Two-sided estimates for solutions of boundary value problems for implicit differential equations

Cover Page

Cite item

Full Text

Abstract

We consider a two-point (including periodic) boundary value problem for the following system of differential equations that are not resolved with respect to the derivative of the desired function: f i t, x, x , x i =0, i= 1, n. Here, for any i = 1, n the function f i :[0, 1]× Rn × Rn ×R→R is measurable in the first argument, continuous in the last argument, right-continuous, and satisfies the special condition of monotonicity in each component of the second and third arguments. Assertions about the existence and two-sided estimates of solutions (of the type of Chaplygin’s theorem on differential inequality) are obtained. Conditions for the existence of the largest and the smallest (with respect to a special order) solution are also obtained. The study is based on results on abstract equations with mappings acting from a partially ordered space to an arbitrary set (see [S. Benarab, Z.T. Zhukovskaya, E.S. Zhukovskiy, S.E. Zhukovskiy. On functional and differential inequalities and their applications to control problems // Differential Equations, 2020, 56:11, 1440-1451]).

About the authors

Sarra Benarab

Applied Mathematics and Modeling Laboratory, University 8 May 1945 - Guelma

Email: benarab.sarraa@gmail.com
Post-Graduate Student B.P. 401, Guelma 24000, Algeria

References

  1. С.А. Чаплыгин, “Основания нового способа приближённого интегрирования дифференциальных уравнений”, Собрание сочинений. Т. 1, Гостехиздат, М., 1948, 348-368.
  2. Н.Н. Лузин, “О методе приближённого интегрирования акад. С. А. Чаплыгина”, УМН, 6:6(46) (1951), 3-27.
  3. Е.С. Жуковский, “Об упорядоченно накрывающих отображениях и интегральных неравенствах типа Чаплыгина”, Алгебра и анализ, 30:1 (2018), 96-127.
  4. Е.С. Жуковский, “Об упорядоченно накрывающих отображениях и неявных дифференциальных неравенствах”, Дифференц. уравнения, 52:12 (2016), 1610-1627.
  5. Т.В. Жуковская, И.Д. Серова, “Об оценке решения краевой задачи для неявного дифференциального уравнения с отклоняющимся аргументом”, Материалы Всероссийской научной конференции «Дифференциальные уравнения и их приложения», посвященной 85-летию профессора М.Т. Терёхина. Рязанский государственный университет им. С. А. Есенина, Рязань, 17-18 мая 2019 г. Часть 2, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 186, ВИНИТИ РАН, М., 2020, 38-44.
  6. А.В. Арутюнов, Е.С. Жуковский, С.Е. Жуковский, “О мощности множества точек совпадения отображений метрических, нормированных и частично упорядоченных пространств”, Матем. сб., 209:8 (2018), 3-28.
  7. А.В. Арутюнов, Е.С. Жуковский, С.Е. Жуковский, “О точках совпадения отображений в частично упорядоченных пространствах”, Доклады Академии наук, 453:5 (2013), 475-478.
  8. А.В. Арутюнов, Е.С. Жуковский, С.Е. Жуковский, “Точки совпадения многозначных отображений в частично упорядоченных пространствах”, Доклады Академии наук, 453:6 (2013), 595-598.
  9. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and Its Applications, 201 (2016), 330-343.
  10. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13-33.
  11. Т.В. Жуковская, Е.С. Жуковский, И.Д. Серова, “Некоторые вопросы анализа отображений метрических и частично упорядоченных пространств”, Вестник российских университетов. Математика, 25:132 (2020), 345-358.
  12. С. Бенараб, З.Т. Жуковская, Е.С. Жуковский, С.Е. Жуковский, “О функциональных и дифференциальных неравенствах и их приложениях к задачам управления”, Дифференц. уравнения, 56:11 (2021), 1471-1482.
  13. Н.В. Азбелев, “Как это было (Об основных этапах развития современной теории функционально-дифференциальных уравнений)”, Проблемы нелинейного анализа в инженерных системах, 9:1(17) (2003), 1-22.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».