaeqyWdiNaaGikaiabe67a4jaaiMcaaSqabaaaaOGaamyqai aaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacqaH+oaE caaIPaGaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaa iIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaa aakiaaiMcaaeaacqaHXoqydaqhaaWcbaGaamOBaaqaaiaaicdaaaaa aOGaaGjcVlaadsgacqaH+oaEcaaMi8UaamizaiaadshacqGHsislaa a@8FC1@

0 x 2ρ(t) 1+ ρ(t) A( μ + (t)) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 t, λ n 0 α n 0 dξdt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI YaGaeqyWdiNaaGikaiaadshacaaIPaaabaGaaGymaiabgUcaRmaaka aabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqaaaaakiaadgeacaaI OaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM cacaaIPaWaa8qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmai aadggacqGHsislcqaH+oaEcaaIPaaaleqaaaGcbaGaaGymaiabgUca RmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOeI0IaeqOVdG NaaGykaaWcbeaaaaGccaWGbbGaaGikaiaaikdacaWGHbGaeyOeI0Ia eqOVdGNaaGykamaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaey OhIukaniabggHiLdGcdaWcaaqaaiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiIcacqaH+oaEcaaISaGaeq4UdW2aa0baaSqaaiaad6gaae aacaaIWaaaaOGaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakmaa bmaabaGaamiDaiaaiYcacqaH7oaBdaqhaaWcbaGaamOBaaqaaiaaic daaaaakiaawIcacaGLPaaaaeaacqaHXoqydaqhaaWcbaGaamOBaaqa aiaaicdaaaaaaOGaaGjcVlaadsgacqaH+oaEcaaMi8Uaamizaiaads hacqGHsislaaa@8FE5@

0 x 1 ρ(2at) 1+ ρ(2at) A(2at) 0 x 1 ρ(2aξ) 1+ ρ(2aξ) A(2aξ) n=1 φ 0 (ξ, λ n 0 ) φ 0 t, λ n 0 α n 0 dξdt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaa8 qmaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOWaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykamaa pedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaaG ymaiabgkHiTmaakaaabaGaeqyWdiNaaGikaiaaikdacaWGHbGaeyOe I0IaeqOVdGNaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaai abeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiMcaaSqa baaaaOGaamyqaiaaiIcacaaIYaGaamyyaiabgkHiTiabe67a4jaaiM cadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOWaaSaaaeaacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOa GaeqOVdGNaaGilaiabeU7aSnaaDaaaleaacaWGUbaabaGaaGimaaaa kiaaiMcacqaHgpGAdaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiaads hacaaISaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaaIWaaaaaGccaGL OaGaayzkaaaabaGaeqySde2aa0baaSqaaiaad6gaaeaacaaIWaaaaa aakiaayIW7caWGKbGaeqOVdGNaaGjcVlaadsgacaWG0bGaaGypaiaa icdacaaIUaaaaa@95BB@

Таким образом,

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) 2 dt+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadshacqGHRaWkaaa@68CE@

+ n=1 1 α n 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaalaaabaGaaGymaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaa GcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipa kiabeg8aYjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaaeaacaaIYa aabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadshacaaI PaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacqGHRa WkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaI XaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsi slcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa aakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykaaGa ayjkaiaawMcaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WG0bGaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWG KbGaamiDaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgk HiTaaa@7DA8@

n=1 1 α n 0 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ 2at A(2at) φ 0 (t, λ n ) dt 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaaa bCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaalaaabaGaaGymaaqaaiabeg7aHnaaDaaaleaacaWGUbaabaGaaG imaaaaaaGcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Ga ey4kIipakiabeg8aYjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaae aacaaIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaa dshacaaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabe aacqGHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaa aeaacaaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadg gacqGHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGc aaqaaiabeg8aYnaabmaabaGaaGOmaiaadggacqGHsislcaWG0baaca GLOaGaayzkaaaaleqaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGH sislcaWG0bGaaGykaaGaayjkaiaawMcaaiabeA8aQnaaBaaaleaaca aIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaDaaaleaacaWG UbaabaGaaGykaaaakiaadsgacaWG0baacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaaGypaiaaicdacaaIUaaaaa@7FDF@

Используя равенство Парсеваля

0 x ρ(t) f 2 (t)dt= n=1 1 α n 0 0 x ρ(t)f(t) φ 0 (t, λ n ) dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaGaamOzamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0bGaaG ykaiaadsgacaWG0bGaaGypamaaqahabeWcbaGaamOBaiaai2dacaaI XaaabaGaeyOhIukaniabggHiLdGcdaWcaaqaaiaaigdaaeaacqaHXo qydaqhaaWcbaGaamOBaaqaaiaaicdaaaaaaOWaaeWaaeaadaWdXaqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccqaHbpGCcaaIOaGaam iDaiaaiMcacaWGMbGaaGikaiaadshacaaIPaGaeqOXdO2aaSbaaSqa aiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aa0baaSqaai aad6gaaeaacaaIPaaaaOGaamizaiaadshaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaaaa@67A7@

