Том 23, № 6 (2024)
Математическое моделирование и прикладная математика
Композиционный подход к имитационному моделированию систем массового обслуживания со случайными параметрами
Аннотация



Исследование вариантов построения информационно-управляющих систем на основе сетевых моделей систем массового обслуживания
Аннотация



Решение задач перебора путей в сложных графах
Аннотация



Вычислительная технология построения каскадных моделей магнитогидродинамической турбулентности
Аннотация



Повышение достоверности выявления аномалий на изображениях при формировании их векторов признаков в базисах вейвлетов
Аннотация



Искусственный интеллект, инженерия данных и знаний
Подходы к оцениванию кумулятивных характеристик поведения в группах разнородных индивидов: точность и применимость в условиях ограниченных наблюдений
Аннотация



Усовершенствованная система машинного обучения для автономного обнаружения депрессии с использованием модулированного вейвлет-кепстрального слияния и стохастического встраивания
Аннотация
Депрессия – это распространенное психическое заболевание, требующее систем автоматического обнаружения из-за своей сложности. Существующие методы машинного обучения сталкиваются с проблемами, такими как чувствительность к фоновому шуму, медленная скорость адаптации и несбалансированные данные. Для устранения этих ограничений в этом исследовании предлагается новая структура модулированного вейвлет-кепстрального слияния и стохастическая структура встраивания для прогнозирования депрессии. Затем техника модулированных волновых функций удаляет фоновый шум и нормализует аудиосигналы. Трудности с обобщением, которые приводят к отсутствию интерпретируемости, затрудняют извлечение соответствующих характеристик речи. Для решения этих проблем используется автоматическое кепстральное слияние, которое извлекает соответствующие характеристики речи, захватывая временные и спектральные характеристики, вызванные фоновым голосом. Выбор признаков становится важным, когда выбираются релевантные признаки для классификации. Выбор нерелевантных признаков может привести к переобучению, нарушению размерности и меньшей устойчивости к шуму. Поэтому метод стохастической иммерсии справляется с высокоразмерными данными, минимизируя влияние шума и размерности. Кроме того, классификатор XGBoost отличает людей с депрессией и людей без депрессии. В результате предложенный метод использует набор данных DAIC-WOZ Университета Южной Калифорнии для обнаружения депрессий, достигая точности 97,02%, прецизионности 97,02%, полноты 97,02%, оценки F1 97,02%, среднеквадратической ошибки 2,00 и средней абсолютной ошибки 0,9, делая его многообещающим инструментом для автономного обнаружения депрессии.



Пофонемное распознавание как задача классификации рядов на множестве последовательностей элементов сложных объектов с применением усовершенствованного trie-дерева
Аннотация



Индексное регулируемое глубокое нейронное обучение Ружички для ресурсоэффективной балансировки нагрузки в облачной среде
Аннотация
Облачные вычисления (CC) являются известной технологией, которая позволяет пользователям и организациям получать доступ к сервисам в соответствии с их требованиями. Этот метод вычислений предлагает хранилище, платформы развертывания и подходящий доступ к веб-сервисам через интернет. Балансировка нагрузки является важным фактором оптимизации вычислительных ресурсов и хранения. Она направлена на разумное распределение рабочей нагрузки между каждой виртуальной машиной. Было разработано несколько традиционных методов балансировки нагрузки, которые доступны в литературе. Однако достижение эффективной балансировки нагрузки с минимальным временем завершения и улучшенной пропускной способностью остается сложной задачей. Для повышения эффективности балансировки нагрузки был разработан новый метод, известный как индексированный регулируемый метод Ружички балансировки нагрузки глубокого нейронного обучения (RITLBDNL). Основная цель RITLBDNL состоит в том, чтобы повысить пропускную способность и минимизировать время выполнения работы в облаке. В методе RITLBDNL модель глубокого нейронного анализа включает входной слой, два скрытых слоя и выходной слой для улучшения производительности балансировки нагрузки. На входном слое собираются задачи пользователей облака и отправляются на скрытый слой 1. На этом слое балансировщик нагрузки в облачном сервере анализирует состояние ресурсов виртуальной машины в зависимости от энергии, пропускной способности, объема памяти и ЦПУ с использованием индекса сходства Ружички. Затем виртуальные машины классифицируются как перегруженные, слабо загруженные или сбалансированные. Результаты анализа передаются на скрытый слой 2, где выполняется регулируемая балансировка нагрузки для распределения нагрузки с сильно загруженных виртуальных машин на минимально загруженные. Облачный сервер эффективно распределяет рабочую нагрузку между виртуальными машинами с более высокой пропускной способностью и меньшим временем отклика для обработки огромного количества входящих задач. Для оценки результатов экспериментов предложенный метод сравнивается с другими существующими методами балансировки нагрузки. Результат показывает, что предложенный метод RITLBDNL обеспечивает эффективность балансировки нагрузки с увеличением на 7%, пропускной способностью на 46%, уменьшением времени завершения на 41% и времени отклика на 28% по сравнению с традиционными методами.



