Processes of methanol regeneration from water-methanol solutions in the oil and gas industry

Cover Page

Cite item

Full Text

Abstract

In oil and gas production, treatment and transportation technologies, gas hydrates cause serious problems associated with disruption of these technological processes. The traditional and most common method of combating gas hydrates in the oil and gas industry is the use of methanol as a hydrate inhibitor. The specific consumption indicators of methanol consumption as an inhibitor of the formation of gas hydrates directly depend on the composition of the extracted products, as well as on the technology for preparing the extracted products for transportation.

Gas hydrates represent one of the major economic and safety problems in the oil and gas industry in the exploration, production, processing and transportation of gas and hydrocarbons.

This article analyzes modern methods for methanol regeneration at oil and gas industry enterprises, and describes in detail the methods and parameters of processing plants that are used for the regeneration of water-methanol solutions. The advantages and disadvantages of advanced methods of water-methanol solutions regeneration are described. As a result of the review of existing technologies, the distillation method was determined to be the most preferable, as the most proven and widely used method today.

About the authors

Kurmet G. Satenov

KMG Engineering

Author for correspondence.
Email: k.satenov@kmge.kz
ORCID iD: 0000-0002-6396-913X

Cand. Sc. (Chemistry)

Kazakhstan, Astana

Sultan M. Tkenbayev

KMG Engineering

Email: s.tkenbayev@kmge.kz
Kazakhstan, Astana

Zholaman A. Tashenov

KMG Engineering

Email: zh.tashenov@kmge.kz
Kazakhstan, Astana

Zhanibek E. Akhmetov

KMG Engineering

Email: zh.akhmetov@kmge.kz
Kazakhstan, Astana

Sultan R. Kadyrov

KMG Engineering

Email: s.kadyrov@kmge.kz
Kazakhstan, Astana

References

  1. Makwashi n, Ahmed T. Gas Hydrate Formation: Impact on Oil and Gas Production and Prevention Strategies. nigerian Research Journal of Engineering and Environmental Sciences. 2021;6(1):61–75. doi: 10.5281/zenodo.5047631.
  2. Abdulrab AA, Cornelius B B, Bhajan L, Siak F K, Quah C J, Dzulkarnain Z. Gas Hydrate in Oil-Dominant Systems: A Review. ACS Omega. 2022;7:27021–27037. doi: 10.1021/acsomega.2c02278.
  3. Lesor I, Alozie OJ. Gas Hydrate Treatments in Pipeline Using Locally Sourced Material as Green Inhibitor. American Journal of Science, Engineering and Technology. 2023;8(2):110–118. doi: 10.11648/j.ajset.20230802.15.
  4. Bayazitova K, Salimov A, Ponomarev A, et al. Development and modeling of a resource-saving methanol recovery process diagram. VIII International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-VIII 2023). E3S Web of Conferences 390; 2023. Available from: https://www.e3s-conferences.org/articles/e3sconf/abs/2023/27/e3sconf_agritechviii2023_01024/e3sconf_agritechviii2023_01024.html.
  5. Lv X, Xu J, Ye F, et al. Gas Hydrate Formation and Slurry Flow Characteristics of Gas-Liquid-Solid Multiphase Systems. Energy & Fuels. 2023;37(13); 9110–9120. doi: 10.1021/acs.energyfuels.3c00989.
  6. Elhenawy S, Khraisheh M. AM, Almomani F, et al. Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques. Energies. 2022;15(22). doi: 10.3390/en15228551.
  7. Hammerschmidt EG. Formation of Gas Hydrates in natural Gas Transmission Lines. Industrial Engineering Chemistry. 1934;26(8):851–855. doi.org/10.1021/ie50296a010.
  8. Hammerschmidt E.G. Gas Hydrate Formations: A Further Study on Their Prevention and Elimination from natural Gas Pipe Lines. GAS. 1939;15(5):30–35.
  9. gazsurf.ru [internet]. Modular Equipment. Methanol Regeneration [cited 21 Aug 2023]. Available from: https://gazsurf.ru/solutions-equipment/modular-equipment/methanol-regeneration.
  10. Patent RU2695209C1/ 22.07.19 Byul. № 21. Fedulov DM, Istomin VA, Snezhko Dn, Dedov AG, Kubanov An, Prokopov AV, Tsatsulina TS, Klyusova nn. Ustanovka regeneracii vodnogo rastvora metanola. Available from: https://patents.google.com/patent/RU2695209C1/ru. (In Russ).
