REGISTRATION OF SOUND PACKETS WHEN A FALLING DROP MERGES WITH A LIQUID IN AN ELECTROSTATIC FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, synchronized video recording of the flow pattern and acoustic pressure by a hydrophone was performed during the merging of a falling drop of distilled water with a liquid at rest in an electrostatic field. The generator anode is connected to the tip of a capillary drop dispenser, the flat cathode is placed on the bottom of a pool filled with tap water. In the impact flow mode, when the kinetic energy of the falling drop significantly exceeds its potential surface energy, a reduction in the chronogram duration, a refinement of the flow pattern and an increase in the frequency of the resonant packet are observed when the electrostatic field is applied. The observed changes indicate a strong influence of the electrostatic field on the structure of droplet flows in the phase of formation and separation of gas cavities emitting resonant acoustic signals.

About the authors

Yu. D. Chashechkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: chakin@ipmnet.ru
Moscow, Russia

V. E. Prokhorov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: prohorov@ipmnet.ru
Moscow, Russia

References

  1. Mudiar D., Pawar S., Gopalakrishnan V. et al. Electric field enlarges rain drops beneath electrified clouds: Observational evidence // Geophysical Research Letters. 2021. V. 48. e2021GL093577. https://doi.org/10.1029/2021GL093577
  2. Prosperetti A., Ogitz H. The impact of drops on liquid surfaces and the underwater noise of rain // Ann. Rev. Fluid Mech. 1993. V. 25. P. 577–602. https://doi.org/10.1146/annurev.fl.25.010193.003045
  3. Ipatev A.M., Shurpaev S.N. Etiudy o groze: Ogni sv. El'ma, svechenie voronok smerchei, raznye molnii. M.: Direkt-Media, 2021.
  4. Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces // Phys. Rev. 1914. V. 3(2). P. 69–91. https://doi.org/10.1103/PhysRev.3.69
  5. Tucker N., Stanger J., Staiger M.P. et al. The history of the science and technology of electrospinning from 1600 to 1995 // J. Eng. Fibers Fabr., Special iss. 2012. V. 7(2). P. 63–71. https://doi.org/10.1177/155892501200702510
  6. Wesdeniotis C., Williams-Pavlantos K., Keating A. et al. Mass spectrometry of polymers: A tutorial review // Mass Spectrom. Rev. 2023. V. 43. Iss. 3. P. 472–476. https://doi.org/10.1002/mas.21844
  7. Chashechkin Yu.D., Prokhorov V.E. Vliianie elektricheskogo polia na dinamiku strukturnykh komponentov techeniia pri gravitatsionnom otryve kapli vody // Izvestiia RAN. Mekhanika zhidkosti i gaza. 2024. № 3. S. 29–42.
  8. Löwe J., Kempf M., Hinrichsen V. Mechanical and Electrical Phenomena of Droplets Under the Influence of High Electric Fields // Droplet Dynamics Under Extreme Ambient Conditions / Eds. K. Schulte, C. Tropea, B. Weigand. Cham: Springer, 2022. https://doi.org/10.1007/978-3-031-09008-0_18
  9. Santra S., Behera N., Chakraborty S. Modulating droplet electrophydrodynamics via the interplay of extensional flow and an alternating current electric field // Physics of Fluids. 2024. V. 36. 102017. https://doi.org/10.1063/5.0231224
  10. Chashechkin Yu.D., Prokhorov V.E. Aero- i gidroakustika udara svobodno padaiushchei kapli o poverkhnost' vody // DAN. 2010. T. 434. № 1. S. 51–55.
  11. Sanderson H., Czub M., Jakacki J. et al. Environmental impact of the explosion of the Nord Stream pipelines // Sci. Rep. 2023. V. 13. 19923. https://doi.org/10.1038/s41598-023-47290-7
  12. Kathiravelu G., Lucke T., Nichols P. Rain Drop Measurement Techniques: A Review // Water. 2016. V. 8. № 1. 29. https://doi.org/10.3390/w8010029
  13. Guo Zhen Z., Zhao Hui L., De Yong F. Experiments on ring wave packet generated by water drop // Chin. Sci. Bull. 2008. V. 53. P. 1634–1638. https://doi.org/10.1007/s11434-008-0246
  14. Prokhorov V.E. Underwater gas bubbles produced by droplet impact: mechanism to trigger volumetric oscillations // Phys. Fluids. 2023. V. 35. 033314. https://doi.org/10.1063/5.0140484
  15. Chashechkin Yu.D., Ilinykh A.Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Avions. 2023. V. 12. № 4. 374. https://doi.org/10.3390/axioms12040374
  16. Landau L.D., Lifshits E.M. Gidrodinamika. M.: Nauka, 1986.
  17. Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Avions. 2021. V. 10. 286. https://doi.org/10.3390/axioms10040286
  18. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOs-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471–502.
  19. Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. Colloid Interface Sci. 1999. V. 213. № 1. P. 218–237. https://doi.org/10.1006/jcis.1999.6136
  20. UIU "GFK IPMekh RAN": Gidrofizicheskii kompleks dlia modelirovaniia gidrodinamicheskikh protsessov v okruzhaiushchei srede i ikh vozdeistviia na podvodnye tekhnicheskie ob"ekty, a takzhe rasprostraneniia primesei v okeane i atmosfere. https://ipmnet.ru/uniqequjp/gfk/
  21. Chashechkin Yu.D. Zakonomernosti raspredeleniia veshchestva svobodno padaiushchei okrashennoi kapli v prozrachnoi prinimaiushchei zhidkosti (obzor) // Izvestiia RAN. Mekhanika zhidkosti i gaza // 2025. № 1. S. 34–76.
  22. Prokhorov V.E. Acoustics of oscillating bubbles when a drop hits the water surface // Phys. Fluids. 2021. V. 33. 083314. https://doi.org/10.1063/5.0058582
  23. Chashechkin Yu.D., Il'inykh A.Iu. Razryv spadaiushchego vspleska – dinamicheskogo sleda sliianiia svobodno padaiushchei kapli s pokoiashcheisia prinimaiushchei zhidkost'iu // Doklady RAN. Fizika, tekhnicheskie nauki. 2022. T. 505. S. 50–58.
  24. Gillon G., Dere C., Genevaux J.-M. et al. A new insight on a mechanism of air-borne and underwater sound of a drop impacting a liquid surface // Phys. Fluids. 2020. V. 32. № 6. 062004.
  25. Li E.Q., Thoraval M.-J., Marston J.O. et al. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).