Применение микрофлюидики для оптимизации технологий разработки нефтегазовых месторождений
- Авторы: Перепонов Д.И.1,2, Щербакова А.1,2, Казаку В.В.1, Гаджиев М.Э.1, Тархов М.А.3, Шилов Е.Д.1,2, Черемисин А.Н.1,2
-
Учреждения:
- Сколковский институт науки и технологий
- ЛАБАДВАНС
- Институт нанотехнологий микроэлектроники Российской академии наук
- Выпуск: Том 5, № 1 (2023)
- Страницы: 57-73
- Раздел: Разработка и эксплуатация нефтяных и газовых месторождений
- URL: https://bakhtiniada.ru/2707-4226/article/view/134366
- DOI: https://doi.org/10.54859/kjogi108639
- ID: 134366
Цитировать
Полный текст
Аннотация
Для повышения коэффициента извлечения нефти применяются методы увеличения нефтеотдачи (далее – МУН): химические, газовые, тепловые и комбинированные. Стандартные методы лабораторных исследований для подбора и оптимизации технологий МУН и интенсификации притока требуют больших затрат времени и ресурсов, а также кернового материала, который часто бывает в дефиците. Для оптимизации подбора реагентов и технологий разработки месторождений предложено применение микрофлюидной технологии, т.е. проведение экспериментов в пластовых условиях с использованием микрофлюидных чипов с пористой структурой, воспроизводящих свойства керна целевого месторождения. Основными преимуществами проведения тестов в микромоделях являются низкая продолжительность и возможность визуализации процессов фильтрации, которая позволяет оценить поведение флюидов в пластовых условиях.
В данной работе рассмотрено современное применение микрофлюидики для выбора агентов МУН и методов интенсификации притока и статус этой технологии в нефтегазовой отрасли. Описано использование микрофлюидных чипов для скрининга поверхностно-активных веществ и полимеров, а также изучения механизма действия низкоминерализованной воды. Рассмотрено проведение микрофлюидных тестов для оптимизации газовых и термических МУН, что стало возможным благодаря развитию и совершенствованию технологии.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Дмитрий Ильич Перепонов
Сколковский институт науки и технологий; ЛАБАДВАНС
Email: dmitrii.pereponov@skoltech.ru
Россия, г. Москва; г. Москва
Александра Щербакова
Сколковский институт науки и технологий; ЛАБАДВАНС
Email: a.scerbacova@skoltech.ru
Россия, г. Москва; г. Москва
Виталий Вячеславович Казаку
Сколковский институт науки и технологий
Email: vitaly.kazaku@skoltech.ru
Россия, г. Москва
Мурад Эхтирам Гаджиев
Сколковский институт науки и технологий
Email: murad.hajiyev@skoltech.ru
Россия, г. Москва
Михаил Александрович Тархов
Институт нанотехнологий микроэлектроники Российской академии наук
Email: tmafuz@mail.ru
Россия, г. Москва
Евгений Дмитриевич Шилов
Сколковский институт науки и технологий; ЛАБАДВАНС
Автор, ответственный за переписку.
Email: shilov@labadvance.net
ORCID iD: 0000-0001-9704-2298
Scopus Author ID: 57202316742
Россия, г. Москва; г. Москва
Алексей Николаевич Черемисин
Сколковский институт науки и технологий; ЛАБАДВАНС
Email: a.cheremisin@skoltech.ru
Scopus Author ID: 57193064808
Россия, г. Москва; г. Москва
Список литературы
- Sheng JJ. Status of surfactant EOR technology. Petroleum. 2015;1(2):97–105. doi: 10.1016/j.petlm.2015.07.003.
- Muggeridge A, Cockin A, Webb K, et al. Recovery rates , enhanced oil recovery and technological limits. Philos Trans A Math Phys Eng Sci. Published online 2014. doi: 10.1098/rsta.2012.0320.
- Lake LW. Enhanced Oil Recovery. New York: Prentice Hall, Englewood Cliffs; 1989.
- Kang P-S, Lim J-S, Huh C. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery. Energies. 2016;9(1):1–18. doi: 10.3390/en9010044.
- Pwaga S, Iluore C, Idrees MU, et al. Comparative Study of Different EOR Methods. Trondheim: NTNU; 2010.