Информационная безопасность
Синергетические подходы к улучшению обнаружения вторжений в Интернет вещей (IoT): балансировка характеристик с помощью комбинированного обучения
Аннотация
Интернет вещей (IoT) играет важную роль в обеспечении безопасности, предотвращая несанкционированный доступ, заражения вредоносным ПО и злонамеренные действия. IoT отслеживает сетевой трафик, а также поведение устройств для выявления потенциальных угроз и принятия соответствующих мер противодействия. Тем не менее, существует потребность в системе обнаружения вторжений (IDS) IoT с улучшенными возможностями обобщения, использующей глубокое обучение и передовые методы обнаружения аномалий. В этом исследовании представлен инновационный подход к IoT IDS, который сочетает в себе SMOTE-Tomek и BTLBO, CNN с XGB классификатором, который направлен на устранение дисбаланса данных, повышение производительности модели, снижение количества неправильных классификаций и улучшение общего качества набора данных. Предложенная система обнаружения вторжений IoT, используя набор данных IoT-23, достигает 99,90% точности и низкого уровня ошибок, требуя при этом существенно меньше времени выполнения. Эта работа представляет собой значительный шаг вперед в области безопасности IoT, предлагая надежное и эффективное решение IDS, адаптированное к меняющимся проблемам взаимосвязанного мира.



Классификация изображений вредоносных программ без использования сверток с использованием механизмов внутреннего внимания
Аннотация
Анализ вредоносных программ является важнейшим аспектом кибербезопасности, направленным на выявление и дифференциацию вредоносного ПО от безвредных программ для защиты компьютерных систем от угроз безопасности. Несмотря на достижения в мерах кибербезопасности, вредоносные программы продолжают представлять значительные риски в киберпространстве, требуя точных и быстрых методов анализа. В этой статье представлен инновационный подход к классификации вредоносных программ с использованием анализа изображений, включающий три ключевых этапа: преобразование кодов операций в данные изображений RGB, использование генеративно-состязательной сети (GAN) для синтетической передискретизации и использование упрощенного классификатора на основе визуального трансформера (ViT) для анализа изображений. Данный метод повышает богатство функций и объяснимость с помощью данных визуальных изображений и устраняет несбалансированную классификацию с использованием методов передискретизации на основе GAN. Предложенная структура сочетает в себе преимущества сверточных автоэнкодеров, гибридных классификаторов и адаптированных моделей ViT для достижения баланса между точностью и вычислительной эффективностью. Как показали эксперименты, наш подход без использования сверток обладает превосходной точностью и прецизионностью по сравнению со сверточными моделями и превосходит модели CNN на двух наборах данных благодаря механизму многоголового внимания. На наборе данных Big2015 наша модель превосходит другие модели CNN с точностью 0,8369 и площадью под кривой (AUC) 0,9791. В частности, наша модель достигает точности 0,9697 и оценки F1 0,9702 на MALIMG, что является экстраординарным результатом.



Улучшение обнаружения аномалий на видео с помощью усовершенствованной технологии UNET и техники каскадного скользящего окна
Аннотация
Обнаружение аномалий на видео с помощью компьютерного зрения все еще нуждается в совершенствовании, особенно при распознавании изображений с необычными движениями или объектами. Современные подходы в основном сосредоточены на методах реконструкции и прогнозирования, а обнаружение аномалий на видео без наблюдения сталкивается с трудностями из-за отсутствия достаточного количества помеченных аномалий, что снижает точность. В этой статье представлена новая структура под названием усовершенствованная UNET (I-UNET), разработанная для противодействия переобучению путем удовлетворения потребности в сложных моделях, которые могут извлекать малозаметную информацию из аномалий на видео. Видеошум можно устранить путем предварительной обработки кадров фильтром Винера. Более того, система использует сверточные слои долго-кратковременной памяти (ConvLSTM) для плавной интеграции временных и пространственных данных в свои части энкодера и декодера, улучшая точность идентификации аномалий. Последующая обработка осуществляется с использованием техники каскадного скользящего окна (CSWT) для идентификации аномальных кадров и генерации оценок аномалии. По сравнению с базовыми подходами, экспериментальные результаты на наборах данных UCF, UCSDped1 и UCSDped2 демонстрируют заметные улучшения производительности, с точностью 99%, площадью под кривой (AUC) 90,8% и равным уровнем ошибок (EER) 10,9%. Это исследование предоставляет надежную и точную структуру для обнаружения аномалий на видео с наивысшим уровнем точности.


