X-RAY COMPUTED MICROTOMOGRAPHY OF SULFIDE MINERALS: MICROINCLUSION STUDIES AND IMPLICATIONS FOR ORE GENESIS Sm–Nd DATING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A microtomographic study of the internal structure of sulfide minerals from ore varieties of rocks of two industrial deposits of the Arctic zone of the Russian Federation – disseminated ore of the Pilgujarvi Cu–Ni deposit of Pechenga and ore gabbronorites of the platinum-bearing Fedorovo-Pansky complex (Kola Peninsula) was carried out. It is shown that all studied sulfide samples have a homogeneous structure without obvious defects or silicate inclusions larger than 1 µm. The absence of silicate microinclusions larger than one micron in sulfides suggests an isomorphic form of REE occurrence in sulfides and, to some extent, eliminates the debatable problem of the influence of microinclusions on the results of Sm–Nd isotope-geochronological studies of sulfides. The presence of smaller (10–500 nm) silicate microinclusions is highly likely to be unable to control the total REE budget in a sulfide mineral. The conclusion about the absence of a significant effect of microinclusions on the obtained ages is confirmed by the results of Sm–Nd dating using sulfides from the same mineral samples: the Sm–Nd ages of the ores of the Pilgujarvi Cu–Ni deposit were 1965 ± 87 Ma; ore gabbronorites of the Fedorovo-Pansky complex – 2482 ± 61 Ma, which is in good agreement with the dates obtained earlier using other isotopic systems (U–Pb, Re–Os).

About the authors

P. A. Serov

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Author for correspondence.
Email: serov@geoksc.apatity.ru
Russian, Apatity

R. I. Kadyrov

Kazan (Volga Region) Federal University

Email: serov@geoksc.apatity.ru
Russian, Kazan

A. O. Kalashnikov

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Email: serov@geoksc.apatity.ru
Russian, Apatity

References

  1. Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. С.-Пб.: Наука. 2004. 174 с.
  2. Баянова Т.Б., Рундквист Т.В., Серов П.А., Корчагин А.У., Карпов С.М. Палеопротерозойский Федорово-Панский расслоенный ЭПГ-комплекс северо-восточной части Арктического региона Балтийского щита: новые U–Pb (по бадделеиту) и Sm–Nd (по сульфидным минералам) данные // ДАН. 2017. Т. 472. № 1. С. 52–56.
  3. Римская-Корсакова М.Н., Дубинин А.В. Редкоземельные элементы в сульфидах подводных гидротермальных источников Атлантического океана // ДАН. 2003. Т. 389. № 5. С. 672–676.
  4. Серов П.А., Екимова Н.А., Баянова Т.Б., Митрофанов Ф.П. Сульфидные минералы – новые геохронометры при Sm-Nd датировании рудогенеза расслоенных мафит-ультрамафитовых интрузий Балтийского щита // Литосфера. 2014. № 4. С. 11–21.
  5. Смолькин В.Ф., Лохов Д.К., Скублов С.Г., Сергее-ва Л.Ю., Сергеев С.А. Палеопротерозойский рудоносный габбро-перидотитовый комплекс Кеулик-Кенирим (Кольский регион) – новое проявление ферропикритового магматизма // Геология рудных месторождений. 2018. Т. 60. № 2. С. 164–197.
  6. Aibai A., Deng X., Pirajno F., Han S., Liu W., Li X., Chen X., Wu Y., Liu J., Chen Y. Origin of ore-forming fluids of Tokuzbay gold deposit in the South Altai, northwest China: Constraints from Sr–Nd–Pb isotopes // Ore Geol. Rev. 2021. V. 134. 104165.
  7. Bai Z.J., Zhong H., Hu R.Z., Zhu W.G. Early sulfide saturation in arc volcanic rocks of southeast China: Implications for the formation of co-magmatic porphyry–epithermal Cu–Au deposits // Geochim. et Cosmochim. Acta. 2020. V. 280. P. 66–84.
  8. Chen G., Shao W., Sun D. Genetic mineralogy of gold deposits in Jiaodong region with emphasis on gold prospecting. Chongqing Publishing House, Chongqing. 1989. 452 p.
  9. Kadyrov R., Glukhov M., Statsenko E., Galliulin B. Enigma of ferruginous inclusions in Permian evaporites // Arab. J. Geosci. 2020. V. 13. 1058.
  10. Kadyrov R., Statsenko E., Galiullin B. The porous space structure of domanik shales in the east of Russian plate // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2018. V. 18. № 1.4. P. 907–914.
  11. Kong P., Deloule E., Palme H. REE-bearing sulfide in Bishunpur (LL3.1), a highly unequilibrated ordinary chondrite // Earth Plan. Sci. Lett. 2000. V. 177. P. 1–7.
  12. Lodders K. An experimental and theoretical study of rare-earth-element partitioning between sulfides (FeS, CaS) and silicate and applications to enstatite achondrites // Meteorifics and Planetary Science. 1996. V. 31. P. 149–166.
  13. Mao G., Hua R., Gao J., Li W., Zhao K., Long G., Lu H. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China // J. Rare Earths. 2009. V. 27. P. 1079–1087.
  14. Mitrofanov F.P., Bayanova T.B., Ludden J.N., Korcha-gin A.U., Chashchin V.V., Nerovich L.I., Serov P.A., Mitrofanov A.F., Zhirov D.V. Origin and Exploration of the Kola PGE-bearing Province: New Constraints from Geochronology / Ore Deposits: Origin, Exploration, and Exploitation / Edited by Sophie Decree and Laurence Robb // Geophysical Monograph Series. Wiley. 2019. P. 3–36.
  15. Morgan J.W., Wandless G.A. Rare earth element distribution in some hydrothermal elements: evidence for crystallographic control // Geochim. Cosmochim. Acta. 1980. V. 44. P. 973–980.
  16. Ni Z.-Y., Chen Y.-J., Li N., Zhang H. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting // Ore Geology Reviews. 2012. V. 46. P. 60–67.
  17. Serov P.A., Bayanova T.B. The Sulfide/Silicate Coefficients of Nd and Sm: Geochemical “Fingerprints” for the Syn- and Epigenetic Cu-Ni-(PGE) Ores in the NE Fennoscandian Shield // Minerals. 2021. V. 11. 1069.
  18. Walker R.J., Morgan J.W., Hanski E.J., Smolkin V.F. Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes // Geochim. et Cosmochim. Acta 1997. V. 61. P. 3145–3160.
  19. Wohlers A., Wood B.J. Uranium, thorium and REE partitioning into sulfide liquids: Implications for reduced S-rich bodies // Geochim. et Cosmochim. Acta. 2017. V. 205. P. 226–244.
  20. Zeng Z., Ma Y., Yin X., Selby D., Kong F., Chen S. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems // Geochem. Geophys. Geosyst. 2015. V. 18. P. 1541–1576.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (95KB)
3.

Download (875KB)

Copyright (c) 2023 П.А. Серов, Р.И. Кадыров, А.О. Калашников

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».