Pyroelectrometallurgical processing of bismuth-containing oxides

Cover Page

Cite item

Full Text

Abstract

In this work, we substantiate and develop a general pyroelectrometallurgical technology for processing bismuth dross and oxides (the intermediate products of lead bullion refining by the Betterton-Kroll process) to obtain crude bismuth. The research focuses on bismuth dross (3–5% Bi; 80–85% Pb) remelted at 500–600°С in the presence of NaNO3 and NaOH, as well as the obtained alkaline melt (bismuth oxides, 1–5% Bi; 60–70% Pb). The conducted experiments allowed us to determine optimal parameters of the main steps of processing bismuth oxide, as well as the characteristics of obtained products. Reduction smelting of bismuth oxides at 1150°C (with the addition of sodium carbonate, quartz and fine coke in the amount of 66, 25 and 5% of bismuth oxides mass, respectively) is proposed, leading to bismuth lead formation. Its decoppering is carried out at 350–600°C with 2.0% sulfur (by its weight), added to the melt. We propose to carry out the alkaline treatment of the decoppered Pb-Bi alloy at 500oC in contact with sodium hydroxide, sodium nitrate and sodium chloride, taken in amounts up to 10.2, 8.3 and 1.4% by weight of bismuth lead, respectively. Subsequent electrolysis comprises electrolytic processing of purified Pb-Bi alloy ingots at 550oC. The electrolyte consists of a melt with the following composition, %: NaCl – 7, KCl – 35, PbCl2 – 18 and ZnCl2 – 40. As a result, two end products were obtained by the proposed bismuth oxide processing. The anodic product at the second stage of electrolysis, crude bismuth (yielded 1.1% by the weight of oxides) contains 93.62% Bi and 4.14% Pb, extraction from oxides amounts to 19.0% Bi and 0.1% Pb. About 1.2% Bi and 9.1% Pb of their initial content in the oxides are transferred to the cathodic product containing 0.033% Bi and 97.83% Pb (the yield equalled 5.1% of the oxides).