  11. Patent RU2567288C1/ 10.11.15. Byul. № 31. Shevkunov Sn, nastin An. Sposob regeneratsii metanola iz nasyshchennogo vodoy rastvora s bol'shim soderzhaniyem mekhanicheskikh primesey i soley i ustanovka dlya ego osushchestvleniya. Available from: https://patents.google.com/patent/RU2567288C1/ru. (In Russ).
  12. Ramshaw C, Mallinson RH, inventors, Imperial Chemical Industries Ltd, assignee. Mass transfer process. United States US 4283255. 1981 Aug. 11.
  13. Li-Hua W, Lan J, Hai-Long L, et al. A Pilot-Scale HiGee-Aided Fixed Bed Reactor: Size Characteristics of Microbubbles in Diesel. Industrial & Engineering Chemistry Research. 2023;62(45);18867–18878. doi: 10.1021/acs.iecr.3c00215.
  14. Ressemann A, Illner M, Repke J-U. A methodology for the analysis of distillation processes within rotating packed beds based on local temperature measurements. Chemical Engineering Research & Design. 2023;193;198–206. doi: 10.1016/j.cherd.2023.03.018.
  15. Alatyar AM, Berrouk AS and nandakumar K. Hydrodynamic behavior of liquid flow in a rotating packed bed. Chemical Engineering Research & Design. 2023;197:851–870. doi: 10.1016/j.cherd.2023.08.032.
  16. Efimovich DO, Makhmutov RA. Perspektivy ispol'zovaniya tsentrobezhnogo rektifikatsionnogo apparata na mestorozhdeniyakh Kraynego Severa. Vestnik nauki i tvorchestva. 2016;7(7):121–125. (In Russ).
  17. Rao DP. Commentary: Evolution of High Gravity (HiGee) Technology. Industrial & Engineering Chemistry Research. 2022;61(2);997–1003. doi: 10.1021/acs.iecr.1c04587.
  18. Ghadyanlou F, Azari A, Vatani A. A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas-Liquid Contact. Sustainability. 2021;13(14). doi: 10.3390/su13148046.
  19. Henninger F, Friedrich K. Thermoplastic filament winding with online-impregnation. Part A: process technology and operating efficiency. Composites Part A: Applied Science and Manufacturing. 2002;33(11):1479–1486. doi: 10.1016/S1359-835X(02)00135-5.
  20. Patent RU2643540C1/ 02.02.18. Byul. №4. Kasyanenko AA, Legai AA, Teplyakov VV, Khotimsky VS, Shalygin MG. Sposob vydeleniya metanola iz vodno-metanol'nykh tekhnologicheskikh smesey dlya povtornogo ispol'zovaniya i ustroystvo dlya ego osushchestvleniya. Available from: https://patents.google.com/patent/RU2643540C1/ru. (In Russ).
  21. Patent RU1350447A1/ 06.10.16. Byul. № 16. Koryakin AY, nikolaev OA, Tsvetkov nA, nikitin AV, Larev Pn. Sposob podgotovki uglevodorodnogo gaza k transportu. Available from: https://patents.google.com/patent/RU2014146359A/ru. (In Russ).
  22. Patent RU2709313 C1/ 12.17.19 Byul. № 35. Imaev S.Z. Ustanovka dlya regeneracii metanola i sootvetstvuyushchiy sposob. Available from: https://patents.google.com/patent/RU138474U1/ru. (In Russ).
  23. Yang D, Yin Y, Wang Z, Zhu B, Gu Q. Multi-Effect Evaporation Coupled with MVR Heat Pump Thermal Integration Distillation for Separating Salt Containing Methanol Wastewater. Energy and Power Engineering. 2017;9(12):772–785. doi: 10.4236/epe.2017.912048.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Methods of gas hydration control

Download (25KB)
3. Figure 2. Number of scientific publications related to hydrate inhibition, for 2011–2022 (according to Google Scholar)

Download (20KB)
4. Figure 3. Process flow diagram for methanol recovery using distillation

Download (57KB)
5. Figure 4. Higee unit scheme for methanol regeneration

Download (161KB)
6. Figure 5. Methanol regeneration plant using water-selective membranes

Download (25KB)
7. Figure 6. Process flow diagram for methanol recovery using gas stripping method

Download (175KB)
8. Figure 7. Scheme for methanol recovery using evaporation and distillation processes

Download (20KB)

Copyright (c) 2024 Satenov K.G., Tkenbayev S.M., Tashenov Z.A., Akhmetov Z.E., Kadyrov S.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».