Спектральный синтез на нульмерных локально компактных абелевых группах

Обложка

Цитировать

Полный текст

Аннотация

Пусть G - нульмерная локально компактная абелева группа, все элементы которой компактны, C( G) - пространство всех непрерывных комплекснозначных функций на группе G . Замкнутое линейное подпространство H ⊆ C( G) называется инвариантным подпространством, если оно инвариантно относительно сдвигов τ y : f( x) ↦ f( x + y) , y ∈ G . В работе доказывается, что любое инвариантное подпространство H допускает спектральный синтез, то есть H совпадает с замыканием линейной оболочки всех содержащихся в H характеров группы G .

Полный текст

1. General definitions Let G be a locally compact Abelian group (LCA-group), F be a locally convex topological vector space that consists of complex-valued functions on the group G. This space is called a translation invariant space if it is invariant under translations (shifts) y : f(x) 7! f(x + y); f 2 F; y 2 G; and all operators y on the space F are continuous. A closed linear subspace H F is called an invariant subspace if y(H) H for any y 2 G. A continuous homomorphism of G into the multiplicative group C = C n f0g of nonzero complex numbers is called an exponential functions or generalized character on G. A continuous homomorphism of G into the group T := fz 2 C : jzj = 1g is called a character of G. Continuous homomorphisms of G into the additive group of comlex numbers are called additive functions. A function x 7! P(a1(x); : : : ; am(x)) on G is called a polynomial if P is a complex polynomial in m variables and a1; : : : ; am are additive functions. A product of a polynomial and an exponential function is called an exponential monomial, and linear combinations of of exponential monomials are called exponential polynomials. Let F be a translation invariant space on G and H be an invariant subspace in F . D e f i n i t i o n 1.1. An invariant subspace H admits spectral synthesis if H coincides with the closed linear span in F of all exponential monomials that belong to H. We say that a translation invariant space F has the spectral synthesis property if any invariant subspace H F admits spectral synthesis. 2. Examples of spectral synthesis In this section we give some examples of spectral synthesis. 1. G = (R; +) Any exponential monomial on R has the form f(x) = P(x) e x , where x 2 R, 2 C, P(x) is a polynomial. The function spaces C(R) of all continuous functions and E(R) = C1(R) of all infinitely differentiable functions (all classical function spaces are equipped with their usual topologies) have the spectral synthesis property. This is result of L. Schwartz [1]. Some other examples of functions spaces on R with spectral synthesis property were studied in the papers of J. E. Gilbert [2] and S. S. Platonov [3]. 2. G = (Rn; +) , n 2 Any exponential monomial on Rn has the form f(x)=P(x) e x , where x=(x1; : : : ; xn)2 Rn , = ( 1; : : : ; n) 2 Cn; x = 1x1 + + nxn , P(x) is a polynomial in x . In [1] L. Schwartz conjectured that the spaces C(Rn) and E(Rn) = C1(Rn) have the spectral synthesis property. This conjecture turned out to be false. In 1975, D. I. Gurevich [4] costructed an example of an invariant subspace H E(R2) containing no exponential monomials. Nevertheless, L. Schwartz [5] proved that the space S0(Rn) of all tempered distributions on Rn has the spectral synthesis property. 3. G is a discrete group For the case when G is a discrete group, the most natural function space is the space C(G) consisting of all complex-valued functions on G with the topology of pointwise 452 S. S. Platonov convergence. The case G = Zn was studied by M. Lefranc [6]. He proved that the space C(Zn) has the spectral synthesis property. Some results about the spectral synthesis on the discrete groups were considered in [7]. In particular, the space C(G) has the spectral synthesis property if G is a finitely generated Abelian group [8] or a torsion Abelian group [9]. In [10] M. Laczkovich and L. Sz´ekelyhidi proved that the spectral synthesis in the space C(G) holds on a discrete Abelian group G if and only if the torsion free rank of G is finite. For the case when G is a finitely generated discrete Abelian group and F is the space of all exponential growth functions on G the spectral synthesis property was proved in [11]. 