- Fani M, Pourafshary P, Mostaghimi P, Mosavat N. Application of microfluidics in chemical enhanced oil recovery: A review. Fuel. 2022;315:123225. doi: 10.1016/j.fuel.2022.123225.
- Xu ZX, Li SY, Li BF, et al. A review of development methods and EOR technologies for carbonate reservoirs. Pet Sci. 2020;17(4):990–1013. doi: 10.1007/s12182-020-00467-5.
- Askarova A, Turakhanov A, Markovic S, Popov E. Thermal enhanced oil recovery in deep heavy oil carbonates: Experimental and numerical study on a hot water injection performance. J Pet Sci Eng. 2020;194:107456. doi: 10.1016/j.petrol.2020.107456.
- Gbadamosi AO, Kiwalabye J, Junin R, Augustine A. A review of gas enhanced oil recovery schemes used in the North Sea. J Pet Explor Prod Technol. 2018;8(4):1373–1387. doi: 10.1007/s13202-018-0451-6.
- Alvarado V, Manrique E. Enhanced oil recovery: An update review. Energies. 2010;3(9):1529–1575. doi: 10.3390/en3091529.
- Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects. Berlin Heidelberg: Springer; 2019. doi: 10.1007/s40089-019-0272-8.
- Olajire AA. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy. 2014;77:963–982. doi: 10.1016/j.energy.2014.09.005.
- Kamal MS, Sultan AS, Al-mubaiyedh UA, Hussein IA. Review on Polymer Flooding : Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polymer Reviews. 2015;55(3):491–530. doi: 10.1080/15583724.2014.982821.
- Li X, Zhang F, Liu G. Review on polymer flooding technology. IOP Conf. Series: Earth and Environmental Science; 2021 Oct 10–14; Orlando, Fl. doi: 10.1088/1755-1315/675/1/012199. Available from: https://www.researchgate.net/journal/IOP-Conference-Series-Earth-and-Environmental-Science-1755-1315https://www.researchgate.net/publication/349886677_Review_on_polymer_flooding_technology.
- Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J. 2011;16(4):889–907. doi: 10.2118/115386-PA.
- Pal S, Mushtaq M, Banat F, Al Sumaiti AM. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Pet Sci. 2018;15(1):77–102. doi: 10.1007/s12182-017-0198-6.
- Sagir M, Mushtaq M, Tahir MS, Tahir MB, Shaik AR. Surfactants for Enhanced Oil Recovery Applications.; 2020. doi: 10.1007/978-3-030-18785-9.
- Lifton VA. Microfluidics: An enabling screening technology for enhanced oil recovery (EOR). Lab Chip. 2016;16(10):1777–1796. doi: 10.1039/c6lc00318d.
- Gogoi S, Borgohain S. Review on microfluidic studies for EOR application. J Pet Explor Prod Technol. 2019;9(3):2263–2277. doi: 10.1007/s13202-019-0610-4.
- Karadimitriou NK, Hassanizadeh SM. A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zo J. 2012;11(3):vzj2011.0072. doi: 10.2136/vzj2011.0072.
- Mattax C, Kyte J. Ever see a water flood? Oil Gas J. 1961;59:115–128.
- Davis JA, Jones SC. Displacement Mechanisms of Micellar Solutions. J Pet Technol. 1968;20(12):1415–1428. doi: 10.2118/1847-2-pa.
- Rodriguez A, Castro D, Oostrom M, Shokri N. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks. J Colloid Interface Sci. 2016;472:34–43. doi: 10.1016/j.jcis.2016.03.027.
- Wegner J, Hincapie RE, Födisch H, Ganzer L. Novel Visualisation of Chemical EOR Flooding Using a Lab-on-a-Chip Setup Supported by an Extensive Rheological Characterisation; 2015 Aug 11–13; Kuala Lumpur, Malaysia. Paper Number: SPE-174648-MS.
- Lacey M, Hollis C, Oostrom M, Shokri N. Effects of Pore and Grain Size on Water and Polymer Flooding in Micromodels. Energy and Fuels. 2017;31(9):9026–9034. doi: 10.1021/acs.energyfuels.7b01254.
