Fluoride fluids: solubility of NaF cr in water at temperatures of 5‒443°C and thermodynamic properties of F – and NaF aq
- 作者: Tarnopolskaia M.E.1, Reukov V.L.1, Akinfiev N.N.1, Aranovich L.Y.1, Zotov A.V.1
-
隶属关系:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- 期: 卷 521, 编号 1 (2025)
- 页面: 87-92
- 栏目: GEOCHEMISTRY
- ##submission.dateSubmitted##: 20.08.2025
- ##submission.datePublished##: 15.12.2025
- URL: https://bakhtiniada.ru/2686-7397/article/view/305234
- DOI: https://doi.org/10.31857/S2686739725030105
- EDN: https://elibrary.ru/ftwtoq
- ID: 305234
如何引用文章
详细
The solubility of NaFcr (villiaumite) in water was experimentally determined for the first time in a wide range of temperatures T = 5‒443°C and pressures P = 1‒1000 bar. At high TP-parameters, the solubility was 1.5‒4 times lower than the values predicted by the SUPCRT97 thermodynamic database. Within the HKF model, the thermodynamic properties of NaFaq were estimated and the HKF parameters of the basic ion F–, necessary for describing its properties in the region of elevated (>100°C) temperatures, were significantly refined. The obtained experimental data allow to estimate the maximum possible level of fluorine concentration in hydrothermal alkaline fluids, which is determined by the solubility of NaFcr.
作者简介
M. Tarnopolskaia
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: mashatarnopolskaya@yandex.ru
Moscow, Russia
V. Reukov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: mashatarnopolskaya@yandex.ru
Moscow, Russia
N. Akinfiev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: mashatarnopolskaya@yandex.ru
Moscow, Russia
L. Aranovich
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: mashatarnopolskaya@yandex.ru
Moscow, Russia
A. Zotov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mashatarnopolskaya@yandex.ru
Moscow, Russia
参考
- Zaraisky G.P., Korzhinskaya V.S., Kotova N.P. Experimental Studies of Та2О5 and columbite-tantalite solubility in fluoride solutions from 300 to 550˚C and 50 to 100 MPa // Miner. Petrol. 2010. V. 99. P. 287–300.
- Salvi S., Fontan F., Monchoux P., Williams-Jones A.E., Moine B. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex (Morocco) // Econ. Geol. 2000. V. 95. P. 559–576.
- Reynolds J.G., Belsher J.D. A Review of Sodium Fluoride Solubility in Water // J. Chem. Eng. Data. 2017. V. 62. № 6. P. 1743–1748.
- Wagner W., Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 387–535.
- Tanger J.C., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard // American Journal of Science 1988. V. 288. P. 19–98.
- Шваров Ю.В. Hch: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898–903.
- Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV. Calculation of activity coefficient, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 KB // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.
- Majer V., Obšil M., Hefter G. et al. Volumetric behavior of aqueous NaF and KF solutions up to 350°C and 30 MPa // J. Solution Chem. 1997. V. 26. P. 847–875.
- Bandura A.V., Lvov S.N. The Ionization Constant of Water over Wide Ranges of Temperature and Density Special Collection: International Water Property Standards Crossmark: Check for Updates // J. Phys. Chem. 2006. V. 35. P. 15–30.
- Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C // Comp. Geosci. 1992. V. 18. P. 899–947.
- Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин. М.: Атом- издат, 1971.
- Глушко В.П. Термические константы веществ. Выпуск X. Ч. 1. М., 1981.
- Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S // Geological Survey Bulletin 2131, U.S. Government Printing Office, Washington, 1995.
- Shvarov Yu.V. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Appl. Geochem. 2015. V. 55. P. 17–27.
- Равич М.И. Водно-солевые системы при повышенных температурах и давлениях. М.: Наука, 1974. С. 151.
- Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key values for thermodynamics. New York: Hemishere Publishing Corp., 1988.
- Лукьянова Е.В., Зотов А.В. Определение константы ассоциации NaFaq в системе NaF–NaCl–H2O при 25–75°C потенциометрическим методом // Физическая химия. 2017. Т. 91. № 4. С. 648–653.
- Richardson C.K., Holland H.D. The solubility of fluorite in hydrothermal solutions, an experimental study // Geochim. Cosmochim. Acta. 1979. V. 43. P. 1313–1325.
- Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmo. Acta. 1997. V. 61. № 5. P. 907–950.
- Manohar S., Atkinson G. The Effect of High Pressure on the Ion Pair Equilibrium Constant of Alkali Metal Fluorides: A Spectrophotometric Study // J. Solution Chem. 1993. V. 22. № 10. P. 859–872.
补充文件
