STATE DIAGRAM OF THE ZrO2–SiO2–Al2O3 SYSTEM WITH VISUALIZATION BY COMPUTER 3D-MODEL AND CALCULATION USING THE NUCLEA DATABASE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The three-dimensional (3D) computer model of the isobaric phase diagram of the ZrO2–SiO2–Al2O3 system with formation of the ZrSiO4 and Al6Si2O13 compounds is presented. The development of its geometric structure was carried out through the sequential construction of the phase reaction scheme, including all polymorphic transitions in the sub-solidus and the rearrangement of the interaction of binary compounds as well as zirconium and aluminum oxides, its transformation into the scheme of uni- and invariant states in the tabular and graphical (3D) forms, the construction of the prototype, and its transformation into a spatial model of the phase diagram of the real ZrO2–SiO2–Al2O3 system. Features of the isothermal sections and isopleths of the phase diagram of the considered system calculated using the thermodynamic NUCLEA database are discussed in the comparison with the 3D model sections.

About the authors

V. P. Vorob’eva

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

А. E. Zelenaya

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

V. I. Lutsyk

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

V. A. Vorozhtcov

Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State University

Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 199034, Saint

V. I. Almjashev

Institute of Silicate Chemistry of the Russian Academy of Sciences; Alexandrov Research Institute of Technology; Ulyanov (Lenin) Saint Petersburg Electrotechnical University “LETI”

Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 188540, Sosnovy; Russian, 197376, Saint

V. L. Stolyarova

Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State University

Author for correspondence.
Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 199034, Saint