для функции

f(t)= 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) L 2 (0,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaikdaaeaacaaIXaGaey4k aSYaaOaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaam yqaiaaiIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG 0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaa qaaiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaa leqaaaGcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaik dacaWGHbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIca caaIYaGaamyyaiabgkHiTiaadshacaaIPaGaeyicI4SaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadIhacaaIPaGa aGilaaaa@6764@

получим

n=1 1 α n 0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakmaalaaa baGaaGymaaqaaiabeg7aHnaaBaaaleaacaWGUbaabeaaaaGcdaqada qaamaapedabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabeg8a YjaaiIcacaWG0bGaaGykamaabmaabaWaaSaaaeaacaaIYaaabaGaaG ymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadshacaaIPaaaleqa aaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacqGHRaWkaaGcca aIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaIXaGaeyOe I0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacqGHsislcaWG0b GaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqaaiabeg8aYjaa iIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaaaakiaadg eacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGykaaGaayjkaiaa wMcaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaG ilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaaiMcacaWGKbGaamiD aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaai2dacaaIWa aaaa@7D5A@

или

0 x ρ(t) 2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at) φ 0 (t, λ n )dt=0,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqyWdiNaaGikaiaadsha caaIPaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaaIXaGaey4kaSYaaO aaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaaSqabaaaaOGaamyqaiaa iIcacqaH8oqBdaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdacqGHsisldaGcaaqaaiab eg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaaleqaaa GcbaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaaikdacaWG HbGaeyOeI0IaamiDaiaaiMcaaSqabaaaaOGaamyqaiaaiIcacaaIYa GaamyyaiabgkHiTiaadshacaaIPaaacaGLOaGaayzkaaGaeqOXdO2a aSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaISaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGykaiaadsgacaWG0bGaaGypaiaaicda caaISaGaaGzbVlaad6gacqGHLjYScaaIXaGaaGOlaaaa@7788@

Поскольку система { φ 0 (t, λ n )} n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeA 8aQnaaBaaaleaacaaIWaaabeaakiaaiIcacaWG0bGaaGilaiabeU7a SnaaBaaaleaacaWGUbaabeaakiaaiMcacaaI9bWaaSbaaSqaaiaad6 gacqGHLjYScaaIXaaabeaaaaa@443D@  полна в L 2,ρ (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiabeg8aYbqabaGccaaIOaGaaGimaiaaiYca cqaHapaCcaaIPaaaaa@3EBE@ , имеем

2 1+ ρ(t) A( μ + (t))+ 1 ρ(2at) 1+ ρ(2at) A(2at)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaGymaiabgUcaRmaakaaabaGaeqyWdiNaaGikaiaadsha caaIPaaaleqaaaaakiaadgeacaaIOaGaeqiVd02aaWbaaSqabeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaIPaGaey4kaSYaaSaaaeaa caaIXaGaeyOeI0YaaOaaaeaacqaHbpGCcaaIOaGaaGOmaiaadggacq GHsislcaWG0bGaaGykaaWcbeaaaOqaaiaaigdacqGHRaWkdaGcaaqa aiabeg8aYjaaiIcacaaIYaGaamyyaiabgkHiTiaadshacaaIPaaale qaaaaakiaadgeacaaIOaGaaGOmaiaadggacqGHsislcaWG0bGaaGyk aiaai2dacaaIWaGaaGilaaaa@5DBC@

т.е. ( L x A)(t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadY eadaWgaaWcbaGaamiEaaqabaGccaWGbbGaaGykaiaaiIcacaWG0bGa aGykaiaai2dacaaIWaaaaa@3E01@ , где оператор L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  определен в (24). Обратимость оператора L x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWG4baabeaaaaa@37ED@  в L 2 (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabec8aWjaaiMca aaa@3C48@  влечет A(x,)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiabgwSixlaaiMcacaaI9aGaaGimaaaa@3D9C@ .

Теорема 4. Пусть L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  и L ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGmbaacaGLdmaaaaa@3786@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@ две краевых задачи и

λ n = λ ˜ n , α n = α ˜ n ,n. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypamaaGaaabaGaeq4UdWgacaGLdmaa daWgaaWcbaGaamOBaaqabaGccaaISaGaaGzbVlabeg7aHnaaBaaale aacaWGUbaabeaakiaai2dadaaiaaqaaiabeg7aHbGaay5adaWaaSba aSqaaiaad6gaaeqaaOGaaGilaiaaywW7caWGUbGaeyicI48efv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKeIwcaaIUaaa aa@56CD@

Тогда

q(x)= q ˜ (x)a.e. in(0,π). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dadaaiaaqaaiaadghaaiaawoWaaiaaiIca caWG4bGaaGykaiaaywW7caqGHbGaaeOlaiaabwgacaqGUaGaaeiiai aabMgacaqGUbGaaeikaiaabcdacaqGSaGaeuiWdaNaaeykaiaai6ca aaa@4A97@

Доказательство. Согласно (12) и (13), F 0 (x,t)= F ˜ 0 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypamaaGaaabaGaamOraaGaay5adaWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4314@  и F(x,t)= F ˜ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaGaaabaGaamOraaGa ay5adaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4134@ . Из основного уравнения (11) получаем A(x,t)= A ˜ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaGaaabaGaamyqaaGa ay5adaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@412A@ . Из (5) следует, что q(x)= q ˜ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dadaaiaaqaaiaadghaaiaawoWaaiaaiIca caWG4bGaaGykaaaa@3E2C@  почти всюду на (0,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeqiWdaNaaGykaaaa@3A85@ .

