О главных подмодулях в модулях целых функций, двойственных к пространствам Ω-ультрадифференцируемых функций

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе рассматриваются весовые модули целых функций, двойственные общим пространствам Ω-ультрадифференцируемых функций. В этих модулях, с точки зрения задачи локального описания, исследуются главные подмодули. Показано, что последние не всегда допускают локальное описание в слабом смысле. Получены нетривиальные условия, при которых локальное описание возможно. Все результаты имеют эквивалентную двойственную форму, в которой становятся утверждениями о (не)допустимости спектрального синтеза инвариантными относительно оператора дифференцирования подпространствами в соответствующих пространствах Ω-ультрадифференцируемых функций.

Об авторах

Н. Ф. Абузярова

Институт математики с вычислительным центром Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук

Email: abnaf@gmail.com
Уфа, Россия

З. Ю. Фазуллин

Уфимский университет науки и технологий

Уфа, Россия

Список литературы

  1. Красичков–Терновский И.Ф. Инвариантные подпространства аналитических функций. I. Спектральный синтез на выпуклых областях. Матем. сб. 1972. Т. 87(129). № 4. С. 459–489. https://doi.org/10.1070/SM1972v016n04ABEH001436
  2. Красичков–Терновский И.Ф. Инвариантные подпространства аналитических функций. II. Спектральный синтез на выпуклых областях. Матем. сб. 1972. Т. 88(130). № 1(5). С. 3–30. https://doi.org/10.1070/SM1972v017n01ABEH001488
  3. Красичков–Терновский И.Ф. Инвариантные подпространства аналитических функций. III. О распространении спектрального синтеза. Матем. сб. 1972. Т. 88(130). № 3(7). С. 331–352. https://doi.org/10.1070/SM1972v017n03ABEH001508
  4. Абузярова Н.Ф. Спектральный синтез в пространстве Шварца бесконечно дифференцируемых функций. Доклады РАН. 2014. Т. 457. № 5. С. 510–513. https://doi.org/10.7868/S0869565214230042
  5. Abuzyarova N.F., Fazullin Z.Yu. Invariant subspaces in non-quasianalytic spaces of Ω-ultradifferentiable functions on an interval. Eurasian Math. J. 2024. V. 15. № 3. P. 9–24. https://doi.org/10.32523/2077-9879-2024-15-3-09-24
  6. Абанин А.В. Ультрадифференцируемые функции и ультрараспределения. М.: Наука. 2007.
  7. Абанин А.В. Ω-ультрараспределения. Известия РАН, сер. Матем. 2008. Т. 72. № 2. С. 207–240. https://doi.org/10.4213/im1147
  8. Абузярова Н.Ф. Спектральный синтез для оператора дифференцирования и локальное описание подмодулей целых функций. Дисс. ... доктора физ.-мат. наук. Уфа. 2023.
  9. Aleman A., Baranov A., Belov Yu. Subspaces of C∞ invariant under the differentiation. Journal of Functional Analysis. 2015. V. 268. P. 2421–2439. https://doi.org/10.1016/j.jfa.2015.01.002
  10. Абузярова Н.Ф. Некоторые свойства главных подмодулей в модуле целых функций экспоненциального типа и полиномиального роста на вещественной оси. Уфимский математический журнал. 2016. Т. 8. № 1. С. 3–14. https://doi.org/10.13108/2016-8-1-1
  11. Abuzyarova N.F. Principal Submodules in the Module of Entire Functions, Which is Dual to the Schwarz Space, and Weak Spectral Synthesis in the Schwartz Space. Journal of Mathematical Sciences. 2019. V. 241. № 6. P. 658–671. https://doi.org/10.1007/s10958-019-04453-0
  12. Baranov A, Belov Yu. Synthesizable differentiation-invariant subspaces. Geometric and Functional Analysis. 2019. V. 29. № 1. P. 44–71. https://doi.org/10.1007/s00039-019-00474-8
  13. Абузярова Н.Ф. Синтезируемые последовательности и главные подмодули в модуле Шварца. Уфимский математический журнал. 2020. Т. 12. № 3. С. 11–21. https://doi.org/10.13108/2020-12-3-11
  14. Koosis P. Logarithmic Integral I. Cambridge: Cambridge Univ. Press. 1998.
  15. Ehrenpreis L. Solution of some problems of division, IV. Amer. J. Math. 1960. V. 57. № 1. P. 522–588. https://doi.org/10.2307/2372662
  16. Meise R., Taylor B. A., Vogt D. Equivalence of slowly decreasing conditions and local Fourier expansions. Indiana Univ. Math. J. 1987. V. 36. № 4. C. 729–756. https://www.jstor.org/stable/24894327
  17. Абанина Д.А. Разрешимость уравнений свертки в пространствах ультрадифференцируемых функций Берлинга нормального типа на интервале. Сиб. матем. журн. 2012. Т. 53. № 3. С. 477–494. https://doi.org/10.1134/S0037446612020206
  18. Юлмухаметов Р.С. Решение проблемы Л. Эренпрайса о факторизации. Матем. сб. 1999. Т.190. № 4. С. 123–157. https://doi.org/10.4213/sm400

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».