Система HLA и рак
- Авторы: Камилова Т.А.1, Голота А.С.1, Вологжанин Д.А.1,2, Шнейдер О.В.1, Щербак С.Г.1,2
-
Учреждения:
- Городская больница № 40 Курортного административного района
- Санкт-Петербургский государственный университет
- Выпуск: Том 3, № 4 (2021)
- Страницы: 348-392
- Раздел: НАУЧНЫЙ ОБЗОР
- URL: https://bakhtiniada.ru/2658-6843/article/view/79387
- DOI: https://doi.org/10.36425/rehab79387
- ID: 79387
Цитировать
Полный текст
Аннотация
В этом обзоре представлена обновленная информация об антигенах HLA класса I и II при раке. Описана экспрессия HLA-антигенов в нормальных и опухолевых тканях, физиологическая организация компонентов механизма процессинга HLA-антигенов, паттерны экспрессии HLA-антигенов, связанные с выявленными к настоящему времени молекулярными и регуляторными дефектами, а также их функциональное и клиническое значение. Обобщены клинические и экспериментальные данные о сложности механизмов избегания иммунной системы, используемых опухолевыми клетками для предотвращения реакции Т и естественных клеток-киллеров. Представлено разнообразие фенотипов HLA класса I, которые могут продуцироваться опухолевыми клетками во время этого процесса. Обсуждается потенциальная способность метастатических поражений восстанавливать экспрессию HLA класса I после иммунотерапии, которая зависит от обратимого/мягкого или необратимого/ жесткого характера молекулярного механизма, ответственного за измененные фенотипы HLA класса I и определяющего прогрессирование или регресс метастатических поражений в ответ на лечение. Гены HLA класса II играют ключевую роль в соединении врожденного и адаптивного иммунитета и отторжении опухоли, когда путь иммунного уклонения через HLA-I уже установлен. Экспрессия HLA класса II в опухолевых клетках придает им способность представлять антигены, становясь менее агрессивными, и улучшает прогноз. Злокачественная опухоль как генетическое заболевание вызвана структурными изменениями генома, которые приводят к экспрессии ассоциированных с опухолью антигенов в форме структурно измененных или гиперэкспрессированных нормальных молекул. Опухоль-ассоциированный антиген распознается иммунной системой и индуцирует опосредованный Т-лимфоцитами иммунный ответ. Развивающийся рак использует различные стратегии, чтобы избежать разрушения иммунной системой хозяина. Механизмы иммунного уклонения, влияющие на экспрессию и/или функцию антигенов HLA, представляют особый интерес для онкоиммунологов, поскольку эти молекулы играют решающую роль во взаимодействии злокачественных клеток с иммунными клетками. Описаны потенциальная роль контрольных точек иммунитета в иммуносупрессии и терапевтические стратегии восстановления цитотоксичности иммунных клеток.
Полный текст
Открыть статью на сайте журналаОб авторах
Татьяна Аскаровна Камилова
Городская больница № 40 Курортного административного района
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404
к.б.н.
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. БАлександр Сергеевич Голота
Городская больница № 40 Курортного административного района
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870
к.м.н., доцент
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. БДмитрий Александрович Вологжанин
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302
д.м.н.
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-ПетербургОльга Вадимовна Шнейдер
Городская больница № 40 Курортного административного района
Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-код: 8405-1051
к.м.н.
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. БСергей Григорьевич Щербак
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-код: 1537-9822
д.м.н., профессор
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-ПетербургСписок литературы
- Foroni I, Rita Couto A, Bettencourt BF, et al. HLA-E, HLA-F and HLA-G — the non-classical side of the MHC cluster. HLA and associated important diseases. Ed. Yongzhi Xi; 2014. P. 61–109.
- Zhong C, Cozen W, Bolanos R, et al. The role of HLA variation in lymphoma aetiology and survival. J Intern Med. 2019;286(2):154–180. doi: 10.1111/joim.12911
- Torres MI, Palomeque T, Lorite P. HLA in gastrointestinal inflammatory disorders. HLA and associated important diseases. Ed. Yongzhi Xi, 2014. P. 223–246.
