On existence and stability of ring solutions to Amari neural field equation with periodic microstructure and Heaviside activation function
- Authors: Atmania R.1, Burlakov E.O.1,2, Malkov I.N.1
-
Affiliations:
- Tyumen State University
- Derzhavin Tambov State University
- Issue: Vol 27, No 140 (2022)
- Pages: 318-327
- Section: Original articles
- URL: https://bakhtiniada.ru/2686-9667/article/view/296487
- ID: 296487
Cite item
Full Text
Abstract
In the present research, existence and stability of ring solutions to two-dimensional Amari neural field equation with periodic microstructure and Heaviside activation function are studied. Results on dependence of the inner and the outer radii of the ring solutions are obtained. Necessary conditions for existence and sufficient conditions for non-existence of radial travelling waves are formulated for homogeneous neural medium and neural media with mild periodic microstructure. Theoretical results obtained are illustrated with a concrete example based on a connectivity function commonly used in the neuroscience community.
About the authors
Rachid Atmania
Tyumen State University
Email: atmania.rachid@gmail.com
ORCID iD: 0000-0002-2194-1497
Post-Graduate Student
Russian Federation, 6 Volodarskogo St., Tyumen 625003, Russian FederationEvgenii O. Burlakov
Tyumen State University; Derzhavin Tambov State University
Author for correspondence.
Email: eb_@bk.ru
ORCID iD: 0000-0002-7286-9456
PhD, Senior Researcher at X-Bio Institute; Researcher at the Research and Educational Center “Fundamental Mathematical Research”
Russian Federation, 6 Volodarskogo St., Tyumen 625003, Russian Federation; 33 Internatsionalnaya St., Tambov 392000, Russian FederationIvan N. Malkov
Tyumen State University
Email: i.n.malkov@yandex.ru
ORCID iD: 0000-0001-5845-5591
Post-Graduate Student, Institute of Mathematics and Computer Science
Russian Federation, 6 Volodarskogo St., Tyumen 625003, Russian FederationReferences
- P. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001.
- E.O. Burlakov, T.V. Zhukovskaya, E.S. Zhukovskiy, N.P. Puchkov, “On continuous and discontinuous models of neural fields”, Journal of Mathematical Sciences, 259:3 (2021), 272–282.
- S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27 (1977), 77–87.
- S. Kishimoto, S. Amari, “Existence and stability of local excitations in homogeneous neural fields”, Journal of Mathematical Biology, 7 (1979), 303–318.
- C.R. Laing, W.C. Troy, “Two-bump solutions of Amari-type models of neuronal pattern formation”, Physica D: Nonlinear Phenomena, 178 (2003), 190–218.
- K. Kolodina, V.V. Kostrykin, A. Oleynik, “Existence and stability of periodic solutions in a neural field equation”, Russian Universities Reports. Mathematics, 26:135 (2021), 271–295.
- S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93 (2005), 91–108.
- M.R. Owen, C.R. Laing, S. Coombes, “Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities”, New Journal of Physics, 9 (2007), 378.
- N. Svanstedt, J. Wyller, E. Malyutina, “A one-population Amari model with periodic microstructure”, Nonlinearity, 27 (2014), 1391–1417.
- E. Malyutina, J. Wyller, A. Ponosov, “Two bumps solutions of a homogenized Wilson-Cowan model with periodic microstructure”, Physica D: Nonlinear Phenomena, 271 (2014), 19–31.
- E. Burlakov, J. Wyller, A. Ponosov, “Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions”, Communications in Nonlinear Science and Numerical Simulation, 32 (2016), 81–88.
- Е.О. Бурлаков, И.Н. Мальков, “О связи непрерывных и разрывных моделей нейронных полей с микроструктурой: II. Радиально симметричные стационарные решения в 2D («бампы»)”, Вестник российских университетов. Математика, 25:129 (2020), 6–17. [E.O. Burlakov, I.N. Malkov, “On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)”, Russian Universities Reports. Mathematics, 25:129 (2020), 6–17 (In Russian)].
- J.A. Murdock, F. Botelho, J.E. Jamison, “Persistence of spatial patterns produced by neural field equations”, Physica D: Nonlinear Phenomena, 215 (2006), 106–116.
- E. Burlakov, V. Verkhlyutov, V. Ushakov, “A simple human brain model reproducing evoked MEG based on neural field theory”, Advances in Neural Computation, Machine Learning, and Cognitive Research V, Studies in Computational Intelligence, 1008, ed. B. Kryzhanovsky, W. Dunin–Barkowski, V. Redko, Y. Tiumentsev, 2021, 109–116.
Supplementary files