3. Main results Let G be a LCA-group. An element x 2 G is called a compact element if the smallest closed subgroup of G, which contains x , is compact. Let G be a LCA-group, such that all elements of G are compact. Any generalized character of G is a usual character and any additive function on G is zero. Any exponential monomial on G has the form (x) , where 2 C, (x) is a character of G. P r o p o s i t i o n 3.1. Let F be a translation invariant space on G, H be an invariant subspace in F . If G is a LCA-group, such that all elements of G are compact, then H admits spectral synthesis if and only if H coicides with the closed linear span in F of all characters of G that belong to H. For any LCA-group G let bG be the set of all characters of G. The set bG is a LCAgroup (dual group of G) with compact-open topology and multiplication being defined as the pointwise multiplication of functions. For any invariant subspace H F , the set (H) := f 2 bG : 2 Hg: is called the spectrum of H. If G is a LCA-group, such that all elements of G are compact, and invariant subspace H admits spectral synthesis, then H can be recovered uniquely by its spectrum (H) . A locally compact topological space X is called zero-dimensional if compact open subsets of X form a basis of topology. A locally compact Hausdorff topological space X is zerodimensional if and only if X is totally disconnected, that is any subset of X , which contains more then one point, is disconnected. Theorem 3.1. Let G be a locally compact zero-dimensional Abelian group, such that all elements of G are compact. Then: 1) the space C(G) of all continuous functions on G has the spectral synthesis property; 2) a subset bG is the spectrum of some invariant subspace of C(G) if and only if is closed subset of bG . 4. Some examples of zero-dimensional LCA-groups, all elements of which are compact 1. Let fnkgk2Z be a two-side sequence, nk 2 N, nk > 2 . Let eG = M k2Z Znk ; SPECTRAL SYNTHESIS 453 where Zn is the cyclic group of order n . Every Znk is a discrete group and eG is a compact group. Any element of eG has the form x = fxkgk2Z; xk 2 Znk : Let G be a subgroup of eG that consist of all elements x = fxkg 2 eG : 9N(x) 2 Z 8k < N(x) xk = 0: The group G is locally compact, zero-dimensional and all elements of G are compact. If nk = 2 8k 2 Z, then we have the locally compact Cantor dyadic group. The harmonic analysis on this group closely connected with Fourier-Walch harmonic analysis (see [12]). 2. Let Qp be the group of p -adic numbers. Any element x 2 Qp can be identified with a formal series x = X k>N(x) xkpk; xk 2 f0; 1; : : : ; p 1g; N(x) 2 Z: The group Qp is locally compact, zero-dimensional and all elements of G are compact. Also, for any two-side sequence a = (ak)k2Z , ak 2 N, ak > 2 , there exist the group Qa of generalized a -adic numbers (see [13]). The group Qa is locally compact, zero-dimensional and all elements of G are compact. A zero-dimensional LCA-group G with countable base of topology, such that all elements of G are compact, is called a Vilenkin group. Harmonic analysis on such groups was studied in [14]. 5. On the ideal structure of algebras of locally constant functions Let X be a zero-dimensional Hausdorff locally compact topological space. Let co(X) be the set of all compact open subsets of X . The set co(X) forms a basis of topology of X . Any finite set = fU1; : : : ;Ung of mutually disjoint subsets Ui 2 co(X) is called a discrete system of subsets of X . Let M(X) be the set of all discrete systems of subsets of X . For = fU1; : : : ;Ung 2 M(X) , the support of is the set supp := [n i=1 Ui: A function f on X is called locally constant if for any x 2 X there exist neighbourhood U = U(x) of x on which f is constant. Denote by D(X) the set of all locally constant complex-valued functions on X with compact support. The set D(X) is a linear space. Now we define a topology on D(X) . For any 2 fU1; : : : ;Ung 2 M(X) let D (X) be the set of functions of the form f = Pn i=1 ci IUi ; where ci 2 C, IU is the characteristic function of U . The set D (X) is n -dimensional vector space. With respect to the uniform norm kfk1 := sup x2X jf(x)j the set D (X) is a Banach space. We equip the space D(X) = [ 2M(X) D (X) 454 S. S. Platonov with the topology of inductive limits of the Banach spaces D (X) , that is a topology of D(X) is