- Robinson J, Barker DJ, Georgiou X, et al. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48(D1):D948–D955. doi: 10.1093/nar/gkz950
- Robinson J, Halliwell JA, Hayhurst JD, et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43(Database issue):D423–431. doi: 10.1093/nar/gku1161
- Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J Hum Genet. 2017;62(3):397–405. doi: 10.1038/jhg.2016.141
- Dias FC, Castelli EC, Collares CV, et al. The role of HLA-G molecule and HLA-G gene polymorphisms in tumors, viral hepatitis, and parasitic diseases. Front Immunol. 2015;6:9. doi: 10.3389/fimmu.2015.00009
- Chowell D, Morris LG, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359(6375):582–587. doi: 10.1126/science.aao4572
- Perea F, Bernal M, Sanchez-Palencia A, et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer. 2017;140(4):888–899. doi: 10.1002/ijc.30489
- Kunimasa K, Goto T. Immunosurveillance and immunoediting of lung cancer: current perspectives and challenges. Int J Mol Sci. 2020;21(2):597. doi: 10.3390/ijms21020597
- Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol. 2018;51:123–132. doi: 10.1016/j.coi.2018.03.006
- McGranahan N, Swanton C. Cancer evolution constrained by the immune microenvironment. Cell. 2017;170(5): 825–827. doi: 10.1016/j.cell.2017.08.012
- Garrido F, Aptsiauri N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology. 2019b;158(4):255–266. doi: 10.1111/imm.13114
- Garrido F, Perea F, Bernal M, Sánchez-Palencia A. The escape of cancer from T cell-mediated immune surveillance: HLA сlass I loss and tumor tissue architecture. Vaccines. 2017;5(1):7. doi: 10.3390/vaccines5010007
- Garrido F, Ruiz-Cabello F, Aptsiauri N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol Immunother. 2017;66(2):259–271. doi: 10.1007/s00262-016-1947-x
- Najafimehr H, Hajizadeh N, Nazemalhosseini-Mojarad E, et al. The role of Human leukocyte antigen class I on patient survival in Gastrointestinal cancers: a systematic review and meta- analysis. Sci Rep. 2020;10(1):728. doi: 10.1038/s41598-020-57582-x
- Angell TE, Lechner MG, Jang JK, et al. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res. 2014;20(23): 6034–6044. doi: 10.1158/1078-0432.CCR-14-0879
- Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. PNAS USA. 2016;113(21):5999–6004. doi: 10.1073/pnas.1602069113
- Sucker A, Zhao F, Real B, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20(24):6593–6604. doi: 10.1158/1078-0432.CCR-14-0567
- Garrido G, Rabasa A, Garrido C, et al. Upregulation of HLA Class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front Pharmacol. 2017;8:595. doi: 10.3389/fphar.2017.00595
- Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–829. doi: 10.1056/NEJMoa1604958
- Sucker A, Zhao F, Pieper N, et al. Acquired IFN-γ resistance impairs anti-tumor immunity and gives rise to T-cell-resistance melanoma lesions. Nat Commun. 2017;8:15440. doi: 10.1038/ncomms15440
- Rölle A, Jäger D, Momburg F. HLA-E peptide repertoire and dimorphism-centerpieces in the adaptive NK cell puzzle? Front Immunol. 2018;9:2410. doi: 10.3389/fimmu.2018.02410
- Zhang Y, Yu S, Han Y, et al. Human leukocyte antigen-G expression and polymorphisms promote cancer development and guide cancer diagnosis/treatment. Oncol Lett. 2018;15(1):699–709. doi: 10.3892/ol.2017.7407
- Klippel ZK, Chou J, Towlerton AM, et al. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther. 2014;21(3):337–342. doi: 10.1038/gt.2013.87
- Alkhouly N, Shehata I, Ahmed MB, et al. HLA-G expression in acute lymphoblastic leukemia: a significant prognostic tumor biomarker. Med Oncol. 2013;30(1):460. doi: 10.1007/s12032-013-0460-8
- Murdaca G, Calamaro P, Lantieri F, et al. HLA-G expression in gastric carcinoma: clinicopathological correlations and prognostic impact. Virchows Archiv. 2018;473(4): 425–433. doi: 10.1007/s00428-018-2379-0
- Ben Amor A, Beauchemin K, Faucher MC, et al. Human leukocyte antigen G polymorphism and expression are associated with an increased risk of non-small-cell lung cancer and advanced disease stage. PLoS One. 2016;11(8):e0161210. doi: 10.1371/journal.pone.0161210
- Eugène J, Jouand N, Ducoin K, et al. The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod Pathol. 2020;33(3):468–482. doi: 10.1038/s41379-019-0322-9
- Godfrey DI, Le Nours J, Andrews DM, et al. Unconventional T cell targets for cancer immunotherapy. Immunity. 2018;48(3):453–473. doi: 10.1016/j.immuni.2018.03.009
- Unanue ER, Turk V, Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol. 2016;34:265–297. doi: 10.1146/annurev-immunol-041015-055420