- Buchgraber M, Clemens T, Castanier LM, Kovscek AR. A Microvisual Study of the Displacement of Viscous Oil by Polymer Solutions. SPE Reserv Eval Eng. 2011;14(03):269–280.
- Aktas F, Clemens T, Castanier LM, Kovscek AR. Viscous oil displacement with aqueous associative polymers. Proc – SPE Symp Improv Oil Recover. 2008;1:384–394.
- Santamaria O, Lopera SH, Riazi M, Minale M, Cort FB, Franco CA. Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO 2 nanoparticles. J Pet Sci Eng. 2021;198. doi: 10.1016/j.petrol.2020.108135.
- Rueda E, Akarri S, Torsæter O. Experimental Investigation of the E ff ect of Adding Nanoparticles to Polymer Flooding in Water-Wet Micromodels. Nanomaterials. 2020.
- Qi ZB, Pierobon S, Serediak O, Le J, Pettigrew A, Abedini A. Effects of thief zones on displacement efficiency: Microfluidic pore-scale and conformance control analysis. Fuel. 2022;316:123371. doi: 10.1016/j.fuel.2022.123371.
- De S, Krishnan P, Schaaf J Van Der, et al. Viscoelastic effects on residual oil distribution in flows through pillared microchannels. 2018;510:262–271. doi: 10.1016/j.jcis.2017.09.069.
- Druetta P, Picchioni F. Influence of physical and rheological properties of sweeping fluids on the residual oil saturation at the micro- and macroscale. J Nonnewton Fluid Mech. 2020;286:104444. doi: 10.1016/j.jnnfm.2020.104444.
- Kim J, Willmott E, Quintero L. Microfluidics Technology for Visualizing Surfactant Performance in Enhanced Oil Recovery. IOR 2019 – 20th European Symposium on Improved Oil Recovery; 2019 Apr 08; Pau, France. doi: 10.3997/2214-4609.201900088.
- Brady PV, Thyne G. Functional Wettability in Carbonate Reservoirs. Energy & Fuels. 2016;30:9217–9225. doi: 10.1021/acs.energyfuels.6b01895.
- Buckley JS, Liu Y, Monsterleet S, Recovery P. Mechanisms of Wetting Alteration by Crude Oils. SPE J. 1998;3(01):54–61. doi:https://doi.org/10.2118/37230-PA.
- Xu L, Han M, Cao D, Wang J. Study on dynamic interfacial tension behaviors in surfactant selection for improving oil production. J Pet Sci Eng. 2022;209:109978. doi: 10.1016/j.petrol.2021.109978.
- Wegner J, Ganzer L. Rock-on-a-Chip Devices for High p, T Conditions and Wettability Control for the Screening of EOR Chemicals. SPE Europec featured at 79th EAGE Conference and Exhibition; 2017 June 12–15; Paris, France. Paper Number: SPE-185820-MS.
- Yun W, Chang S, Cogswell DA, et al. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel. Sci Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-57485-x.
- Wang W, Chang S, Gizzatov A. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels. ACS Appl Mater Interfaces. 2017;9(34):29380–29386. doi: 10.1021/acsami.7b10746.
- Vavra E, Puerto M, Biswal SL, Hirasaki GJ. A systematic approach to alkaline – surfactant – foam flooding of heavy oil : microfluidic assessment with a novel phase – behavior viscosity map. Sci Rep. 2020;10:1–12. doi: 10.1038/s41598-020-69511-z.
- Zhao X, Feng Y, Liao G, Liu W. Visualizing in-situ emulsification in porous media during surfactant flooding: A microfluidic study. J Colloid Interface Sci. 2020;578:629–640. doi: 10.1016/j.jcis.2020.06.019.
- Zhao X, Zhan F, Liao G, et al. In situ micro-emulsification during surfactant enhanced oil recovery : A microfluidic study. J Colloid Interface Sci. 2022;620:465–477. doi: 10.1016/j.jcis.2022.04.045.
- Jadhunandan PP, Morrow NR. Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems. Spe Reserv Eng. 1995;10(01):40–46. doi:https://doi.org/10.2118/22597-PA.
- Song W, Kovscek AR. Lab on a Chip for investigation of low salinity oil-recovery processes. Lab Chip. 2015;16:3314–3325. doi: 10.1039/c5lc00544b.
