Sulfide mineralization in orogenic eclogites of the North Muya block (northeastern Transbaikalia): genesis and the first data on the isotopic composition of sulfur

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

   Subduction processes are accompanied by the sites of hydrothermal activity including large deposits of gold and transitional metals of island-arc or back-arc origin, whereas volcanic arcs host most part of the worldwide resources of metallic minerals. However, the role of suprasubduction metal transfer and the associated role of redox processes in their formation are still ambiguous and require direct studies of sulfide mineralization in high-pressure rocks, as well as their formation stages and sulfide preservation during progressive and peak metamorphism. In order to describe the behavior of chalcophile elements in the paleozones of continental subduction we performed preliminary mineralogical (SEM-EDX) and isotope (S) studies of sulfides in the North Muya block eclogites (northeastern Transbaikalia). Sulfide mineralization of pyrite-chalcopyrite-pyrrhotite composition has a metasomatic origin associated with the retrograde fluid transformation of initially “dry” eclogite assemblages during exhumation to lower- or mid-crust levels after or synchronously to the decompression and formation of plagioclase-diopside±amphibole symplectites (below 10-12 kbar). Extremely heterogeneous isotopic composition of pyrite sulfur (δ34SVCDT) was caused by various sources of fluids of presumably metasedimentary origin (from -8.2 to -6 %) in the paragneiss segments of the North Muya block. But they also could be predominantly buffered by hydrothermally altered metabasites (from +0.7 to +7.1 %). An alternative mechanism could be the participation of a single predominantly oxidized (sulfate-containing) fluid with the significant isotopic fractionation (up to ~15–20 %).

Авторлар туралы

S. Skuzovatov

A.P. Vinogradov Institute of Geochemistry SB RAS; Irkutsk National Research Technical University

Email: skuzovatov@igc.irk.ru
ORCID iD: 0000-0002-2253-6020

Yu. Tarasova

Irkutsk National Research Technical University

Email: j.tarasova84@yandex.ru
ORCID iD: 0000-0001-8741-9645

Әдебиет тізімі

  1. Bebout G.E. The impact of subduction‐zone metamorphism on mantle‐ocean chemical cycling // Chemical Geology. 1995. Vol. 126. Iss. 2. P. 191–218. doi: 10.1016/0009-2541(95)00118-5.
  2. Cooke D.R., Simmons S.F. Characteristics and genesis of epithermal gold deposits // Society of Economic Geologists. 2000. Vol. 13. P. 221–244. doi: 10.5382/Rev.13.06.
  3. Sillitoe R.H. Major gold deposits and belts of the North and South American Cordillera: distribution, tectonomagmatic settings, and metallogenic considerations // Economic Geology. 2008. Vol. 103. Iss .4. P. 663–687. doi: 10.2113/gsecongeo.103.4.663.
  4. Brown J.L., Christy A.G., Ellis D.J., Arculus R.J. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia // Journal of Petrology. 2014. Vol. 55. Iss. 3. P. 643–670. doi: 10.1093/petrology/egu002.
  5. Crossley R.J., Evans K.A., Jeon H., Kilburn, M.R. Insights into sulfur cycling in subduction zones from in‐situ isotope analysis of sulphides in high‐pressure serpentinites and ‘hybrid’ samples from Alpine Corsica // Chemical Geology. 2018. Vol. 493. P. 359–378. doi: 10.1016/j.chemgeo.2018.06.014.
  6. Evans K.A., Tomkins A.G., Cliff J., Fiorentini M.L. Insights into subduction zone sulfur recycling from isotopic analysis of eclogite‐hosted sulfides // Chemical Geology. 2014. Vol. 365. P. 1–19. doi: 10.1016/j.chemgeo.2013.11.026.
  7. Li J.-L., Klemd R., Huang G.-F., Ague J.J., Gao J. Unravelling slab δ34S compositions from in-situ sulphide δ34S studies of high-pressure metamorphic rocks // International Geology Review. 2021. Vol. 63. Iss. 1. P. 109–129. doi: 10.1080/00206814.2020.1827305.
  8. Li J.L., Schwarzenbach E.M., John T., Ague J.J., Huang F., Gao J., et. al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective // Nature Communications. 2020. Vol. 11. P. 514. doi: 10.1038/s41467-019-14110-4.
  9. Walters J.B., Cruz-Uribe A.M., Marschall H.R. Isotopic compositions of sulfides in exhumed high‐pressure terranes: implications for sulfur cycling in subduction zones // Geochemistry Geophysics Geosystems. 2019. Vol. 20. doi: 10.1029/2019GC008374.
  10. Walters J.B., Cruz-Uribe A.M., Marschall H.R., Boucher B. The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust // Geochimica et Cosmochimica Acta. 2021. Vol. 304. P. 191–215. doi: 10.1016/j.gca.2021.04.016.
  11. Skuzovatov S.Yu., Shatsky V.S., Wang K.-L. Continental subduction during arc-microcontinent collision in the southern Siberian craton: constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia) // Lithos. 2019. Vol. 342–343. P. 76–96. doi: 10.1016/j.lithos.2019.05.022.
  12. Skuzovatov S.Yu. Differential fluid activity in a single exhumed continental subduction unit from local P-T-M(H2O) records of zoned amphiboles (North Muya, Eastern Siberia) // Minerals. 2022. Vol. 12. Iss 2. P. 217. doi: 10.3390/min12020217.
  13. Скузоватов С.Ю., Белозерова О.Ю., Васильева И.Е., Зарубина О.В., Канева Е.В., Сокольникова Ю.В.. Центр коллективного пользования «изотопно-геохимических исследований» ИГХ СО РАН: современное состояние методов изучения вещества на микро- и макроуровне // Геодинамика и тектонофизика. 2022. Т. 13. № 2. С. 585. doi: 10.5800/GT-2022-13-2-0585. EDN: JWAGUK.
  14. Craig J.R., Vokes F.M. The metamorphism of pyrite and pyritic ores: an overview // Mineralogical Magazine. 1993. Vol. 57. P. 3–18. doi: 10.1180/minmag.1993.057.386.02.
  15. Acken D.V., Su W., Gao J., Creaser R.A. Preservation of Re-Os isotope signatures in pyrite throughout low-T, high-P eclogite facies metamorphism // Terra Nova. 2014. Vol. 26. P. 402–407. doi: 10.1111/ter.12113.
  16. Hill R.E.T. Experimental study of phase relation at 600C in a portion of the Fe-Ni-Cu-S system and its application to natural sulphide assemblages // Sulphide deposits in mafic and ultramafic rocks / eds D.L. Buchanan, M.J. Jones. London: The Institution of Mining and Metallurgy, 1984. P. 14–21.
  17. Connolly J.A.D., Cesare B. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites // Journal of Metamorphic Geology. 1993. Vol. 11. P. 379–388. doi: 10.1111/j.1525-1314.1993.tb00155.x.
  18. Tomkins A.G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis // Geochimica et Cosmochimica Acta. 2010. Vol. 74. P. 3246–3259. doi: 10.1016/j.gca.2010.03.003.
  19. Tomkins A.G., Evans K.A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust // Earth and Planetary Science Letters. 2015. Vol. 428. P. 73–83. doi: 10.1016/j.epsl.2015.07.028.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».