Forecast of seismic and geodynamic conditions before and after the earthquake of March 28, 2025, M7.7, in Myanmar
- Authors: Baranov S.1, Shebalin P.N.1, Krushelnitskii K.V.1, Steblov G.M.1, Vladimirova I.S.2, Vorobieva I.A.1, Kossobokov V.G.1, Matochkina S.D.1,3, Nekrasova A.K.1, Filippova A.I.1, Fomochkina A.S.4,5, Vinberg F.E.1
-
Affiliations:
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Shirshov Institute of Oceanology of the Russian Academy of Scieces
- Moscow State University
- Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
- Gubkin National University of Oil and Gas
- Issue: Vol 523, No 2 (2025)
- Section: SEISMOLOGY
- Submitted: 28.04.2025
- Accepted: 05.05.2025
- Published: 11.06.2025
- URL: https://bakhtiniada.ru/2686-7397/article/view/289669
- ID: 289669
Cite item
Full Text
Abstract
The paper presents a comprehensive analysis of the seismic and geodynamic conditions before and after the March 28, 2025, M7.7 earthquake in Myanmar. The results of a global test of the M8 algorithm for predicting earthquakes with a magnitude of 7.5 and greater for this region are considered. It is analyzed how expected the earthquake was in terms of long-term seismic hazard based on seismicity data alone. A geodynamic analysis is performed to assess the seismogenic potential of the Sagaing fault before and after the earthquake. The risk of aftershocks is assessed. A model of the earthquake source is constructed to test the supershare property of the rupture and interpret the anomalously large length in the US Geological Survey model.
Full Text

About the authors
Sergey Baranov
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: bars.vl@gmail.com
ORCID iD: 0000-0002-1960-6120
SPIN-code: 5896-4360
Scopus Author ID: 36836852900
Moscow
Peter N. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Author for correspondence.
Email: p.n.shebalin@gmail.com
ORCID iD: 0000-0002-3361-3773
SPIN-code: 1225-4032
Scopus Author ID: 36947247500
ResearcherId: G-6695-2011
Russian Federation, Moscow
Kirill V. Krushelnitskii
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: kirillkrush@mail.ru
ORCID iD: 0009-0002-1638-0688
SPIN-code: 1644-6292
Russian Federation, Moscow, 117997
Grigory M. Steblov
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: steblov@mitp.ru
ORCID iD: 0000-0002-9157-8099
SPIN-code: 1248-3826
Scopus Author ID: 6603285600
Moscow, 117997
Irina S. Vladimirova
Shirshov Institute of Oceanology of the Russian Academy of Scieces
Email: ir.s.vladimirova@yandex.ru
ORCID iD: 0000-0002-7301-7183
SPIN-code: 6764-7090
Scopus Author ID: 53985529300
Candidate of Sciences in Physics and Mathematics
Russian Federation, MoscowInessa A. Vorobieva
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: vorobiev@mitp.ru
ORCID iD: 0000-0003-1993-2433
SPIN-code: 6114-3390
Scopus Author ID: 6602295466
Moscow
Vladimir G. Kossobokov
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: volodya@mitp.ru
ORCID iD: 0000-0002-3505-7803
SPIN-code: 8204-6050
Scopus Author ID: 57190025189
Moscow
Sofiya D. Matochkina
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Moscow State University
Email: sofijamat@mail.ru
SPIN-code: 2387-8817
Faculty of Physics
Russian Federation, Moscow, 117997; Moscow, 119234Anastasia K. Nekrasova
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: nastia@mitp.ru
ORCID iD: 0000-0003-1639-1088
SPIN-code: 8770-1868
Scopus Author ID: 12240595700
Moscow, 117997
Alena I. Filippova
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: aleirk@mail.ru
ORCID iD: 0000-0001-9793-1685
SPIN-code: 9924-5029
Scopus Author ID: 57224828098
Moscow, 117997
Anastasia S. Fomochkina
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences; Gubkin National University of Oil and Gas
Email: Nastia-f@bk.ru
ORCID iD: 0000-0001-8930-0883
SPIN-code: 5503-4845
Scopus Author ID: 57208836200
Russian Federation, Moscow, 117997; Moscow, 119991
Fedor E. Vinberg
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: winberg@mitp.ru
SPIN-code: 8023-1936
Scopus Author ID: 55646416100
Doctor of physico-mathematical sciences, Professor
MoscowReferences
- Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10 (12), 611–616, doi: 10.1130/0091-7613.
