Vol 30, No 149 (2025)

Articles

On the set of continuously differentiable concave extensions of a Boolean function

Barotov D.N., Barotov R.N.

Abstract

This paper is devoted to the study of the existence of extremal elements of the set of continuously differentiable concave extensions to the set $[0,1]^n$ of an arbitrary Boolean function $f_{B}(x_1,\ldots,x_n)$, as well as finding the cardinality of the set of continuously differentiable concave extensions to $[0,1]^n$ of the Boolean function $f_{B}(x_1,\ldots,x_n).$ As a result of the study, it is proved that, firstly, for any Boolean function $f_{B}(x_1,\ldots,x_n)$ among its continuously differentiable concave extensions to $[0,1]^n$ there is no maximal element, secondly, if the Boolean function $f_{B}(x_1,\ldots,x_n)$ has more than one essential variable, then among its continuously differentiable concave extensions to $[0,1]^n$ there is no minimal element, and if the Boolean function is constant or has only one essential variable, then among its continuously differentiable concave extensions to $[0,1]^n$ there is a unique minimal element, the explicit form of which is given in the paper. It was also established that the cardinality of the set of continuously differentiable concave extensions to $[0,1]^n$ of an arbitrary Boolean function $f_{B}(x_1,\ldots,x_n)$ is equal to the continuum.

Russian Universities Reports. Mathematics. 2025;30(149):5-14
pages 5-14 views

About estimates of stability of contraction mappings on the first Heisenberg group in the fixed point theorem

Greshnov A.V.

Abstract

On a symmetric $(1,q_2)$-quasimetric space $(\Bbb  H^1_{\alpha},\mathrm{Box}_{\Bbb H^1_{\alpha}}),$  where $\mathrm{Box}_{\Bbb H^1_{\alpha}}$ is the
$\mathrm{Box}$-quasimetic of the first Heisenberg group $\Bbb  H^1_{\alpha},$  we studied a constant  $\mathrm{L}_{\Phi}$  in the estimate  $\mathrm{Box}_{\Bbb H^1_{\alpha}}(u,\xi)\leq\frac{\mathrm{L}_{\Phi}\mathrm{Box}_{\Bbb H^1_{\alpha}}\big(u,\Phi(u)\big)}{1-\varepsilon}$ of stability of the $\varepsilon$-contracting mapping  $\Phi$ with respect to the  identity mapping; here $\xi$ is a fixed point of the mapping $\Phi$ and $u$ is an arbitrary point of $\Bbb  H^1_{\alpha}.$  In the paper, we got that $\mathrm{L}_{\Phi}=1$ when the mapping  $\Phi$ is the composition of the left translation and the homogeneous dilation subgroup.
Examples of the contracting mappings $\Phi$ on the first Heisenberg group such that $\mathrm{L}_{\Phi}$ is not less then  $C\sqrt{q_2}$ were found; here positive constant  $C$ does not depend on the choice of point $u\in\Bbb H^1_{\alpha}.$

Russian Universities Reports. Mathematics. 2025;30(149):15-27
pages 15-27 views

On some properties of motions of dynamical systems on compact manifolds

Dzyuba S.M.

Abstract

The article considers the motions of dynamical system $g^t$ defined on a topological compact manifold $V.$


It is shown that the set $M_1$ of non-wandering points with respect to $V$ is the set of central motions $\fM$, and  the union of all compact minimal sets is everywhere dense in the set $\fM.$ It is established that for any motion $f(t,p),$ there exists a compact minimal set $\Om\subset V$ with the following property: for all values $t_0\in\R$ and every neighborhood $E_{\Om}$ of the set $\Om,$ the probability that the arc $\{f(t,p)\colon t\in[t_0,t_1]\}$ of the motion trajectory $f(t,p)$ belongs to the set $E_{\Om},$ tends to 1 as $t_1\to+\iy;$ a similar statement is true for the arc $\{f(t,p)\colon t\in[-t_1,t_0]\}.$

All statements of this article can be transferred without any changes to the system $g^t$ defined in a Hausdorff sequentially compact topological space.

Russian Universities Reports. Mathematics. 2025;30(149):28-40
pages 28-40 views

Hybrid globalization of convergence of the Levenberg-Marquardt method for equality-constrained optimization problems

Izmailov A.F., Uskov E.I.

Abstract

The Levenberg-Marquardt method possesses local superlinear convergence for general systems of nonlinear equations under weal assumptions allowing for nonisolated solutions. This justifies its application to first-order optimality systems of constrained optimization problems with possibly violated constraint qualifications, the latter giving rise to nonuniqueness of Lagrange multipliers. However, the existing strategies for globalization of convergence of the Levenberg-Marquardt method are not optimization-oriented by nature, i.e., when applied to optimization problems, they are intended not for finding solutions, but rather any stationary points of such problems. In this work, we propose optimization-oriented globalization strategies for the Levenberg-Marquardt method applied to optimization problems with equality constraints. The proposed strategies are hybrid by their character, i.e., they combine a globally convergent optimization outer phase method with asymptotic switching to the Levenberg-Marquardt method. Global convergence properties and superlinear rate of convergence are established. Numerical results are provided, demonstrating that the proposed hybrid algorithms are workable.