×

Об авторах

Д. Карахан

Harran University

Автор, ответственный за переписку.
Email: dkarahan@harran.edu.tr
Турция, Шанлыурфа

Хaнлар Рашид Мамедов

Igdir University

Email: hanlar.residoglu@igdir.edu.tr
Турция, Ыгдыр

И. Ф. Хашимоглу

Karabük University

Email: i.hasimoglu@karabuk.edu.tr
Турция, Карабюк

Список литературы

  1. Ахтямов А. М. Теория идентификации краевых условий и ее приложения. — М.: Физматлит, 2009.
  2. Левитан Б. М. Обратные задачи Штурма—Лиувилля. — М.: Наука, 1984.
  3. Левитан Б. М., Гасымов М. Г. Определение дифференциального уравнения по двум спектрам// Усп. мат. наук. — 1964. — 19, № 2 (116). — С. 3–63.
  4. Левитан Б. М., Саргсян И. С. Операторы Штурма—Лиувилля и Дирака. — М.: Наука, 1988.
  5. Люстерник Л. А., Соболев В. И. Элементы функционального анализа. — М.: Наука, 1965.
  6. Марченко В. А. Спектральная теория операторов Штурма—Лиувилля. — Киев: Наукова думка, 1972.
  7. Расулов М. Л. Метод контурного интеграла. — М.: Наука, 1964.
  8. Тихонов А.Н., Самарский А.А. Уравнения математической физики. — М.: Наука, 1977.
  9. Юрко В. А. Обратные спектральные задачи и их приложения. — Саратов: Изд-во Сарат. пед. ин-та, 2001.
  10. Akhmedova E. N. On representation of solution of Sturm–Liouville equation with discontinuous coefficients//Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2002. — 16, № 24. — P. 5–9.
  11. Akhmedova E. N., Huseynov H. M. The main equation of the inverse Sturm–Liouville problem with discontinuous coefficients// Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2007. — 26, № 34. —P. 17–32.
  12. Akhtyamov A. M., Mouftakhov A. V. Identification of boundary conditions using natural frequencies// Inv. Probl. Sci. Eng. — 2004. — 12, № 4. — P. 393–408.
  13. Aliev B. A., Yakubov Ya. S. Solvability of boundary value problems for second-order elliptic differentialoperator equations with a spectral parameter and with a discontinuous coefficient at the highest derivative//Differ. Equat. — 2014. — 50, № 4. — P. 464–475.
  14. Altinisik N., Kadakal M., Mukhtarov O. Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter dependent boundary conditions// Acta Math. Hung. — 2004. — 102, № 1-2. P. 159–175.
  15. Anderssen R. S. The effect of discontinuities in destiny and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth// Geophys. J. R. Astr. Soc. — 1977. — 50. — P. 303–309.
  16. Borg G. Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe// Acta Math. — 1946. — 78. —P. 1–96.
  17. Carlson R. An inverse spectral problem for Sturm–Liouville operators with discontinuous coefficients// Proc. Am. Math. Soc. — 1994. — 120, № 2. — P. 5–9.
  18. Freiling G., Yurko V. Inverse Sturm–Liouville problems and Their Applications. — Nova Science Publ., 2008.
  19. Hald O. H. Discontinuous inverse eigenvalue problems// Commun. Pure Appl. Math. — 1984. — 37. —P. 539–577.
  20. Hao D. N. Methods for Inverse Heat Conduction Problems. — Frankfurt/Main etc.: Peter Lang Verlag, 1998.
  21. Karahan D., Mamedov Kh. R. Uniqueness of the solution of the inverse problem for one class of Sturm–Liouville operator// Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan. — 2014. — 40. — P. 233–244.
  22. Marchenko V. A. Strum–Liouville Operators and Their Aplications. — Basel–Boston–Stuttgart: Birkhäuser Verlag, 1986.
  23. Nabiev A. A., Amirov R. K. On the boundary value problem for the Sturm–Liouville equation with the discontinuous coefficient// Math. Meth. Appl. Sci. — 2013. — 36, № 13. — P. 1685–1700.
  24. Poschel J., Trubowitz E. Inverse Spectral Theory. — New York: Academic Press, 1987.
  25. Sedipkov A. A. The inverse spectral problem for the Sturm–Liouville operator with discontinuous potential//J. Inv. Ill-Posed Probl. — 2012. — 20. — P. 139–167.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Карахан Д., Мамедов Х.Р., Хашимоглу И.Ф., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».