Advantages of using textile-reinforced concrete in cantilever structures

封面

如何引用文章

全文:

详细

Textile reinforcement of concrete structures is promising trend in modern construction. These structures are lightweight, strong, stable, and require fewer materials. However, the use of textile-reinforced concrete in cantilever structures has not been previously studied. The authors designed and manufactured prototypes of lightweight textile-reinforced concrete cantilever coverings. The prototypes underwent strength testing in the laboratory. In addition, finite element modelling was performed to analyze the stress-stain state of the structures. Tre results showed that the maximum failure load of the prototype was 400 N, equivalent to a stress of 4.08 MPa, exceeding the strength of B20 class concrete by 1.9-2.4 times. The effectiveness of textile reinforcement was demonstrated under critical loading conditions, and the residual strength of the structure provided stability after the concrete matrix failure. The prototype could form the basis of commercial solutions. This technology is promising for use in regions with stringent structural reliability requirements, including seismically active zones.

作者简介

N. Borisov

Peter the Great St. Petersburg Polytechnic University

O. Stolyarov

Peter the Great St. Petersburg Polytechnic University

参考

  1. Kirsanov A. I., Stolyarov O. N. Mechanical properties of synthetic fibers applied to concrete reinforcement. Magazine of Civil Engineering. 2018;(4):15–23. https://doi.org/10.18720/MCE.80.2
  2. Haas R., Quadflieg T., Stolyarov O. Analysis of reinforcement efficiency and microscopic characterization of glass and carbon roving geometry in prestressed concrete composites. Journal of Composite Materials. 2021;55(23):3293– 3305. https://doi.org/10.1177/00219983211013382
  3. Stolyarov O., Quadflieg T., Gries T. Characterization of shear behavior of warp-knitted fabrics applied to composite reinforcement. The Journal of the Textile Institute. 2017;108(1):89–94. https://doi.org/10.1080/00405000.2016.1153876
  4. Quadflieg T., Stolyarov O., Gries T. Influence of the fabric construction parameters and roving type on the tensile property retention of high-performance rovings in warp-knitted reinforced fabrics and cement-based composites. Journal of Industrial Textiles. 2017;47(4):453–471. https://doi.org/10.1177/1528083716652831
  5. Lu W., Lee W. M. W., Xue F., Xu J. Revisiting the effects of prefabrication on construction waste minimization: a quantitative study using bigger data. Resources, Conservation and Recycling. 2021;170:105579. https://doi.org/10.1016/j.resconrec.2021.105579
  6. Beckmann B., Bielak Ja., Bosbach S., Scheerer S., Schmidt Ch., Hegger J., Curbach M. Collaborative research on carbon reinforced concrete structures in the CRC/TRR 280 project. Civil Engineering Design. 2021;3(3):99–109. https://doi.org/10.1002/cend.202100017
  7. Janani R., Lalithambigai N. A critical literature review on minimization of material wastes in construction projects. Materials Today: Proceedings. 2021;37(2):3061–3065. https://doi.org/10.1016/j.matpr.2020.09.011
  8. Kortmann J. Verfahrenstechnische Untersuchungen zur Recyclingfähigkeit von Carbonbeton = Process engineering investigations into the recyclability of carbon concrete. Springer Vieweg Wiesbaden; 2020. 249 p. (In Germ.) URL: https://www.sci-hub.ru/10.1007/978-3-658-30125-5. http://dx.doi.org/10.1007/978-3-658-30125-5
  9. Rempel S., Will N., Hegger J., Beul P. Filigrane Bauwerke aus Textilbeton = Filigree structures made of textile-reinforced concrete. Betonund Stahlbetonbau = Concrete and reinforced concrete construction. 2015;110(S1):83–93. (In Germ.) http://dx.doi.org/10.1002/best.201400111
  10. Bielak J., Schöneberg J., Classen M., Hegger J. Shear capacity of continuous concrete slabs with CFRP reinforcement. Construction and Building Materials. 2022;320:126117. https://doi.org/10.1016/j.conbuildmat.2021.126117
  11. Zhang M., Deng M. Tensile behavior of textile-reinforced composites made of highly ductile fiber-reinforced concrete and carbon textiles. Journal of Building Engineering. 2022;57:104824. https://doi.org/10.1016/j.jobe.2022.104824