Russian Universities Reports. Mathematics. 2025;30(149):41-55
pages 41-55 views

On the best approximation of some classes of~periodic~functions~in~the space $L_{2}$

Langarshoev M.R., Khorazmshoev S.S.

Abstract

We consider the set $L_{2}^{(r)}$ of $2\pi$-periodic functions $f\in L_{2}$ whose $(r-1)$-th order derivative is absolutely continuous, and the $r$-th order derivative $f^{(r)}\in L_{2}.$ We solve the extremal problem of finding an exact Jackson--Stechkin type constant that connects the best polynomial approximation of functions from $L_{2}^{(r)}$ with the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ in the space $L_{2}.$ We also consider the classes $W_{m}^{(r)}(u)$ and $W_{m}^{(r)}(u,\Phi)$ of functions from $L_{2}^{(r)}$ such that the average value of the generalized $m$-th order modulus of continuity of their derivative $f^{(r)}$ is bounded from above by unity and, accordingly, by the value of some function $\Phi(u).$ We calculate the exact values of the known $n$-widths (according to Bernstein, to Gelfand, to Kolmogorov, linear, and projection) of the class $W_{m}^{(r)}(u).$ Then we solve the extremal problem of finding the exact value of the best approximation for the class $W_{m}^{(r)}(u,\Phi).$  The obtained results develop and complement some known results on the best approximation of various classes of functions in $L_{2}.$ In the paper, we use methods for solving extremal problems in normed spaces, as well as the method developed by V.\,M.~Tikhomirov
for estimating from below the $n$-widths of functional classes in Banach spaces.

Russian Universities Reports. Mathematics. 2025;30(149):56-65
pages 56-65 views

Estimates of harvesting characteristics for stochastic structured populations

Rodina L.I.

Abstract

Models of structured populations consisting of individual species $x_1,\ldots,x_n,$ or divided into $n$ age groups are considered. We assume that in the absence of exploitation, the dynamics of the population is given by a system of differential equations ${\dot x =f(x),}$ and at fixed moments of time, random fractions of the resource of each species are extracted from the population. A method is proposed for building control of the harvesting process, in which the amount of the extracted resource is limited in order to increase the size of the next collection. Estimates of the  harvesting characteristics, such as the average time benefit and total income, including discounting, were obtained, performed with a probability of one.

Two methods are proposed to solve this problem. The first one can be applied to systems with the property of monotony of solutions with respect to initial conditions. In the second method, there are no restrictions on the properties of the system. It consists in constructing positively invariant sets in which the trajectories are located. The concept of Lyapunov functions with respect to a set, introduced by E.\,L.~Tonkov, is used. Examples of estimation of the considered characteristics for models of interaction of two species, such as neutralism and competition, are given.

Russian Universities Reports. Mathematics. 2025;30(149):66-78
pages 66-78 views

Sharp estimate of the third coefficient for bounded non-vanishing holomorphic functions with real coefficients

Stupin D.L.

Abstract

Let $\Omega_0^r$ be a class of holomorphic functions $\omega$ in the unit disk $\Delta,$ with real coefficients, and such that $|\omega(z)|<1,$ $\omega(0)=0,$ $z\in\Delta.$ The coefficients problem in the class $\Omega_0^r$ is formulated as follows: find the necessary and sufficient conditions to be imposed on the real numbers $\{\omega\}_1, \{\omega\}_2,\ldots$ in order for the series $\{\omega\}_1 z+\{\omega\}_2 z^2+\ldots$ to be the Taylor series of a function in the class $\Omega_0^r.$

   The class $B^r$ consists of holomorphic functions $f$ in $\Delta$ with real coefficients and such that    $0<|f(z)|\leq 1,$ $z\in\Delta.$ The classes $B_t^r,$ $t\geq 0,$ are defined as the sets of functions $f\in B^r$ such that $f(0)=e^{-t}.$ The problem of obtaining a sharp estimation of $|\{f\}_n|,$ $n\in\mathbb N,$ on the class $B^r$ or $B_t^r$ is commonly referred to as the Krzyz problem (for the class $B^r$ or $B_t^r$). It~is clear that the union of all classes $B_t^r$ exhausts the class $B^r$ up to rotations in the plane of variable $w$ ($w=f(z)$).

 Based on the solution of the coefficients problem for the class $\Omega_0^r,$ the problem of obtaining a sharp estimation of the functional $|\{f\}_3|$ on the classes $B_t^r$ for every $t\geq 0$ is solved by transitioning to the functional over the class $\Omega_0^r,$ after which the problem is reduced to finding the global constrained extremum of a function of two real variables with inequality-type constraints.

The extreme functions are found in two forms: as a convex combination of Schwartz kernels related to the Caratheodory class, and as Blaschke products related to the class
$\Omega_0^r.$

Russian Universities Reports. Mathematics. 2025;30(149):79-92
pages 79-92 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».