Long-term changes in the activity of wave disturbances in the mesopause region
- 作者: Perminov V.I.1, Pertsev N.N.1, Semenov V.A.1, Dalin P.A.2,3, Sukhodoev V.A.1
-
隶属关系:
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- Swedish Institute of Space Physics
- Space Research Institute, Russian Academy of Sciences
- 期: 卷 519, 编号 1 (2024)
- 页面: 543-549
- 栏目: CLIMATIC PROCESSES
- ##submission.dateSubmitted##: 06.03.2025
- ##submission.dateAccepted##: 06.03.2025
- ##submission.datePublished##: 20.12.2024
- URL: https://bakhtiniada.ru/2686-7397/article/view/282663
- DOI: https://doi.org/10.31857/S2686739724110186
- ID: 282663
如何引用文章
全文:
详细
According to temperature variations obtained on the basis of spectral observations of hydroxyl airglow at the Zvenigorod scientific station of A.M. Obukhov Institute of Atmospheric Physics RAS during 2000−2024, as well as on the basis of statistical analysis methods, long-term trends and dependences on solar activity were obtained for wave disturbances at mesopause altitudes (80−100 km). Using digital frequency filtering, their activities were determined in three regions of wave periods 0.7−2.0, 1.4−4.1 and 2.7−8.2 hours with maxima at 1, 2 and 4 hours. The root-mean-square values of temperature half-differences served as an indicator of wave activity. Both year-round and average seasonal (winter, summer) values were analyzed. As a result, it was established that wave activity has positive trends with their dependence on the frequency band of disturbances (in winter the trend is greater in the high-frequency band, in summer the trend is greater in the low-frequency band). The dependence on solar activity is positive. Its values are greater for the high-frequency band of disturbances, as well as in winter.
关键词
作者简介
V. Perminov
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: v.perminov@rambler.ru
俄罗斯联邦, Moscow
N. Pertsev
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Email: v.perminov@rambler.ru
俄罗斯联邦, Moscow
V. Semenov
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Email: v.perminov@rambler.ru
academician of the RAS
俄罗斯联邦, MoscowP. Dalin
Swedish Institute of Space Physics; Space Research Institute, Russian Academy of Sciences
Email: v.perminov@rambler.ru
瑞典, Kiruna; Moscow, Russian Federation
V. Sukhodoev
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Email: v.perminov@rambler.ru
俄罗斯联邦, Moscow
参考
- Семенов А.И., Шефов Н.Н., Фишкова Л.М., Лысенко Е.В., Перов С.П., Гивишвили Г.В., Лещенко Л.Н., Сергеенко Н.П. Об изменении климата верхней и средней атмосферы // Доклады АН СССР. 1996. Т. ٣٤٩. № ١. С. ١٠٨−١١٠.
- Golitsyn G.S., Semenov A.I., Shefov N.N., Fishkova L.M., Lysnko E.V., Perov S.P. Long-term temperature trends in atmosphere // Geophys. Res. Let. 1996. V. 23. № 14. P. 1741−1744.
- Zhao X.R., Sheng Z., Shi H.Q., Weng L.B., He Y. Middle atmosphere temperature changes derived from SABER observations during 2002–20 // J. Clim. 2021. V. 34. P. 7995−8012.
- Bailey S.M, Thurairajah B., Hervig M.E., Siskind D.E., Russell III J.M., Gordley L.L. Trends in the polar summer mesosphere temperature and pressure altitude from satellite observations // J. Atmos. Sol.-Terr. Phys. 2021. V. 220. 105650.
- Перминов В.И., Перцев Н.Н., Далин П.А., Семенов В.А., Суходоев В.А., Железнов Ю.А., Орехов М.Д. Многолетний тренд температуры в области мезопаузы по наблюдениям гидроксильного излучения в Звенигороде // Геомагнетизм и аэрономия. ٢٠٢٤. Т. ٦٤. № ١. С. ١٠١–١١٢.
- French W.J.R., Mulligan F.J., Klekociuk A.R. Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends // Atmos. Chem. Phys. 2020. V. 20. P. 6379–6394.
- Kalicinsky C., Kirchhoff S., Knieling P., Zlotos L.O. Long-term variations in the mesopause region derived from OH*(3,1) rotational temperature observations at Wuppertal, Germany, from 1988−2022 // Adv. Space Res. 2024. V. 73. № 7. P. 3398−3407.
- Baker D.J., Stair A.T. Rocket measurements of the altitude distributions of the hydroxyl airglow // Physica Scripta. 1988. № 37. P. 611−622.
- Garcia R.R., Yue J., Russell J.M. Middle atmosphere temperature trends in the twentieth and twenty‐first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM) // J. Geophys. Res. − Space Physics. 2019. V. 124. P. 7984–7993.
- Qian L., Burns A.G., Solomon S.C., Wang W. Carbon dioxide trends in the mesosphere and lower thermosphere // J. Geophys. Res. − Space Phys. 2017. V. 122. P. 4474–4488.
- Solomon S.C., Liu H.-L., Marsh D.R., McInerney J.M., Qian L., Vit F.M. Whole atmosphere simulation of anthropogenic climate change // Geophys. Res. Lett. 2018. V. 45. P. 1567–1576.
- Andrews D.G., Holton J.R., Leovy C.B. Middle Atmosphere Dynamics. San Diego: Academic Press, 1987. 489 p.
- Перминов В.И., Семенов А.И., Шефов Н.Н. О вращательной температуре гидроксильной эмиссии // Геомагнетизм и аэрономия. ٢٠٠٧. Т. ٤٧. № ٦. С. ٧٩٨–805.
- Pertsev N., Perminov V. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia // Ann. Geophysicae. 2008. V. 26. № 5. P. 1049−1056.
- Gavrilov N.M., Popov A.A., Dalin P., Perminov V.I., Pertsev N.N., Medvedeva I.V., Ammosov P.P., Gavrilyeva G.A., Koltovskoi I.I. Multiyear variations of time-correlated mesoscale OH temperature perturbations near the mesopause at Maymaga, Tory and Zvenigorod // Adv. Space Res. 2024. V. 73. No. 7. P. 3408−3422.
- Перминов В.И., Семенов А.И., Медведева И.В., Перцев Н.Н. Изменчивость температуры в области мезопаузы по наблюдениям гидроксильного излучения на средних широтах // Геомагнетизм и аэрономия. ٢٠١٤. Т. ٥٤. № ٢. С. ٢٤٦−٢٥٦.
- Gossard E.E., Hook W.H. Waves in the atmosphere. New York: Elsevier Scientific Pub. Co. 1975. 456 p.
- Jacobi Ch. Long-term trends and decadal variability of upper mesosphere/lower thermosphere gravity waves at midlatitudes // J. Atmos. Sol.-Terr. Phys. 2014. V. 118. P. 90−95.
- Yigit E., Medvedev A.S. Heating and cooling of the thermosphere by internal gravity waves // Geophys. Res. Lett. 2009. V. 36. L14807. https://doi.org/10.1029/2009GL038507
- Hickey M.P., Walterscheid R.L., Schubert G. Gravity wave heating and cooling of the thermosphere: sensible heat flux and viscous flux of kinetic energy // J. Gephys. Res. 2011. V. 116. A12326. https://doi.org/10.1029/2011JA016792
- Gavrilov N.M., Kshevetskii S.P., Koval A.V. Thermal effects of nonlinear acoustic-gravity waves propagating at thermospheric temperatures matching high and low solar activity // J. Atmos. Sol.-Terr. Phys. 2020. V. 208. 105381.
补充文件