  12. Stark A., Classen M., Hegger J. Bond behaviour of CFRP tendons in UHPFRC. Engineering Structures. 2019;178(7):148– 161. http://dx.doi.org/10.1016/j.engstruct.2018.10.002
  13. Kalthoff M., Raupach M., Matschei T. Extrusion and subsequent transformation of textile‐reinforced mortar components – requirements on the textile, mortar and process parameters with a laboratory mortar extruder (LabMorTex). Buildings. 2022;12(6):726. https://doi.org/10.3390/buildings12060726
  14. Kalthoff M., Raupach M., Matschei T. Investigation into the integration of impregnated glass and carbon textiles in a laboratory mortar extruder (LabMorTex). Materials. 2021;14(23):7406. https://doi.org/10.3390/ma14237406
  15. Alfani R., Guerrini G. L. Rheological test methods for the characterization of extrudable cement-based materials – A review. Materials and Structures. 2005;38(2):239–247. https://doi.org/10.1007/bf02479349
  16. Perrot A., Rangeard D., Nerella V. N., Mechtcherine V. Extrusion of cement‐based materials – An overview. RILEM Technical Letters. 2018;3:91–97. http://dx.doi.org/10.21809/rilemtechlett.2018.75
  17. Li Z., Zhou X. Manufacturing cement-based materials and building products via extrusion: from laboratory to factory. ICE Proceedings Civil Engineering. 2015;168(6):11–16. http://dx.doi.org/10.1680/cien.14.00065
  18. Kalthoff M., Raupach M., Matschei T. Investigation of rheological test methods for the suitability of mortars for manufacturing of textile-reinforced concrete using a laboratory mortar extruder (LabMorTex). Construction Materials. 2022;2(4):217–233. https://doi.org/10.3390/constrmater2040015
  19. Du W., Liu Q., Zhou Z., Uddin N. Experimental investigation of innovative composite folded thin cylindrical concrete shell structures. Thin-Walled Structures. 2019;137:224–230. https://doi.org/10.1016/j.tws.2019.01.014
  20. Chudoba R., van der Woerd J., Schmerl M., Hegger J. ORICRETE: Modeling support for design and manufacturing of folded concrete structures. Advances in Engineering Software. 2014;72:119–127. https://doi.org/10.1016/j.advengsoft.2013.05.004
  21. Mechtcherine V., Bos F. P., Perrot A., Leal da Silva W. R., Nerella V. N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020;132:106037. https://doi.org/10.1016/j.cemconres.2020.106037
  22. Mechtcherine V., Nerella V. N., Will F., Näther M., Otto J., Krause M. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction. 2019;107(3):102933. https://doi.org/10.1016/j.autcon.2019.102933
  23. Buswell R. A., Leal de Silva W. R., Jones S. Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018;112:37–49. http://dx.doi.org/10.1016/j.cemconres.2018.05.006
  24. Classen M., Ungermann J., Sharma R. Additive manufacturing of reinforced concrete – Development of a 3D printing technology for cementitious composites with metallic reinforcement. Applied Sciences. 2020;10(11):3791. https://doi.org/10.3390/app10113791
  25. Meurer M. Classen M. Mechanical properties of hardened 3D printed concretes and mortars-development of a consistent experimental characterization strategy. Materials. 2021;14(4):752. https://doi.org/10.3390/ma14040752
  26. Lewis W. J. Chapter 6. Tension cables in suspension bridges. A case of form-finding. In: Tension Structures. 2nd edition. ICE Publishing; 2017. P. 101–133. https://doi.org/10.1680/tsfab.61736.101
  27. Smarslik M., Ahrens M. A., Mark P. Toward holistic tensionor compression-biased structural designs using topology optimization. Engineering Structures. 2019;199(8):109632. http://dx.doi.org/10.1016/j.engstruct.2019.109632
  28. Stark A., Classen M., Knorrek C., Camps B., Hegger J. Sandwich panels with folded plate and doubly curved UHPFRC facings. Structural Concrete. 2018;19(6):1851–1861. http://dx.doi.org/10.1002/suco.201700288
  29. Hegger J., Herbrand M., Stark A., Classen M. Betonbau der Zukunft: leicht, filigran und nachhaltig/The future of structural concrete: light, filigree and sustainable. Bauingenieur = Civil Engineer. 2015;90(07-08):337–344. (In Germ.) http://dx.doi.org/10.37544/0005-6650-2015-07-08-61
  30. Liew A., López D. L., Van Mele T., Block Ph. Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures. 2017;137:323–335. http://dx.doi.org/10.1016/j.engstruct.2017.01.075

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».