GEOMAGNETIC CUTOFF OF COSMIC RAYS DURING THE MARCH 23–24, 2023 MAGNETIC STORM: RELATIONSHIP WITH SOLAR WIND PARAMETERS AND GEOMAGNETIC ACTIVITY TAKING INTO ACCOUNT LATITUDINAL EFFECTS
- Authors: Danilova O.A.1, Ptitsyna N.G.1, Sdobnov V.E.2
-
Affiliations:
- St.-Petersburg Filial of IZMIRAN
- Institute of Solar Terrestrial Physics SB RAS
- Issue: Vol 11, No 3 (2025)
- Pages: 42-49
- Section: 20th Annual Conference “Plasma Physics in the Solar System” February 10–14, 2025, Space Research Institute RAS
- URL: https://bakhtiniada.ru/2712-9640/article/view/362422
- DOI: https://doi.org/10.12737/szf-113202505
- ID: 362422
Cite item
Full Text
Abstract
About the authors
Olga Aleksandrovna Danilova
St.-Petersburg Filial of IZMIRAN
Email: md1555@mail.ru
candidate of physical and mathematical sciences
Natalia Grigor'evna Ptitsyna
St.-Petersburg Filial of IZMIRAN
Email: nataliaptitsyna@yandex.ru
candidate of physical and mathematical sciences
Valeriy Evgen'evich Sdobnov
Institute of Solar Terrestrial Physics SB RAS
Email: sdobnov@iszf.irk.ru
doctor of physical and mathematical sciences
References
Буров В.А., Мелешков Ю.С., Очелков Ю.П. Методика оперативной оценки уровня радиационной опасности, обусловленной возмущениями космической погоды, при авиаперевозках. Гелиогеофизические исследования. 2005, вып. 7, с. 1–41. Данилова О.А., Птицына Н.Г., Тясто М.И., Сдобнов В.E. Изменения жесткостей обрезания космических лучей во время бури 8–11 марта 2012 г. в период CAWSES-II. Солнечно-земная физика. 2023, т. 9, № 2, с. 86–93. doi: 10.12737/szf-92202310 / Danilova O.A., Ptitsyna N.G., Tyasto M.I., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the March 8–11, 2012 magnetic storm (CAWSES II period). Sol.-Terr. Phys. 2023, vol. 9, iss. 2, pp. 81–87. doi: 10.12737/stp-92202310. Куражковская Н.А., Зотов О.Д., Клайн Б.И. Связь развития геомагнитных бурь с параметром β солнечного ветра. Солнечно-земная физика. 2021, т. 7, № 4, с. 25–34. doi: 10.12737/szf-74202104 / Kurazhkovskaya N.A., Zotov O.D., Klain B.I. Relationship between geomagnetic storm development and the solar wind parameter β. Sol.-Terr. Phys. 2021, vol. 7, no. 4, pp. 25–34. doi: 10.12737/szf-74202104. Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Влияние параметров солнечного ветра и геомагнитной активности на вариации жесткости обрезания космических лучей во время сильных магнитных бурь. Геомагнетизм и аэрономия. 2019, т. 59, № 5, с. 569–577. doi: 10.1134/S0016793219050098. Adriani O., Barbarino G.C., Bazilevskaya G.N., et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm. Space Weather. 2016, vol. 14, no. 3. doi: 10.1002/2016SW001364. Akasofu S.-I. The magnetospheric currents: An introduction. In T.A. Potemra (Ed.), Magnetospheric currents. Geophysical Monograph Series. 1984, vol. 28, pp. 29–48. doi: 10.1029/GM028p0029. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4204–4214. doi: 10.1029/JA080i031p04204. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys Rev Lett. 1961, vol. 6, pp. 47–48. doi: 10.1103/PhysRevLett.6.47. Iucci N., Levitin A.E., Belov A.V., et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather. 2005, vol. 3, S01001. doi: 10.1029/2003SW000056. Kanekal S., Baker D., Blake J., et al. High-latitude energetic particle boundaries and the polar cap: A statistical study. J. Geophys. Res.: Space Phys. 1998, vol. 103, pp. 9367–9372. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method. J. Atmos. Solar-Terr. Phys. 2022, vol. 235, p. 105887. doi: 10.1016/j.jastp.2022.105887. Leske R.A., Mewaldt R.A., Stone E.C., von Rosenvinge T.T. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res. 2001, vol. 106, pp. 30011–30022. doi: 10.1029/2000JA000212. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 1965, vol. 70, pp. 4117–4130. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere. J. National Institute of Information and Communications Technology. 2009, vol. 1, pp. 191–199. Tahir A., Wu F., Shah M., et al. Multi-instrument observation of the ionospheric irregularities and disturbances during the 23–24 March 2023 geomagnetic storm. Remote Sensing. 2024, vol. 16, no. 9, p. 1594. doi: 10.3390/rs16091594. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope. Nature Communications. 2024, vol. 15, pp. 9198–9214. doi: 10.1038/s41467-024-53538-1. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 2003, vol. 108, no. A5, p. 1209. doi: 10.1029/2002JA009808. Tyasto M.I., Danilova O.A., Sdobnov V.E. Cosmic ray geomagnetic cutoff rigidities in the magnetic field of two empirical models during a strong disturbance in November 2003: A comparison of models. Geomagnetism and Aeronomy. 2012, vol. 52, pp. 1087–1096. doi: 10.1134/S0016793212080208. Tyssøy H.N, Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences. J. Geophys. Res. Space. 2014, vol. 120, pp. 553–563. doi: 10.1002/2014JA0200508. URL: https://omniweb.gsfc.nasa.gov/form/dx1.html (дата обращения 16 января 2024 г.). URL: http://omniweb.gsfc.nasa.gov (дата обращения 16 января 2024 г.). URL: http://ckp-rf.ru/ckp/3056/ (дата обращения 16 января 2024 г.). URL: https://ckp-rf.ru/usu/433536 (дата обращения 16 января 2024 г.).
Supplementary files