- Giardini D. The global seismic hazard assessment program (GSHAP) – 1992/1999. Ann. Geophys. 1999. 42(6): 957–974. https://doi.org/10.4401/ag-3780.
- Pagani M, Garcia-Pelaez J, Gee R, Johnson K, Poggi V, Styron R, Weatherill G, Simionato M, Viganò D, Danciu L, Monelli D (2018). Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 - December 2018), https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-HAZARD-MAP-2018.1.
- Hurukawa N., Maung P.M. Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocatin of historical earthquakes since 1918 // Geophysical Research Letters. 2010. V. 38, L01310.
- Xiong X., Shan B., Zhou Y.M., Wei S.J., Li Y.D., Wang R.J., Zheng Y. Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard // Geophysical Research Letters. 2017. V. 44. P. 4781–4789.
- Кособоков В. Г., Щепалина П. Д. (2020) Времена повышенной вероятности возникновения сильнейших землетрясений мира: 30 лет проверки гипотезы в реальном времени, Физика Земли, 2020, № 1, с. 1–10. https://doi.org/10.1134/S0002333720010068.
- Филиппова А.И., Фомочкина А.С. Очаговые параметры сильных Турецких землетрясений 6 февраля 2023 г. (Mw=7.8 и Mw=7.7) по данным поверхностных волн // Физика Земли. 2023. № 6. С. 89–102. doi: 10.31857/S0002333723060078.
- Баранов С.В., Шебалин П.Н., Воробьева И.А., Селюцкая О.В. Автоматизированная оценка опасности афтершоков землетрясения в Турции 06.02.2023 г., Mw 7.8* // Физика Земли. 2023. № 6. C. 133-141. doi: 10.31857/S0002333723060042
- Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. № 2. P. 1264-1269. doi: 10.1093/gji/ggaa252
- Healy J.H., Kossobokov V.G., Dewey J.W. A test to evaluate the earthquake prediction algorithm, M8. USGS Open-File Report 92-401. 1992. 23 p. with 6 Appendices. https://doi.org/10.3133/ofr92401
- Kossobokov V.G., Keilis‑Borok V.I., Smith S.W. Localization of intermediate‑term earthquake prediction. J. Geophys. Res. 1990. Vol. 95. No. B12. P. 19763‑19772.
- Gerstenberger, M.C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020. V. 58. e2019RG000653. doi: 10.1029/2019RG000653
- Шебалин П.Н. Современные подходы к сокращению ущерба от землетрясений // Вестник Российской академии наук. 2024. Т. 94. № 8. С. 738-748. doi: 10.31857/S0869587324080058 EDN:FDAHFF.
- Шебалин П.Н., Баранов С.В., Воробьева И.А., Греков Е.М., Крушельницкий К.В., Скоркина А.А., Селюцкая О.В. О моделировании сейсмического режима в задачах оценки сейсмической опасности // Доклады Российской академии наук. Науки о Земле. 2024. Т. 515. № 1. С. 95-109. doi: 10.31857/S2686739724030121 EDN:HQDOAN
- Di Giacomo, D.; Bondar, I.; Storchak, D.A.; Engdahl, E.R.; Bormann, P.; Harris, J. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment // Phys. Earth Planet. Inter. 2015. Vol. 239, P. 33-47. doi: 10.1016/j.pepi.2014.06.005.
