Razlozhenie granichnykh predstavleniy na ploskosti Lobachevskogo v secheniyakh lineynykh rassloeniy

Cover Page

Cite item

Full Text

Abstract

Earlier we described canonical (labelled by λ ∈C ) and accompanying boundary representations of the group G = SU (1,1) on the Lobachevsky plane D in sections of linear bundles and decomposed canonical representations into irreducible ones. Now we decompose representations acting on distributions concentrated at the boundary of D . In the generic case 2λ ∉N they are diagonalizable, in the exceptional case Jordan blocks appear.

Full Text

1. The Lobachevsky plane The Lobachevsky plane is the unit disk D : zz < 1 on the complex plane with the linear-fractional action of G: z 7! z g = az + b bz + a ; g = a b b a ; aa bb = 1: The boundary S of D is the circle zz = 1; it consists of points s = exp i ; the measure ds on S is d : Let D be the closure of D: D = D [ S: Let p = 1 zz; so that D = fp > 0g and S = fp = 0g: The stabilizer of the point z = 0 is the maximal compact subgroup K = U(1) consisting of diagonal matrices: k = a 0 0 a ; aa = 1; so that D = G=K: The Euclidean measure dxdy on D is (1=2) dp ds; a G-invariant measure d (z) on D is d (z) = p 2dxdy: If M is a manifold, then D(M) denotes the space of compactly supported infinitely differentiable C-valued functions on M; with a usual topology, and D0(M) denotes the space of distributions on M - of antilinear continuous functionals on D(M): We use the notation N = f0; 1; 2; : : :g: Recall principal non-unitary series representations of G trivial on the center, see also [4]. Let 2 C: The representation T acts on the space D(S) by (T (g)')(s) = '(s g)jbs + aj2 : The inner product from L2(S; ds) : h ; 'iS = Z S (s) '(s) ds is invariant with respect to the pair (T ; T 1): If =2 Z; then T is irreducible and equivalent to T 1 (for 2 Z there is a “partial equivalence”). For = v 2 N the representation Tv has an invariant irreducible subspace Ev spanned by exp ir ; r = v; v + 1; : : : ; v: 370 L. I. Grosheva A basis of the Lie algebra g of G is L0 = i=2 0 0 i=2 ; L1 = 0 i=2 i=2 0 ; L2 = 0 1=2 1=2 0 : We also use their linear combinations (they belong to the complexification of g ): L+ = L2 + iL1 = 0 1 0 0 ; L = L2 iL1 = 0 0 1 0 : Denote by g the twice Casimir element of the universal enveloping algebra Env(g) of g : g = L20 + L21 + L22 : The representation T of g assigns to L0; L+; L the following operators: T (L0) = d d ; T (L+) = ei + i d d ; T (L ) = e i i d d ; T ( g) = ( + 1): 2. Canonical representations Let D(D) be the space of restrictions to D of functions from D(C) with the induced topology, and by D0(D) the space of distributions on C with supports in D: Consider the inner product with respect to the Lebesgue measure on D: hF; fiD = Z D F(z)f(z)dxdy; z = x + iy: (2.1) The space D(D) can be embedded into D0(D) by assigning to h 2 D(D) the functional f 7! hh; fiD; f 2 D(D): We shall use denotation: z ;m = jzj z jzj m ; 2 C; m 2 Z: Let 2 C: We define the canonical representation R ;m of the group G associated with a character of K as follows: (R ;m(g)f) (z) = f(z g) (bz + a) 2 4;2m; it acts on the space D(D): DECOMPOSITION OF BOUNDARY REPRESENTATIONS 371 The inner product (2.1) is invariant with respect to the pair (R ;m; R 2;m) : hR ;m(g)f; h iD = hf; R 2;m(g 1)h iD; g 2 G: (2.2) The formula (2.2) allows to extend the representation R ;m to the space D0(D) of distributions on D: Here are formulae for basic elements of g in variables p and : R ;m(L0) = @ @ im; R ;m(L ) = e i rp @ @p 1 2 (r + r 1)i @ @ ( + 2 m)r : (2.3) Let us also write the operator corresponding to g : R ;m( g) =(p3 p2) @2 @p2 + - (2 + 4)p (2 + 5)p2 @ @p + +imp @ @ + 1 4 p2 1 p @2 @ 2 + + - ( + 2)( + 1) ( + 2)2 m2 p : (2.4) In (2.4) one has to use the binomial expansions ( r = (1 p)1=2 ): r = X1 n=0 1=2 n ( 1)n pn; (2.5) r 1 = X1 n=0 1=2 n ( 1)n pn; (2.6) 1 2 (r + r 1) = X1 n=0 1=2 n (1 n)( 1)n pn: (2.7) Applying these formulae to distributions ; we have to keep in mind the following: pn (k)(p) = ( 1)n k! (k n)! (k n)(p): 3. Boundary representations Canonical representations R ;m generate two boundary representations L ;m and M ;m: For simplicity, in this paper we restrict ourselves to the first one. It acts on distributions in D0(D) concentrated at S: Consider distributions of the following form: = '(s) (k)(p); 372 L. I. Grosheva where ' 2 D(S) and (p) is the Dirac delta function on the real line (being a continuous linear functional on D(R) ) and (k)(p) its k -th derivative. The space of these distributions will be denoted by k(D): Define also k(D) = 0(D) + 1(D) + + k(D); so that a distribution in k(D) is a linear combination = '0(s) (p) + '1(s) 0(p) + + 'k(s) (k)(p): We get a filtration: 0(D) = 0(D) 1(D) 2(D) : : : Let (D) denote the union of all k(D): The canonical representation R ;m acting on D0(D); preserves the space (D) and the filtration (2.3). The boundary representation L ;m is the restriction of R ;m to (D): 4. Poisson transform Let ; 2 C and m 2 Z: We define the Poisson transform associated with the canonical representation R ;m as the map P(m) ; : D(S) ! C1(D) by the following formula P(m) ; ' - (z) = p 2 Z S (1 sz)2 ; 2m sm '(s) ds: The Poisson transform P(m) ; intertwines the representations T 1 and the canonical representation R ;m : R ;m(g) P(m) ; = P(m) ; T 1(g) (g 2 G): The Poisson transform P(m) ; is meromorphic in ; and has poles at the points = k; = 1 + l (k; l 2 N): (4.1) All poles are simple except in the case when the two sequences (4.1) have a non-empty intersection and the pole belongs to this intersection. This happens when 2 + 1 2 N and 0 6 k; l 6 2 +1; k +l = 2 +1: In this case the pole is of the second order. Let us write down the principal part of the Laurent series of P(m) ; at the poles of the first order: P(m) ; = b P(m) ; + : The residue intertwines T 1 with R ;m: Let us write it explicitly. We set V ;m;n(p) = (1 p)(m+n)=2 F( + 1 + m; + 1 + n; 2 + 2; p); where F is the Gauss hypergeometric function. Expand V in powers of p : V ;m;n(p) = X1 k=0 w(m) ;k (n) pk; DECOMPOSITION OF BOUNDARY REPRESENTATIONS 373 here w(m) ;k are polynomials in n of degree k: The coefficients of these polynomials are rational functions of with simple poles. We set W(m) ;k = w(m) ;k 1 i d d : If a pole belongs only to one of the sequences (4.1), then it is simple. In particular, b P(m) ; k = ( 1)k+m 1 k! a m( k) (m) ;k ; where an( ) = 2 ( 1)n ( 2 1) ( + n) ( n) and (m) ;k is the following operator D(S) ! k(D) : (m) ;k ' = sm Xk n=0 ( 1)n k! (k n)! W(m) k;n ' - (s) (k n)(p): The operator (m) ;k is meromorphic in : For fixed k = 1; 2 : : : it has k poles (simple) at the points = k 1; k 3=2; k 2; : : : ; (k 1)=2: It intertwines T 1+k with L ;m (restricted to k(D) ). Let us write three first operators: (m) ;0 ' = sm' (p); (m) ;1 ' = sm n ' (p) 1 2 ( 2' m i'0) 0(p) o ; (m) ;2 ' = sm ' (p) 1 1 ( 1)2' m i'0 0(p) + 1 4( 1)(2 1) n- ( 1)2 2 + m2 ' 2( 1)(2 1)m i'0 - ( 1)2 + 2m2 '00 o 00(p) : 5. Decomposition of boundary representations Theorem 5.1. The representation L ;m is equivalent to a upper triangular matrix with diagonal T 1; T ; T +1; : : : : P r o o f. The formulae (2.3) and (2.5)-(2.7) show that operators R ;m(L ) move subspaces k(D) to k(D): Also these formulae show that the operator R ;m(X) where X 2 g moves a distribution sm'(s) (k)(p) in