- Amirian T, Haghighi M, Mostaghimi P. Pore Scale Visualization of Low Salinity Water Flooding as an Enhanced Oil Recovery Method. Energy & Fuels. 2017;31(12):13133–13143. doi: 10.1021/acs.energyfuels.7b01702.
- Tetteh JT, Cudjoe SE, Aryana SA, Barati R. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model. J Pet Sci Eng. 2021;196:108074. doi: 10.1016/j.petrol.2020.108074.
- Al-khafaji A, Wilson M, Neville A, Wen D. Pore-Scale Displacement Efficiency during Different Salinity Water Flooding in Hydrophilic and Hydrophobic Microstructures. Energy & Fuels. 2019;33(5):3859–3870. doi: 10.1021/acs.energyfuels.8b04295.
- Golmohammadi M, Mohammadi S, Mahani H, Ayatollahi S. The non-linear effect of oil polarity on the efficiency of low salinity waterflooding : A pore-level investigation. J Mol Liq. 2022;346:117069. doi: 10.1016/j.molliq.2021.117069.
- Le-anh D, Rao A, Stetten AZ, et al. Oil Displacement in Calcite-Coated Microfluidic Chips via Waterflooding at Elevated Temperatures and Long Times. Micromachines. 2022;13(8):1316. doi: 10.3390/mi13081316.
- Shaik IK, Aichele CP, Bikkina PK. Microfluidics-Based Low Salinity Wettability Alteration Study of Naphthenic-Acid-Adsorbed Calcite Surfaces. Energy and Fuels. 2022;36(4):1842–1853. doi: 10.1021/acs.energyfuels.1c03837.
- Gauteplass J, Folleso HN, Graue A, Kovscek AR, Ferno MA. Visualization of Pore-level Displacement Mechanisms During CO2 Injection and EOR Processes. IOR 2013 – 17th European Symposium on Improved Oil Recovery; 2013 Apr 16–18; Saint Petersburg, Russia. doi:https://doi.org/10.3997/2214-4609.20142617.
- Zhong J, Abedini A, Xu L, Xu Y, Qi Z, Sinton D. Nanomodel visualization of fluid injections in tight formations. Nanoscale. 2018;10:21994–22002. doi: 10.1039/c8nr06937a.
- W. de Haas T, Fadaei H, Guerrero U, Sinton D. Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. Lab on a Chip. 2013;13(19):3832–3839. doi: 10.1039/c3lc50612f.
- Syed AH, Mosavat N, Riordon J, et al. A combined method for pore-scale optical and thermal characterization of SAGD. J Pet Sci Eng. 2016;146:866–873. doi: 10.1016/j.petrol.2016.07.030.
- Xu L, Abedini A, Qi ZB, Kim M, Guerrero A, Sinton D. Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. Fuel. 2018;220:151–158. doi: 10.1016/j.fuel.2018.01.119.
- Haas TW De, Bao B, Ramirez HA, Abedini A, Sinton D. Screening High-Temperature Foams with Micro fl uidics for Thermal Recovery Processes. Energy & Fuels. 2021;35(9):7866–7873. doi: 10.1021/acs.energyfuels.1c00332.
- Hyman JD, Viswanathan HS, Carey JW, et al. Understanding hydraulic fracturing: a multi-scale problem. Phil.Trans.R.Soc.A. 2016;374. doi: 10.1098/rsta.2015.0426.
- Hasham AA, Abedini A, Jatukaran A, Persad A, Sinton D. Visualization of fracturing fluid dynamics in a nanofluidic chip. J Pet Sci Eng. 2018;165:181–186. doi: 10.1016/j.petrol.2018.02.017.
- Ren G, Abedini A, Yang H, Sanders A. Visualization of Flowback Aid Mechanisms Utilizing a Microfluidic Pore-Scale Device. SPE International Conference and Exhibition on Formation Damage Control; 2020 Feb 19–21; Lafayette, Louisiana, USA. Paper Number: SPE-199269-MS.
- Cheremisin A, Shilov E, Isupov A. High-Pressure and High-Temperature Holder for Microfluidic Chip. United States patent US 2764734. 2022.
Дополнительные файлы