- Couture A, Garnier A, Docagne F, et al. HLA-class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy. Front Immunol. 2019;10:1081. doi: 10.3389/fimmu.2019.01081
- Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology. 2017;6(2):e1171447. doi: 10.1080/2162402X.2016.1171447
- Anczurowski M, Hirano N. Mechanisms of HLA-DP antigen processing and presentation revisited. Trends Immunol. 2018;39(12):960–964. doi: 10.1016/j.it.2018.10.008
- Garrido F. HLA Class-II expression in human tumors. Adv Exp Med Biol. 2019;1151:91–95. doi: 10.1007/978-3-030-17864-2_4
- Perea F, Sánchez-Palencia A, Gómez-Morales M, et al. HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget. 2018;9(3):4120–4133. doi: 10.18632/oncotarget.23469
- Yamashita, Y, Anczurowski M, Nakatsugawa M, et al. HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244. doi: 10.1038/ncomms15244
- Samie M, Cresswell P. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen–presentation pathways. Nat Immunol. 2015;16(7):729–736. doi: 10.1038/ni.3196
- Lee CY, Wang D, Wilhelm M, et al. Mining the human tissue proteome for protein citrullination. Mol Cell Proteomics. 2018;17(7):1378–1391. doi: 10.1074/mcp.RA118.000696
- Brentville VA, Vankemmelbeke M, Metheringham RL, Durrant LG. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin Immunol. 2020;47:101393. doi: 10.1016/j.smim.2020.101393
- Hu JM, Li L, Chen YZ, et al. HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC. Epigenetics. 2014;9(10):1366–1373. doi: 10.4161/15592294.2014.969625
- Leite FA, Lira RC, Fedatto PF, et al. Low expression of HLA-DRA, HLA-DPA1, and HLA-DPB1 is associated with poor prognosis in pediatric adrenocortical tumors (ACT). Pediatr Blood Cancer. 2014;61(11):1940–1948. doi: 10.1002/pbc.25118
- Ramia E, Chiaravalli AM, Bou Nasser Eddine F, et al. CIITA-related block of HLA class II expression, upregulation of HLA class I, and heterogeneous expression of immune checkpoints in hepatocarcinomas: implications for new therapeutic approaches. Oncoimmunology. 2018; 8(3):1548243. doi: 10.1080/2162402X.2018.1548243
- Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. doi: 10.1016/j.coi.2014.01.004
- Surmann EM, Voigt AY, Michel S, et al. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol Immunother. 2014;64(3): 357–366. doi: 10.1007/s00262-014-1638-4
- Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol. 2015;194(5):2049–2056. doi: 10.4049/jimmunol.1402669
- Grobner S, Worst BC, Weischenfeldt J, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–327. doi: 10.1038/nature25480
- Quaranta V, Schmid MC. Macrophage-mediated subversion of anti-tumour immunity. Cells. 2019;8(7):747. doi: 10.3390/cells8070747
- Pesce S, Greppi M, Grossi F, et al. PD/1-PD-Ls checkpoint: insight on the potential role of NK cells. Front Immunol. 2019;10:1242. doi: 10.3389/fimmu.2019.01242
- Roudko V, Greenbaum B, Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens. Front Immunol. 2020;11:27. doi: 10.3389/fimmu.2020.00027
- Saigi M, Alburquerque-Bejar JJ, Sanchez-Cespedes M. Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: the genetic front. Oncogene. 2019;38(31):5921–5932. doi: 10.1038/s41388-019-0855-x
- Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19): 1823–1833. doi: 10.1056/NEJMoa1606774
- Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-smallcell lung cancer. N Engl J Med. 2018;379(21):2040–2051. doi: 10.1056/NEJMoa1810865
- Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–2092. doi: 10.1056/NEJMoa1801005
- Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–2940. doi: 10.1172/JCI91190
- Kok VC. Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer. Front Oncol. 2020;10:268. doi: 10.3389/fonc.2020.00268
- Borst J, Ahrends T, Babała N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–647. doi: 10.1038/s41577-018-0044-0
- Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102–111. doi: 10.1038/nri.2015.10
- Lu YC, Parker LL, Lu T, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 2017;35(29): 3322–3329. doi: 10.1200/JCO.2017.74.5463
- Mennonna D, Maccalli C, Romano MC, et al. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut. 2017;66(3):454–463. doi: 10.1136/gutjnl-2015-309453
- Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi: 10.1126/science.aaa4971
- Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–221. doi: 10.1038/nature22991
- Vacca P, Pietra G, Tumino N, et al. Exploiting human NK cells in tumor therapy. Front Immunol. 2020;10:3013. doi: 10.3389/fimmu.2019.03013