References

  1. Claussen N., Jahn J. // J. Am. Ceram. Soc. 1980. V. 63. № 3–4. P. 228–229. https://doi.org/10.1111/j.1151-2916.1980.tb10700.x
  2. Garvie R.C., Goss M.F., Marshall S., Urbani C. // Mater. Sci. Forum. 1988. V. 34–36. P. 681–688. https://doi.org/10.4028/www.scientific.net/msf.34-36.681
  3. Frank M., Schweiger M., Rheinberger V., Höland W. // Glas. Ber. Glass Sci. Technol. 1998. V. 71. P. 345–348.
  4. Höland W., Schweiger M., Frank M., Rheinberger V. // J. Biomed. Mater. Res. 2000. V. 53. № 4. P. 297–303. https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G
  5. Gregory A.G., Veasey T.J. // J. Mater. Sci. 1971. V. 6. № 10. P. 1312–1321. https://doi.org/10.1007/BF00552045
  6. Sales M., Alarcon J. // J. Mater. Sci. 1995. V. 30. № 9. P. 2341–2347. https://doi.org/10.1007/BF01184584
  7. McCoy M.A., Heuer A.H. // J. Am. Ceram. Soc. 1988. V. 71. № 8. P. 673–677. https://doi.org/10.1111/j.1151-2916.1988.tb06387.x
  8. Awano M., Takagi H., Kuwahara Y. // J. Am. Ceram. Soc. 1992. V. 75. № 9. P. 2535–2540. https://doi.org/10.1111/j.1151-2916.1992.tb05608.x
  9. Белов Г.В., Аристова Н.М. // Математическое моделирование. 2017. Т. 29. № 6. С. 135‒142. http://mi.mathnet.ru/rus/mm/v29/i6/p135
  10. Ohnuma I., Ishida K. // Tecnol. Metal. Mater. Min. 2016. V. 13. № 1. P. 46‒63. https://doi.org/10.4322/2176-1523.1085
  11. Bakardjieva S., Barrachin M., Bechta S., Bezdicka P., Bottomley D., Brissonneau L., Cheynet B., Dugne O., Fischer E., Fischer M., Gusarov V., Journeau C., Khabensky V., Kiselova M., Manara D., Piluso P., Sheindlin M., Tyrpekl V., Wiss T. // Ann. Nucl. Energ. 2014. V. 74. P. 110‒124. https://doi.org/10.1016/j.anucene.2014.06.023
  12. Kitagaki T., Yano K., Ogino H., Washiya T. // J. Nucl. Mater. 2017. V. 486. P. 206‒215. https://doi.org/10.1016/j.jnucmat.2017.01.032
  13. Björkvall J., Stolyarova V.L. // Rapid Commun. Mass Spectrom. 2001. V. 15. № 10. P. 836‒842. https://doi.org/10.1002/rcm.251
  14. Bakardjieva S., Barrachin M., Bechta S., Bottomley D., Brissoneau L., Cheynet B., Fischer E., Journeau C., Kiselova M., Mezentseva L., Piluso P., Wiss T. // Progr. Nucl. Energ. 2010. V. 52. № 1. P. 84‒96. https://doi.org/10.1016/j.pnucene.2009.09.014
  15. Kwon S.Y. Thermodynamic optimization of ZrO2-containing systems in the CaO–MgO–SiO2–Al2O3–ZrO2 system. Dissertation for the degree of Master of Engineering. Montreal, 2015. 113 p.
  16. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25‒31. https://doi.org/10.1007/s10973-010-0855-0
  17. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Inorg. Chem. 2016. V. 61. № 2. P. 188‒207. https://doi.org/10.1134/S0036023616020121
  18. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Sineva S.I., Starykh R.V., Novozhilova O.S. // J. Phase Equil. Diffus. 2021. V. 42. № 2. P. 175‒193. https://doi.org/10.1007/s11669-021-00863-3
  19. Lutsyk I.V., Zelenaya A.E., Zyryanov A.M. // Materials, Methods & Technologies. International Scientific Publications. 2008. V. 2. № 1. P. 176‒184.
  20. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Phys. Chem. 2015. V. 89. № 10. P. 1715‒1722. https://doi.org/10.1134/S0036024415100192
  21. Lutsyk V.I., Vorob’eva V.P., Shodorova S.Ya. // Russ. J. Inorg. Chem. 2016. V. 61. № 7. P. 858‒866. https://doi.org/10.1134/S0036023616070123
  22. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 894‒901. https://doi.org/10.1134/S003602362106022X
  23. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I., Almjashev V.I., Vorozhtcov V.A., Stolyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 6. P. 616‒621. https://doi.org/10.1134/S1087659621060328
  24. Butterman W.C., Foster W.R. // Am. Mineral. 1967. V. 52. № 5–6. P. 880‒885. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/52/5-6/880/542223/Zircon-Stability-and-the-Zr02-Si02-Phase-Diagram
  25. Lakiza S.M., Lopato L.M. // J. Amer. Ceram. Soc. 1997. V. 80. № 4. P. 893‒902. https://doi.org/10.1111/j.1151-2916.1997.tb02919.x
  26. Lakiza S., Fabrichnaya O., Wang Ch., Zinkevich M., Aldinger F. // J. Eur. Ceram. Soc. 2006. V. 26. № 3. P. 233‒246. https://doi.org/10.1016/j.jeurceramsoc.2004.11.011
  27. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1958. V. 7. № 1. P. 5‒9. https://doi.org/10.1007/BF01170853
  28. Aramaki S., Roy R. // J. Am. Ceram. Soc. 1962. V. 45. № 5. P. 229‒242. https://doi.org/10.1111/j.1151-2916.1962.tb11133.x
  29. de Noirfontaine M.-N., Tusseau-Nenez S., Girod-Labianca C., Pontikis V. // J. Mater. Sci. 2012. V. 47. № 3. P. 1471‒1479. https://doi.org/10.1007/s10853-011-5932-7
  30. Яроцкая Е.Г., Федоров П.П. // Конденсированные среды и межфазные границы. 2018. Т. 20. № 4. С. 537–544. https://doi.org/10.17308/kcmf.2018.20/626
  31. Lambotte G., Chartrand P. // J. Amer. Ceram. Soc. 2011. V. 94. № 11. P. 4000–4008. https://doi.org/10.1111/j.1551-2916.2011.04656.x
  32. Igami Y., Ohi S., Miyake A. // J. Amer. Ceram. Soc. 2017. V. 100. № 10. P. 4928–4937. https://doi.org/10.1111/jace.15020
  33. McMurdie H.F., Hall F.P. // J. Am. Ceram. Soc. 1949. V. 32. № s1. P. 154‒164. https://doi.org/10.1111/j.1151-2916.1949.tb19765.x
  34. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1956. V. 5. № 2. P. 153‒156. https://doi.org/10.1007/BF01177636
  35. Kwon S.Y., Jung I.-H. // J. Eur. Ceram. Soc. 2017. V. 37. № 3. P. 1105‒1116. https://doi.org/10.1016/j.jeurceramsoc.2016.10.008
  36. Будников П.П., Литваковский А.А. // ДАН СССР. 1956. Т. 106. № 2. С. 267‒270.
  37. Greca M.C., Emiliano J.V., Segadães A.M. // J. Eur. Ceram. Soc. 1992. V. 9. № 4. P. 271‒283. https://doi.org/10.1016/0955-2219(92)90062-I
  38. Quereshi M.H., Brett N.H. // Trans. Brit. Ceram. Soc. 1968. V. 67. № 11. P. 569‒578.
  39. Pena P., De Aza S. // J. Mater. Sci. 1984. V. 19. № 1. P. 135‒142. https://doi.org/10.1007/BF02403119
  40. Pena P. // Bol. Soc. Esp. Ceram. Vidr. 1989. V. 28. № 2. P. 89‒96.
  41. Connell R.G. // J. Phase Equilib. 1994. V. 15. № 1. P. 6‒19. https://doi.org/10.1007/BF02667677
  42. Khaldoyanidi K.A. // J. Struct. Chem. 2003. V. 44. № 1. P. 116‒129. https://doi.org/10.1023/A:1024941216224
  43. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.
  44. Воробьева В.П. Фазовые диаграммы состояния трех- и четырехкомпонентных систем: от топологии к компьютерным моделям. Дис. … докт. ф.-м.н. Тюмень, 2012. 354 с.
  45. Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I., Sto-lyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 5. P. 417‒426. https://doi.org/10.1134/S1087659621050175
  46. NUCLEA: Thermodynamic database for nuclear applications [Электронный ресурс] // Доступно по: http://thermodata.online.fr/nuclea.html. Ссылка активна на 25.12.2022 г.
  47. Mao H., Selleby M., Sundman B. // J. Am. Ceram. Soc. 2005. V. 88. № 9. P. 2544‒2551. https://doi.org/10.1111/j.1551-2916.2005.00440.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (194KB)
3.

Download (458KB)
4.

Download (525KB)
5.

Download (408KB)
6.

Download (544KB)
7.

Download (521KB)

Copyright (c) 2023 В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, В.А. Ворожцов, В.И. Альмяшев, В.Л. Столярова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».