the weakest locally convex topology for which all inclusions D (X) D(X) are continuous. Then D(X) is locally convex space.With respect to the pointwise multiplication of functions, D(X) is a topological algebra. Let I be an ideal of the algebra D(X) . Denote by N(I) the set of zeros of all functions from I , that is N(I) := fx 2 X : f(x) = 0 8x 2 Ig: The set N(I) is called zero set of I . For any closed subset A X denote by IA the set of all functions f 2 D(X) , such that f(x) = 0 for any x 2 A. The set IA is a closed ideal of D(X) . Theorem 5.1. Let I be an ideal of the algebra D(X) then IN(I) = I: Corollary 5.1. Any ideal of the topological algebra D(X) is closed. 6. The proof of Theorem 3.1 Let G be a zero-dimensional LCA-group, C(G) be the set of all continuous functions on G, D(G) be the set of locally constant functions with compact support on G. By Mc(G) we denote the set of complex-valued Radon measures with compact support on G. The space Mc(G) can be identified with the dual space of C(G) with respect to the duality h ; fi := Z G f(x) d (x); f 2 C(G); 2Mc(G): The space Mc(G) is a locally convex space with respect to the weak topology (Mc(G);C(G)) . Let 1; 2 2Mc(G) . A convolution 1 2 is defined by formula h 1 2; 'i := Z G Z G '(x + y) d 1(x) d 2(y); where ' 2 C(G) . The set Mc(G) is a commutative topological algebra with convolution as multiplication. For any closed linear subspace H C(G) , let H? be its annihilator in Mc(G) that is H? := f 2Mc(G) : h ; fi = 0 8f 2 Hg: The mapping H 7! H? is one-to-one correspondence between the set of all invariant subspaces of C(G) and the set of all closed ideals of topological algebra Mc(G) . Let D(G) be the set of all locally constant complex-valued functions on G with compact support. The set D(G) is a commutative topological algebra with convolution as multiplication: (f1 f2)(x) = Z G f1(x y)f2(y)dy: f1; f2 2 D(G): We will denote this topological algebra by Dconv(G) . SPECTRAL SYNTHESIS 455 For any topological algebra A we will denote by s(A) the set of all closed ideals of A. In particular we have the sets s(Mc(G)) and s(Dconv(G)) . Using identification a function f 2 D(G) with the measure f(x) dx , we have inclusion D(G) Mc(G) . The maps : s(Mc(G)) 7! s(Dconv(G)) and ~ : s(Dconv(G)) 7! s(Mc(G)) are defined by formulas: (H) := H \\ D(G); H 2 s(Mc(G)); ~ (H0) := [H0]; H0 2 s(Dconv(G)); where [H0] is the closure of H0 in the space Mc(G) . P r o p o s i t i o n 6.1. The mapping is a biection of set s(Mc(G)) onto the set s(Dconv(G)) . The inverse mapping 1 coincide with ~ . Let G be a LCA-group and bG be the dual group. It can be proved that LCA-group G is zero-dimensional group, all elements of which are compact, if and only if the dual group bG is zero-dimensional group, all elements of which are compact. The Fourier transform of a function f 2 L1(G) is the function b f on the dual group bG which is defined by formula b f( ) := Z G f(x) (x) dx; 2 b G: In particular, the Fourier transform is defined for any function f 2 D(G) . The mapping : f 7! b f is also called the Fourier transform. P r o p o s i t i o n 6.2. If G is a is zero-dimensional group, all elements of which are compact, then the Fourier transform is an isomorphism of the topological vector space D(G) into the topological vector space D(bG ) . Corollary 6.1. The mapping is an isomorphism of topological algebra Dconv(G) into the topological algebra Dmult(bG ) . P r o o f of Theorem 3.1 Let H be an invariant subspace of C(G) , H? be its annihilator in Mc(G) , I = H? \\ D(G) , bI = (I) . Then I is a closed ideal of Dconv(G) , and bI is a closed ideal of Dmult(bG ) .We will say that the ideal bI corresponds to the invariant subspace H. Let 2 bG . One can prove that 2 H if and only if the point belongs to zero set of the ideal bI . Thus the spectrum (H) of invariant subspace H is the same as zero set N(bI) of corresponding ideal bI Dmult(bG ) . Let H be an invariant subspace of C(G) . Denote by H1 a closed linear subspace of C(G) , that coincides with the closed linear span in C(G) of all characters of G that belong to H. Then H1 is also an invariant subspace of C(G) and (H) = (H1) . Let I1 = H? 1 \\ D(G) , bI1 = (I1) . Since N(bI) = N(bI1) then we have bI = bI1 by Theorem 5.1, and from Proposition 6.1 we have H = H1 . This completes the proof of Theorem 3.1.
×