About the authors

A. A. Korolev

Joint Stock Company Uralelectromed

Email: A.Korolev@elem.ru
ORCID iD: 0000-0002-0338-9774

S. V. Sergeichenko

Joint Stock Company Uralelectromed

Email: sesv@elem.ru
ORCID iD: 0000-0002-3786-7957

K. L. Timofeev

Technical University of the Ural Mining and Metallurgical Company

Email: K.Timofeev@elem.ru
ORCID iD: 0000-0002-9525-6476

G. I. Maltsev

Joint Stock Company Uralelectromed

Email: mgi@elem.ru
ORCID iD: 0000-0002-0750-0070

R. S. Voinkov

Joint Stock Company Uralelectromed

Email: R.Voinkov@elem.ru
ORCID iD: 0000-0001-6697-1596

References

  1. Юхин Ю. М., Михайлов Ю. И. Химия висмутовых соединений и материалов. Новосибирск: Изд-во СО РАН, 2001. 360 с.
  2. Jung In-Ho, Kang Dae Hoon, Park Woo-Jin, Kim Nack, Ann Sang Ho. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development // International Journal of Materials Research. 2007. Vol. 98. Iss. 9. Р. 807–815. https://doi.org/10.3139/146.101542.
  3. Смирнов М. П. Рафинирование свинца и переработка полупродуктов. М.: Изд-во «Металлургия», 1977. 280 с.
  4. Полывянный И. Р., Абланов А. Д., Батырбекова С. А. Висмут. Алма-Ата: Изд-во «Наука», 1989. 316 с.
  5. Королев А. А., Сергейченко С. В., Тимофеев К. Л., Мальцев Г. И., Воинков Р. С. Переработка висмутистых окислов // Обработка металлов (технология, оборудование, инструменты). 2021. Т. 23. № 3. С. 155–165. https://doi.org/10.17212/1994-6309-2021-23.3-155-165.
  6. Lu Dian-kun, Jin Zhe-nan, Chang Yong-feng, Sun Shuchen. Mechanism of debismuthizing with calcium and magnesium // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23. Iss. 5. P. 1501–1505. https://doi.org/10.1016/S1003-6326(13)62622-9.
  7. Castle J. F., Richards J. H. Lead refining: Current technology and a new continuous process // Advances in Extractive Metallurgy: An international symposium organized by the Institution of Mining and Metallurgy (London, 18–20 April 1977). London: The Institution of Mining and Metallurgy, 1977. P. 217−234.
  8. Hibbins S. G., Closset B., Bray M. Advances in the refining and alloying of low-bismuth lead // Journal of Power Sources. 1995. Vol. 53. Iss. 1. P. 75–83. https://doi.org/10.1016/0378-7753(94)02007-P.
  9. Betterton J. O., Lebedeff Y. Debismuthing lead with alkaline earth metals // Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers Incorporated. 1936. Vol. 121. P. 205−225.
  10. Evers D. Debismuthing by the Kroll−Betterton process // Metallhuttenw. 1949. Vol. 2. P. 129−133.
  11. Davey T. R. A. Debismuthing of lead // Journal of Metals. 1956. Vol. 3. P. 341−350.
  12. Iley J. D., Ward D. H. Development of a continuous process for the fine debismuthizing of lead // Advances in Extractive Metallurgy: An international symposium orga nized by the Institution of Mining and Metallurgy (London, 18–20 April 1977). London: The Institution of Mining and Metallurgy, 1977. P. 133−139.
  13. Hancock P., Harris R. Solubility of calcium−magnesium−bismuth intermetallic in molten lead // Canadian Metallurgy Quarterly. 1991. Vol. 30. Iss. 4. P. 275−276. https://doi.org/10.1179/CMQ.1991.30.4.275.
  14. Lu Dian-kun, Jin Zhe-nan, Chang Yong-feng, Sun Shu-chen. Mechanism of debismuthizing with calcium and magnesium // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23. Iss. 5. P. 1501−1505. https://doi.org/10.1016/S1003-6326(13)62622-9.
  15. Lu Dian-kun, Liu Xue-shan, Ye Guo-rui, He Jia-qi. Thermodynamical analysis of debismuthizing mechanism with calcium and magnesium // Journal of Shenyang Institute of Gold Technology. 1997. Vol. 16. Iss. 2. P. 110−115.
  16. Lu Dian-kun, Jin Zhe-nan, Jiang Kai-xi. Fine debismuthizing with calcium, magnesium and antimony // Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. Iss. 10. P. 2311−2316. https://doi.org/10.1016/S1003-6326(11)61013-3.
  17. Zhang J. A review of steel corrosion by liquid lead and lead–bismuth // Corrosion Science. 2009. Vol. 51. Iss. 6. P. 1207−1227. https://doi.org/10.1016/j.corsci.2009.03.013.
  18. Paliwal M., Jung In-Ho. Thermodynamic modeling of the Mg–Bi and Mg–Sb binary systems and short-rangeordering behavior of the liquid solutions // Calphad. 2009. Vol. 33. Iss. 4. P. 744−754. https://doi.org/10.1016/j.calphad.2009.10.002.
  19. Notin M., Mejbar J., Bouhaijb A., Charles J., Hertz J. The thermodynamic properties of calcium intermetallic compounds // Journal of Alloys and Compounds. 1995. Vol. 220. P. 62−75.
  20. Fan Jinlong, Wang Gang, Li Qing, Yang Haowei, Xu Shuo, Zhang Jie, et al. Extraction of tellurium and high purity bismuth from processing residue of zinc anode slime by sulfation roasting-leaching-electrodeposition process // Hydrometallurgy. 2020. Vol. 194. Р. 105348. https://doi.org/10.1016/j.hydromet.2020.105348.
  21. Пат. № 2046832, Российская Федерация, C22B 13/00, C22B 7/00, C22B 13/02. Cпособ гидрометаллургической переработки щелочного сульфидносульфатного плава от плавки свинцового концентрата / Н. В. Ходов, М. П. Смирнов, О. К. Кузнецов, К. М. Смирнов; заявитель и патентообладатель Ходов Н. В. Заявл. 14.09.1992; опубл. 27.10.1995.
  22. Пат. № 1192411, Российская Федерация, С25С 3/34. Способ переработки сплавов, содержащих свинец и висмут / О. Г. Зарубицкий, С. Н. Сутурин, А. А. Омельчук, В. Т. Мелехин, Ю. С. Корюков, В. Е. Дьяков; заявитель и патентообладатель Институт общей и неорганической химии АН УССР. Заявл. 26.09.1983; опубл. 10.07.2012. Бюл. № 19.
  23. Пат. № 106048224, Китайская Народная Республика, С22В 5/02, С22В 30/06. Способ ведения низкотемпературной восстановительной плавки висмутсодержащих соединений / Liu Weifeng, Fu Xinxin, Deng Xunbo, et al.; заявитель Central South University; Заявл. 30.06.2016; опубл. 26.10.2016.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).