HELIUM ISOTOPIC COMPOSITION IN ALKALINE INTRUSIONS OF THE HOVSGOL AREA, NORTHWESTERN MONGOLIA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The helium isotope composition of fluid inclusions has been studied in magnetite from alkaline and subalkaline intrusions of the Hovsgol area in NW Mongolia. The measured content of 4He is in the range from 6.6 × 10–7 to 114 × 10–7 см3/г. The 3He/4He isotopic ratio of most samples varies within 0.23–0.59 Ra and may indicate the presence of helium from different sources in the magmatogenic fluid. The largest amount of mantle He (2.51 Ra) is hosted by the magnetite of the subalkaline gabbro. During the generation of primary magma, which probably involved either SCLM-type material or a plume-like reservoir less enriched in 3He, the mantle component accounted for approximately 40–60%. In the evolution of foid and alkali-syenite melts, its share did not exceed ~10–15% due to mixing with crustal radiogenic He. We assume that the intrusions interacted with fragments of Precambrian accretionary-collisional complexes of the Tuva-Mongolian terrane. Such mixing of He isotopes in melts and fluids may be regarded as circumstantial evidence supporting the development of mantle magmatism at the active continental margin.

About the authors

V. V. Vrublevskii

National Research Tomsk State University

Author for correspondence.
Email: vasvr@yandex.ru
Russian, Tomsk

E. N. Kozlov

Geological Institute of Kola Science Centre of Russian Academy of Sciences

Email: vasvr@yandex.ru
Russian, Apatity

E. N. Fomina

Geological Institute of Kola Science Centre of Russian Academy of Sciences

Email: vasvr@yandex.ru
Russian, Apatity

I. F. Gertner

National Research Tomsk State University

Email: vasvr@yandex.ru
Russian, Tomsk

A. V. Vishnevskii

Sobolev Institute of Geology and Mineralogy, Siberian branch of Russian Academy of Sciences; National Research Novosibirsk State University

Email: vasvr@yandex.ru
Russian, Novosibirsk; Russian, Novosibirsk

R. A. Shelepaev

Sobolev Institute of Geology and Mineralogy, Siberian branch of Russian Academy of Sciences; National Research Novosibirsk State University

Email: vasvr@yandex.ru
Russian, Novosibirsk; Russian, Novosibirsk

A. S. Semiryakov

National Research Tomsk State University

Email: vasvr@yandex.ru
Russian, Tomsk

M. Yu. Sidorov

Geological Institute of Kola Science Centre of Russian Academy of Sciences

Email: vasvr@yandex.ru
Russian, Apatity

A. V. Gudkov

Geological Institute of Kola Science Centre of Russian Academy of Sciences

Email: vasvr@yandex.ru
Russian, Apatity

A. A. Petlina

National Research Tomsk State University

Email: vasvr@yandex.ru
Russian, Tomsk

O. V. Udoratina

Institute of Geology Komi, Ural branch of Russian Academy of Sciences

Email: vasvr@yandex.ru
Russian, Syktyvkar

References

  1. Ernst R.E. Large igneous provinces. Cambridge: Cambridge University Press, 2014. 630 p.
  2. Gwalani L.G., Moore K., Simonetti A. Carbonatites, alkaline rocks and the mantle: a special issue dedicated to Keith Bell // Mineralogy and Petrology. 2010. V. 98. P. 5–10.
  3. Nikiforov A.V., Yarmolyuk V.V. Late Mesozoic carbonatite provinces in Central Asia: Their compositions, sources and genetic settings // Gondwana Research. 2019. V. 69. P. 56–72.
  4. Vrublevskii V.V., Nikiforov A.V., Sugorakova A.M., Kozulina T.V. Petrogenesis and tectonic setting of the Cambrian Kharly alkaline–carbonatite complex (Sangilen Plateau, Southern Siberia): Implications for the Early Paleozoic evolution of magmatism in the western Central Asian Orogenic Belt // Journal of Asian Earth Sciences. 2020. V. 188. 104163.
  5. Врублевский В.В., Гертнер И.Ф. Палеозойские щелочно-мафитовые интрузии Кузнецкого Алатау, их источники и условия образования расплавов // Петрология. 2021. Т. 29. № 1. С. 31–63.
  6. Doroshkevich A.G., Ripp G.S., Izbrodin I.A., Savaten-kov V.M. Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical and isotope (O, C, D, Sr and Nd) data // Lithos. 2012. V. 152. P. 157–172.
  7. Izbrodin I., Doroshkevich A., Rampilov M., Lastochkin E., Savatenkov V., Posokhov V., Khubanov V., Redina A. Age and petrogenesis of scapolite gabbro from the Bambuy intrusion (Vitim plateau, Russia) and their tectonic significance // International Journal of Earth Sciences. 2022. V. 111. P. 1859–1883.
  8. Stuart F.M., Lass-Evans S., Fitton J. G., Ellam R.M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes // Nature. 2003. V. 424. N 6944. P. 57–59.
  9. Gautheron C., Moreira M. Helium signature of the subcontinental lithospheric mantle // Earth and Planetary Science Letters. 2002. V. 199. P. 39–47.
  10. Mamyrin B.A., Tolstikhin I.N. Helium isotopes in nature. Amsterdam, New York: Elsevier, 1984. 288 p.
  11. Яшина Р.М. Щелочной магматизм складчато-глыбовых областей (на примере южного обрамления Сибирской платформы). М.: Наука, 1982. 274 с.
  12. Vrublevskii V.V., Gertner I.F., Ernst R.E., Izokh A.E., Vishnevskii A.V. The Overmaraat-Gol alkaline pluton in Northern Mongolia: U–Pb age and preliminary implications for magma sources and tectonic setting // Minerals. 2019. V. 9 (3). Art. 170.
  13. Скиба В.И., Каменский И.Л., Ганнибал М.А., Пахомовский Я.А. Распределение изотопов гелия и аргона в амфиболе из кварц-полевошпатовой жилы контактовой зоны Понойского массива (Кольский полуостров) // Записки РМО. 2018. Т. 147. № 4. С. 96–107.
  14. Буйкин А.И., Камалеева А.И., Сорохтина Н.В. К вопросу об эффективности разделения захваченных и образованных in situ компонентов благородных газов при дроблении образцов в вакууме // Геохимия. 2018. № 6. С. 586–593.
  15. Moreira M., Doucelance R., Kurz M.D., Dupré B., Allègre C.J. Helium and lead isotope geochemistry of the Azores Archipelago // Earth and Planetary Science Letters. 1999. V. 169. P. 189–205.
  16. Kendrick M.A., Burgess R., Pattrick R.A.D., Turner G. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids // Geochimica et Cosmochimica Acta. 2001. V. 65. P. 2651–2668.
  17. Кузьмичев А.Б. Тектоническая история Тувино-Монгольского массива: раннебайкальский, позднебайкальский и раннекаледонский этапы. (Ред. Е.В. Скляров). Москва: ПРОБЕЛ-2000, 2004. 192 с.
  18. Ярмолюк В.В., Кузьмин М.И., Воронцов А.А. Конвергентные границы западно-тихоокеанского типа и их роль в формировании Центрально-Азиатского складчатого пояса // Геология и геофизика. 2013. Т. 54. № 12. С. 1831–1850.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (61KB)

Copyright (c) 2023 В.В. Врублевский, А.А. Петлина, А.В. Гудков, М.Ю. Сидоров, А.С. Семиряков, Р.А. Шелепаев, А.В. Вишневский, И.Ф. Гертнер, Е.Н. Фомина, Е.Н. Козлов, О.В. Удоратина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».