О КОРРЕКТНОСТИ ОБОБЩЕННЫХ УРАВНЕНИЙ НЕЙРОПОЛЕЙ С ИМПУЛЬСНЫМ УПРАВЛЕНИЕМ


Цитировать

Полный текст

Аннотация

Формулируется и доказывается теорема о корректности абстрактных уравнений Volterra в метрических пространствах. Далее рассматривается нелинейное интегральное уравнение Volterra, частными случаями которого являются уравнения, используемые в математической нейробиологии. Исследуются решения, стремящиеся к нулю в любой момент времени при неограниченном росте пространственной переменной. В литературе такие решения называют «локализованными в пространстве» или «бампами», они соответствуют нормальному функционированию головного мозга. Ставится задача импульсного управления, управляющими параметрами являются моменты времени, в которые решение терпит разрывы, и величины соответствующих скачков решения. Такие управления моделируют электрическую стимуляцию мозга, применяемую при лечении расстройств центральной нервной системы. Для исследования данной управляемой интегральной системы определяется специальное полное метрическое (не являющееся линейным) функциональное пространство. В этом пространстве получены условия существования, единственности и продолжаемости решения, а также его непрерывной зависимости от импульсного управления.

Об авторах

Евгений Олегович Бурлаков

Норвежский университет естественных наук

Email: eb_@bk.ru
аспирант г. Аас, Норвегия

Евгений Семенович Жуковский

Тамбовский государственный университет имени Г.Р. Державина

Email: zukovskys@mail.ru
доктор физико-математических наук, профессор, директор научно-исследовательского института математики, физики и информатики г. Тамбов, Российская Федерация

Список литературы

  1. Vainikko G.M. Regular convergence of operators and approximate solution of equations // Science and Technics Totals, Journal of Soviet Mathematics, 1981. V. 6. P. 675-705.Azbelev N.V., Maksimov V.P. and Rakhmatullina L.F. Introduction to the Theory of Functional Differential Equations: Methods and Applications // Hindawi Publishing Corporation, N.Y., 2007.Amari S. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields // Biol. Cybern, 1977. V. 27. P. 77-87.Coombes S. Waves, bumps, and patterns in neural field theories // Biol. Cybern, 2005. V. 93. P. 91-108.Blomquist P., Wyller J. and Einevoll G.T. Localized activity patterns in two-population neuronal networks // Physica D, 2005. V. 206. P. 180-212.Faye G. and Faugeras O. Some theoretical and numerical results for delayed neural field equations // Physica D, 2010. V. 239. P. 561-578.Malyutina E., Wyller J. and Ponosov A. Two bump solutions of a homogenized Wilson - Cowan model with periodic microstructure // Physica D, 2014. V. 271. P. 19-31.Sompolinsky H., Shapley R. New perspectives on the mechanisms for orientation selectivity // Curr. Opin. Neurobiol, 1997. V. 5. P. 514-522.Taube J.S., Bassett J.P. Persistent neural activity in head direction cells // Cereb. Cortex, 2003. V. 13. P. 1162-1172.Fuster J.M., Alexander G. Neuron activity related to short-term memory // Science, 1971. V. 173. P. 652.Wang X-J. Synaptic reverberation underlying mnemonic persistent activity // Trends Neurosci, 2001. V. 24. P. 455-463.Pinotsis D.A., Leite M. and Friston K.J. On conductance-based neural field models // Frontiers in Computational Neuroscience, 2013. V. 7. P. 158.Tass P.A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations // Biological cybernetics, 2003. V. 89. P. 81-88.Suffczynski P., Kalitzin S. and Lopes Da Silva F.H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network // Neuroscience, 2004. V. 126. P. 467-484.Kramer M.A., Lopour B.A., Kirsch H.E. and Szeri A.J. Bifurcation control of a seizing human cortex // Physical Review E, 2006. V. 73. P. 419-428.Schiff S.J. Towards model-based control of Parkinson’s disease // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. V. 368. P. 2269-2308.Ruths J., Taylor P., Dauwels J. Optimal Control of an Epileptic Neural Population Model // Proceedings of the International Federation of Automatic Control, Cape Town, 2014.Zhukovskiy E.S. Continuous dependence on parameters of solutions to Volterra’s equations // Sbornik: Mathematics, 2006. V. 10. P. 1435-1457.Burlakov E., Zhukovskiy E., Ponosov A. and Wyller J. On wellposedness of generalized neural field equations with delay // Journal of Abstract Differential Equations and Applications, 2015. V. 6. P. 51-80.Burlakov E., Zhukovskiy E.S. Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations // Tambov University Reports. Series: Natural and Technical sciences, 2015. V. 20. Issue 1. P. 9-16.Zhukovskiy E.S. Generalized Volterra operators in metric spaces // Tambov University Reports. Series: Natural and Technical sciences, 2009. V. 14. Issue 3. P. 501-508 (In Russian).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».