Об авторах

Сергей Сергеевич Платонов

ФГБОУ ВО «Петрозаводский государственный университет»

Email: platonov@petrsu.ru
доктор физико-математических наук, профессор кафедры математического анализа 185910, Российская Федерация, г. Петрозаводск, просп. Ленина, 33

Список литературы

  1. L. Schwartz, “Th´eorie g´en´erale des fonctions moynne-p´eriodiques”, Ann. of Math., 48 (1947), 875-929.
  2. J.E. Gilbert, “On the ideal structure of some algebras of analytic functions”, Pacif. J. of Math., 35:3 (1078), 625-639.
  3. S.S. Platonov, “Spectral synthesis in some topological vector spaces of functions”, St.Petersburg Math. J., 22:5 (2011), 813-833.
  4. D.I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116-120.
  5. L. Schwartz, “Analyse et synth´ese harmonique dans les espaces de distributions”, Can. J. Math., 3 (1951), 503-512.
  6. L. Sz´ekelyhidi, Discrete spectral synthesis and its applications, Springer, Berlin, 2006.
  7. L. Sz´ekelyhidi, “On discrete spectral synthesis”, Advances in Mathematics, Functional Equations - Results and Advances, eds. Z. Daro´czy, Zs. P´ales, Kluwer Academic Publishers, Dordrecht, 2002, 263-274.
  8. A. Bereczky, L. Sz´ekelyhidi, “Spectral synthesis on torsion groups”, J. Math. Anal. Appl., 304 (2005), 607-613.
  9. M. Laczkovich, L. Sz´ekelyhidi, “Spectral synthesis on discrete Abelian groups”, Math. Proc. Cambr. Phil. Soc., 143 (2007), 103-120.
  10. С.С. Платонов, “Спектральный синтез в пространстве функций экспоненциального роста на конечно порожденной абелевой группе”, Алгебра и анализ, 24:4 (2012), 182-200.
  11. B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Kluwer Academic Publishers Group, Netherlands, 1991.
  12. E. Hewitt, K. A. Ross, “Abstract harmonic analysis”, Structure of topological groups, integration theory, group representations. V.I, 2nd ed., Springer-Verlag, Berlin, 1994.
  13. И. Рубистейн, Г.Н. Агаев, Н.Я. Виленкин, А.Г.М. Джафарли, Мультипликативная система функций и гармонический анализ на нульмерных группах, Элм, Баку, 1981.
  14. M. Lefranc, “Analyse spectrale sur Zn ”, C.R. Acad. Sci. Paris, 246 (1958), 1951-1953.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».