- Liu LL, Béziat V, Oei VY, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017;5(8):654–665. doi: 10.1158/2326-6066.CIR-16-0296
- Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y
- Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–108. doi: 10.1158/2159-8290.CD-18-0367
- Trefny MP, Kaiser M, Stanczak MA, et al. PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunol Immunother. 2020;69(8):1505–1517. doi: 10.1007/s00262-020-02558-z
- Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411):eaar3593. doi: 10.1126/science.aar3593
- Pereira C, Gimenez-Xavier P, Pros E, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies B2m inactivation impairing immunorecognition. Clin Cancer Res. 2017;23(12):3203–3213. doi: 10.1158/1078-0432.CCR-16-1946
- Ledford H. Melanoma drug wins US approval. Nature. 2011;471(7340):561. doi: 10.1038/471561a
- Simsek M, Tekin SB, Bilici M. Immunological agents used in cancer treatment. Eurasian J Med. 2019;51(1):90–94. doi: 10.5152/eurasianjmed.2018.18194
- Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–2350. doi: 10.1056/NEJMoa1809697
- Munari E, Zamboni G, Sighele G, et al. Expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol. 2019;127(1):52–61. doi: 10.1002/cncy.22083
- Force J, Leal JH, McArthur HL. Checkpoint blockade strategies in the treatment of breast cancer: where we are and where we are heading. Curr Treat Options Oncol. 2019;20(4):35. doi: 10.1007/s11864-019-0634-5
- Hammers HJ, Plimack ER, Infante JR, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the checkmate 016 study. J Clin Oncol. 2017;35(34):3851–3858. doi: 10.1200/JCO.2016.72.1985
- Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–2104. doi: 10.1056/NEJMoa1801946
- Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma. (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–492. doi: 10.1016/S1470-2045(18)30700-9
- Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–16837. doi: 10.1002/jcp.28358
- Tang F, Zheng P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci. 2018;8:34. doi: 10.1186/s13578-018-0232-4
- Takamori S, Takada K, Toyokawa G, et al. PD-L2 expression as a potential predictive biomarker for the response to anti-PD-1 drugs in patients with non-small cell lung cancer. Anticancer Res. 2018;38(10):5897–5901. doi: 10.21873/anticanres.12933
- Nishikawa H, Tanegashima T, Togashi Y, et al. Immune suppression by PD-L2 against spontaneous and treatment-related antitumor immunity. Clin Cancer Res. 2019;25(15): 4808–4819. doi: 10.1158/1078-0432.CCR-18-3991
- Andre P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7): 1731–1743 doi: 10.1016/j.cell.2018.10.014
- Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654–4668. doi: 10.1172/JCI99317
- Sim F, Leidner R, Bell RB. Immunotherapy for head and neck cancer. Oral Maxillofac Surg Clin North Am. 2019;31(1):85–100. doi: 10.1016/j.coms.2018.09.002
- Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018;51:146–153. doi: 10.1016/j.coi.2018.03.013
- Ingegnere T, Mariotti FR, Pelosi A, et al. Human CAR NK cells: a new non-viral method allowing high efficient transfection and strong tumor cell killing. Front Immunol. 2019;10:957. doi: 10.3389/fimmu.2019.00957
- Rezvani K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transpl. 2019;54(Suppl 2): 785–788. doi: 10.1038/s41409-019-0601-6
- Quintarelli C, Orlando D, Boffa I, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology. 2018;7(6): e1433518. doi: 10.1080/2162402X.2018.1433518
- Sivori S, Meazza R, Quintarelli C, et al. NK cell-based immunotherapy for hematological malignancies. J Clin Med. 2019;8(10):E1702. doi: 10.3390/jcm8101702
- Pesce S, Squillario M, Greppi M, et al. New miRNA signature heralds human NK cell subsets at different maturation steps: involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 2018;9:2360. doi: 10.3389/fimmu.2018.02360
- Ashizawa M, Okayama H, Ishigame T, et al. microRNA-148a-3p regulates immunosuppression in DNA mismatch repair-deficient colorectal cancer by targeting PD-L1. Mol Cancer Res. 2019;17(6):1403–1413. doi: 10.1158/1541-7786.MCR-18-0831
- Gao L, Guo Q, Li X, Yang X, et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine. 2019;41:395–407. doi: 10.1016/j.ebiom.2019.02.034
- Gao Q, Liang WW, Foltz SM, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23(1):227–238. doi: 10.1016/j.celrep.2018.03.050
- Yang W, Lee K, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25 (5):767–775. doi: 10.1038/s41591-019-0434-2
- Samstein RM, Shoushtari AN, Hellmann MD, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genet. 2019; 51(2):202–206. doi: 10.1038/s41588-018-0312-8
- Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection. Cell. 2018;175(3):751–765. doi: 10.1016/j.cell.2018.09.018
- Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol. 2017;8:1679. doi: 10.3389/fimmu.2017.01679
- Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(6):479–85. doi: 10.1038/s41586-019-1032-7
- Roudko V, Bozkus CC, Orfanelli T, et al. Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell. 2020;183(6):1634–1649. doi: 10.1016/j.cell.2020.11.004
- Rosato PC, Wijeyesinghe S, Stolley JM, et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat Commun. 2019; 10(1):567. doi: 10.1038/s41467-019-08534-1
- Malaker SA, Penny SA, Steadman LG, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res. 2017;5(5): 376–384. doi: 10.1158/2326-6066.CIR-16-0280
- Raposo B, Merky P, Lundqvist C, et al. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun. 2018;9(1):353. doi: 10.1038/s41467-017-02763-y
- Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934–949. doi: 10.1016/j.cell.2017.09.028
- Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–150. doi: 10.1038/s41568-019-0116-x
- Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–1259. doi: 10.1101/648899
- Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019;9(4):375–382. doi: 10.1016/j.cels.2019.08.009
- Santambrogio L, Berendam SJ, Engelhard VH. The antigen processing and presentation machinery in lymphatic endothelial cells. Front Immunol. 2019;10:1033. doi: 10.3389/fimmu.2019.01033
- Hammerich L, Marron TU, Upadhyay R, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25(5): 814–824. doi: 10.1038/s41591-019-0410-x
- Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer. 2019;19(4):215–227 doi: 10.1038/s41568-019-0125-9
- Emerson R, Chapuis AG, Desmarais C, et al. Tracking the fate and origin of clinically relevant adoptively transferred CD8+ T cells in vivo. Sci Immunol. 2017;2(8):eaal2568. doi: 10.1126/sciimmunol.aal2568
- Yamaguchi N, Winter CM, Wu MF, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;9(6184): 641–646. doi: 10.1126/science.1251102
- Tran E, Robbins PF, Lu YC, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–2262. doi: 10.1056/NEJMoa1609279
- Balachandran VP, Luksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–516. doi: 10.1038/nature24462
- Bräunlein E, Krackhardt AM. Identification and characterization of neoantigens as well as respective immune responses in cancer patients. Front Immunol. 2017;8: 1702. doi: 10.3389/fimmu.2017.01702
- Charoentong P, Angelova M, Charoentong P, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade: cell reports. Cell Rep. 2017;18(1):248–262. doi: 10.1016/j.celrep.2016.12.019
- Luksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–520. doi: 10.1038/nature24473
- Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017; 18(8):1009–1021. doi: 10.1016/S1470-2045(17)30516-8
- Wood MA, Paralkar M, Paralkar MP, et al. Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer. 2018;18(1):414. doi: 10.1186/s12885-018-4325-6
- Zhang J, Caruso FP, Sa JK, et al. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol. 2019;2:135. doi: 10.1038/s42003-019-0369-7
- O’Donnell JS, Teng MW, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–167. doi: 10.1038/s41571-018-0142-8
- Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7(12):1420–1435. doi: 10.1158/2159-8290.CD-17-0593
- Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201. doi: 10.1158/2159-8290.CD-16-1223
- Gao J, Shi LZ, Zhao H, et al. Loss of IFNγ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404. doi: 10.1016/j.cell.2016.08.069
- Saigi M, Alburquerque-Bejar JJ, Mc Leer-Florin A, et al. MET-oncogenic and JAK2-Inactivating alterations are independent factors that affect regulation of PD-L1 expression in lung cancer. Clin Cancer Res. 2018;24(18): 4579–4587. doi: 10.1158/1078-0432.CCR-18-0267
- Sabari JK, Leonardi GC, Shu CA, Umeton R. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–2091. doi: 10.1093/annonc/mdy334
- Best SA, De Souza DP, Kersbergen A, et al. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 2018;27(4):935–943. doi: 10.1016/j.cmet.2018.02.006
- Kerdidani D, Chouvardas P, Arjo AR, et al. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun. 2019;10(1):1405. doi: 10.1038/s41467-019-09370-z
- He Y, Cao J, Zhao C, et al. TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther. 2018;11: 7005–7009. doi: 10.2147/OTT.S170385
- Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis. Lancet Respir Med. 2018;6(10): 771–781. doi: 10.1016/S2213-2600(18)30284-4
Дополнительные файлы
