О роли множителей Лагранжа и двойственности в некорректных задачах на условный экстремум. К 60-летию метода регуляризации Тихонова

Обложка

Цитировать

Полный текст

Аннотация

Обсуждается важная роль множителей Лагранжа и двойственности в теории некорректных задач на условный экстремум. Центральное внимание уделяется задаче устойчивого приближенного нахождения нормального (минимального по норме) решения операторного уравнения первого рода
$Az=u,$ $z\in {\cal D}\subseteq Z,$ где $A:\,Z\to U$ --- линейный ограниченный оператор, $u\in U$ --- заданный элемент,
${\cal D}\subseteq Z$ --- выпуклое замкнутое мно\-жество, $Z,U$ ---
гильбертовы пространства, являющейся классической для теории некор\-ректных задач. Рассматриваются две эквивалентные ей задачи (с точки зрения одновременного существования их единственных решений) на условный экстремум, первая из которых --- это задача ($CE1$) с функциональным ограничением-неравенством $\|z\|^2\to\min,$ $\|Az-u\|^2\leq 0,$ $z\in {\cal D},$ а вторая --- задача ($CE2$) с операторным ограничением-равенством $\|z\|^2\to\min,$ $Az=u,$ $z\in {\cal D}.$  В работе последовательно: 1) показывается, что метод регуляризации Тихонова может естественным образом трактоваться как метод устойчивой аппроксимации точного решения экстремалями функционала Лагранжа для задачи ($CE1$) с одновременным построением в двойственной к ней задаче максимизирующей последовательности из множителей Лагранжа, при этом множитель Лагранжа является величиной обратной параметру регуляризации в методе Тихонова; другими словами, теореме сходимости метода регуляризации Тихонова придается вид утверждения в форме двойственности относительно задачи ($CE1$);  2) обсуждается роль стабилизации по Тихонову для выпуклых задач общего вида при решении задач на условный экстремум; 3) обсуждается основанный на стабилизации по Тихонову двойственной к ($CE2$) задачи устойчивый метод для решения исходного операторного уравнения, который может рассматриваться как метод регуляризации правила множителей Лагранжа для задачи ($CE2$); 4) обсуждаются особенности каждого из двух указанных выше подходов к регуляризации решения исходного операторного уравнения.

 

Об авторах

Михаил Иосифович Сумин

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»

Автор, ответственный за переписку.
Email: m.sumin@mail.ru
ORCID iD: 0000-0002-3700-6428

доктор физико-математических наук, главный научный сотрудник

Россия, 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Список литературы

  1. А.Н. Тихонов, “О решении некорректно поставленных задач и методе регуляризации”, Доклады АН СССР, 151:3 (1963), 501–504.
  2. А.Н. Тихонов, “О регуляризации некорректно поставленных задач”, Доклады АН СССР, 153:1 (1963), 49–52.
  3. А.Н. Тихонов, В.Я. Арсенин, Методы решения некорректных задач, Наука, М., 1974.
  4. Некорректные задачи естествознания, ред. А. Н. Тихонов, А. В. Гончарский, Изд-во МГУ, М., 1987.
  5. В.К. Иванов, В.В. Васин, В.П. Танана, Теория линейных некорректных задач и ее приложения, Наука, М., 1978.
  6. А.Н. Тихонов, А.В. Гончарский, В.В. Степанов, А.Г. Ягола, Регуляризирующие алгоритмы и априорная информация, Наука, М., 1983.
  7. А.Б. Бакушинский, А.В. Гончарский, Некорректные задачи. Численные методы и приложения, Изд-во Моск. ун-та, М., 1989.
  8. Ф.П. Васильев, Методы оптимизации: В 2-х кн., МЦНМО, М., 2011.
  9. М.И. Сумин, Некорректные задачи и методы их решения. Материалы к лекциям для студентов старших курсов, Изд-во Нижегородского госуниверситета, Нижний Новгород., 2009.
  10. М.И. Сумин, “Принцип Лагранжа и его регуляризация как теоретическая основа устойчивого решения задач оптимального управления и обратных задач”, Вестник российских университетов. Математика, 26:134 (2021), 151–171.
  11. М.И. Сумин, “О некорректных задачах, экстремалях функционала Тихонова и регуляризованных принципах Лагранжа”, Вестник российских университетов. Математика, 27:137 (2022), 58–79.
  12. М.И. Сумин, “Регуляризация в линейно выпуклой задаче математического программирования на основе теории двойственности”, Журн. вычисл. матем. и матем. физ., 47:4 (2007), 602–625.
  13. А.Н. Тихонов, “Об устойчивости задачи оптимизации функционалов”, Журн. вычисл. матем. и матем. физ., 6:4 (1966), 631–634.
  14. М.И. Сумин, “Регуляризованная параметрическая теорема Куна–Таккера в гильбертовом пространстве”, Журн. вычисл. матем. и матем. физ., 51:9 (2011), 1594–1615.
  15. М.И. Сумин, “Устойчивое секвенциальное выпуклое программирование в гильбертовом пространстве и его приложение к решению неустойчивых задач”, Журн. вычисл. матем. и матем. физ., 54:1 (2014), 25–49.
  16. М.И. Сумин, “Зачем нужна регуляризация принципа Лагранжа и принципа максимума Понтрягина и что она дает”, Вестник Тамбовского университета. Серия Естественные и технические науки, 23:124 (2018), 757–772.
  17. М.И. Сумин, “Регуляризованные принцип Лагранжа и принцип максимума Понтрягина в оптимальном управлении и обратных задачах”, Тр. ИММ УрО РАН, 25, 2019, 279–296.
  18. В.М. Алексеев, В.М. Тихомиров, С.В. Фомин, Оптимальное управление, Наука, М., 1979.
  19. М.И. Сумин, “Недифференциальные теоремы Куна–Таккера в задачах на условный экстремум и субдифференциалы негладкого анализа”, Вестник российских университетов. Математика, 25:131 (2020), 307–330.
  20. Ж.-П. Обен, Нелинейный анализ и его экономические приложения, Мир, М., 1988.
  21. Дж. Варга, Оптимальное управление дифференциальными и функциональными уравнениями, Наука, М., 1977.
  22. М.И. Сумин, “О регуляризации классических условий оптимальности в выпуклых задачах оптимального управления”, Тр. ИММ УрО РАН, 26, 2020, 252–269.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».