k(D) to the distribution sm(T 1+k(X)')(s) (k)(p) + : : : in k(D): Let V (m) ;k be the image of (m) ;k : This space is contained in k(D) and its projection to k(D) is the whole k(D): It gives: 374 L. I. Grosheva Theorem 5.2. In the generic case 2 =2 N the boundary representation L ;m is diagonalizable which means that (D) decomposes into the direct sum of subspaces V (m) ;k ; k 2 N; the restriction of L ;m to V (m) ;k is equivalent to T 1+k (by ;k ), so that L ;m is the direct sum of the T 1+k (k 2 N): Now let 2 (1=2)N: This number is a pole (of the first order) of (m) ;k in for k 2 N such that +1 6 k 6 2 +1: For example, if = 0; then k = 1 ; if = 1=2; then k = 2 ; if = 1; then k = 2; 3 ; if = 3=2; then k = 3; 4: For these the spaces V (m) ;k are defined for all k 2 N such that k < + 1 and 2 + 1 < k; for the others these spaces are absent. Let us write down the Laurent expansion of (m) ;k at = : (m) ;k = b (m) ;k + (m) ;k + : : : For the indicated k we define the spaces bV (m) ;k and V (m) ;k as the images of the operators b (m) ;k and (m) ;k respectively. The space bV (m) ;k is isomorphic to V (m) ;l where l + k = 2 + 1; namely there is a relation (m) ;k (') = (m) ;l ( ) where is obtained from ' by means of some operator. Therefore the operator b (m) ;k intertwines T 1+l with L ;m; notice that it vanishes on El: The space V (m) ;k has the full projection to k(D): On the pair bV (m) ;k ; V (m) ;k the representation L ;m is the block T 1+l 0 T 1+k : Since 1+l = ( 1+k) 1; representations T 1+l and T 1+k are isomorphic, so that this block is a genuine Jordan block. Here is the matrix corresponding to the Casimir operator R ;m( g) : ( + 1) 0 ( + 1) ; where = 1 + l or = 1 + k: Thus, me obtain the following theorem (we use the notation [a] for the integral part of a number a ). Theorem 5.3. Let 2 (1=2)N: Then the space (D) is the direct sum of the subspaces V (m) ;k with k > 2 + 2 and k 6 and subspaces V (m) ;k with + 1 6 k 6 2 + 1: The representation L ;m is equivalent to the direct sum of [ +1] Jordan blocks with the diagonal (T 1+j ; T j); j = 0; 1; : : : ; [ ]; acting on subspaces V (m) ;l + V (m) ;k ; k+l = 2 +1; the representation T1=2 for half-integer ; and the representations T +1; T +2; : : : : Let us write b (m) ;k and (m) ;k for some ; k: Let = 0; k = 1: Then b (m) 0;1 (') = im 2 sm'0 (p); (m) 0;1 (') = sm' 0(p): Let = 1; k = 2: Then b (m) 1;2 (') = imsm n '0 0(p) 1 2 ('0 im'00) (p) o ; (m) 1;2 (') = sm n ' 00(p) + 1 4 m2 2im'0 + (4m2 1)'00 (p) o : DECOMPOSITION OF BOUNDARY REPRESENTATIONS 375 Let = 1=2; k = 2: Then b (m) 1=2;2(') = 1 32 (4m2 1)sm (' + 4'00) (p); (m) 1=2;2(') = sm n ' 00(p) + 1 2 (' 4im'0) 0(p) + 1 16 4' + im'0 + 16m2'00 (p) o :
×

About the authors

Larisa I. Grosheva

Derzhavin Tambov State University

Email: gligli@mail.ru
Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department

References

  1. V.F. Molchanov, L.I. Grosheva, “Canonical and boundary representations on the Lobachevsky plane”, Acta Appl. Math., 73 (2002), 59-77.
  2. L.I. Grosheva, “Canonical representations on sections of linear bundles on the Lobachevsky plane”, Tambov University Reports. Series: Natural and Technical Sciences, 12:4 (2007), 436- 438 c r os s r ef.
  3. L.I. Grosheva, “Canonical and boundary representations on the Lobachevsky plane associated with linear bundles”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1218-1228 c r os s r ef.
  4. L.I. Grosheva, “Decomposition of canonical representations on the Lobachevsky plane associated with linear bundles”, Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018), 113-124 c r os s r ef

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».