- Крушельницкий К.В., Шебалин П.Н., Воробьева И.А., Селюцкая О.В., Антипова А.О. Границы применимости закона Гутенберга–Рихтера в задачах оценки сейсмической опасности и риска // Физика Земли. 2024. № 5. С. 69-84. doi: 10.31857/S0002333724050058 EDN:EJZGGD
- Mon C.T., Gong X., Wen Y., Jiang M., Zhiang M., Chen Q.‚ÄêF., Zhang M., Hou G., Thant M., Sein K., He Y. Insight into major active faults in Central Myanmar and the related geodynamic sources // Geophysical Research Letters. 2020. V. 47, e2019GL086236.
- Tin T.Z.H., Nishimura T., Hashimoto M., Lindsey E.O., Aung L.T., Min S.M., Thant M. Present-day crustal deformation and slip rate along the southern Sagaing fault in Myanmar by GNSS observation // Journal of Asian Earth Sciences. 2022. V. 228. 105125.
- Blewitt G., Hammond W.C., Kreemer C. Harnessing the GPS data explosion for interdisciplinary science // Eos. 2018. V. 99, https://doi.org/10.1029/2018EO104623.
- Okada Y. Surface deformation due to shear and tensile faults in a half space // Bulletin of the Seismological Society of America. 1985. V. 75. N. 4. P. 1135–1154.
- DeMets C., Gordon R.G., Argus D.F., Stein S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions // Geophysical Research Letters. 1994. V. 21. N. 20. P. 2191–2194.
- Savage J.C. A dislocation model of strain accumulation and release at a subduction zone. // Journal of Geophysical Research. 1983. V. 88. N. B6. P. 4984–4996.
- Pollitz F.F. Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophysical Journal International. 1996. V. 125. P. 1–14.
- Букчин Б.Г. Об определении параметров очага землетрясения по записям поверхностных волн в случае неточного задания характеристик среды // Известия АН СССР. Серия Физика Земли. 1989. № 9. С. 34–41.
- Bukchin B. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra // Tectonophysics. 1995. V. 248. P. 185–191. doi: 10.1016/0040-1951(94)00271-A
- Букчин Б.Г. Описание очага землетрясения в приближении вторых моментов и идентификация плоскости разлома // Физика Земли. 2017. № 2. С. 76–83. doi: 10.7868/S0002333717020041
- McGuire J.J., Zhao L., Jordan T.H. Predominance of unilateral rupture for a global catalog of large earthquakes // Bulletin of the Seismological Society of America. 2002. V. 92. P. 3309–3317. doi: 10.1785/0120010293
- Левшин А.Л., Яновская Т.Б., Ландер А.В., Букчин Б.Г., Бармин М.П., Ратникова Л.И., Итс Е.Н. Поверхностные сейсмические волны в горизонтально-неоднородной Земле. М.: Наука, 1986. 278 с.
- Lasserre C., Bukchin B., Bernard P., Tapponier P., Gaudemer Y., Mostinsky A., Dailu R. Source parameters and tectonic origin of the 1996 June 1 Tianzhu (Mw=5.2) and 1995 July 21 Yongen (Mw=5.6) earthquakes near the Haiyuan fault (Gansu, China) // Geophys. J. Int. 2001. V. 144. No 1. P. 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x
- Laske G., Masters G., Ma Z., Pasyanos M. Update on CRUST1.0 - A 1-degree global model of Earth's crust // Geophys. Res. Abstracts. 15 Abstract EGU 2013–2658. 2013.
- Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности 3. Динамический Закон Бота // Физика Земли. 2018. № 6. с. 129-136.
- Baranov S., Narteau C., Shebalin P. Modeling and Prediction of Aftershock Activity // Surveys in Geophysics. 2022. V. 43. № 2. P. 437-481. doi: 10.1007/s10712-022-09698-0
Supplementary files
