Drought resistance assessment of olive cultivars and hybrids

封面

如何引用文章

全文:

详细

Background. Olive (O. europaea L.) is one of the main fruit crops in the world. It is most widespread in the Mediterranean region. In recent years, due to global warming and aridization of the earth, most olive-producing countries have suffered significant losses and are forced to transfer olive plantings from the traditional southern regions to the more humid northern ones. Insufficient precipitation and lack of irrigation water are currently some limiting factors in this crop's spread. Producers are increasingly focusing on planting drought-resistant cultivars that could produce high and regular yields in conditions of insufficient water supply. In this regard, this study aimed to identify genotypes of O. europaea with high adaptive ability to the arid conditions of southern Russia and to determine the most informative indicators of drought resistance for collection screening.

Materials and methods. Studies of water regime indicators (water-holding capacity, water deficiency, water content) and relative electrolyte yield, when the cell membrane is damaged under conditions of dehydration of leaf tissues, were carried out on 60 intraspecific hybrids of European olive. Corregiolo and Ascolano cultivars served as the control.

The experiments were performed in laboratory conditions under controlled temperature of 30°C and relative air humidity of 30%. After leaf tissues' saturation with water (control), as well as after they were dehydrated for 24, 48 and 72 hours, drought resistance indicators were assessed.

Results. Based on a cluster analysis, the main indicators of drought resistance, four groups of olive genotypes with different resistance to drought were identified. The greatest interest is for hybrids in the group with very high drought resistance. This cluster consists of 14 of the most promising hybrids that are superior in drought resistance to the control olive variety Ascolano. Water loss for these accession varied from 20.81 to 33.63%, and the relative yield of electrolyte varied from 0.27 to 0.36 RU, which allows us to conclude that their drought resistance is very high. Based on the analysis of principal components between various criteria of the water regime of olive plants, the relationship and influence on the integral assessment of drought resistance was shown. It is noted that the most informative indicator, which has a negative correlation with water loss and the relative yield of electrolytes when the cell membrane is damaged, is water-holding capacity. Indicators of drought resistance such as water content in leaves, water deficit, and relative water content in leaves are not sufficiently informative for the selection breeding of drought-resistant cultivars and forms of olive.

作者简介

Sergei Tsiupka

Nikitsky Botanical Garden-National Scientific Center

编辑信件的主要联系方式.
Email: tsupkanbg@mail.ru

PhD, Senior Researcher

 

俄罗斯联邦, 52, Nikitsky descent, Yalta, 298648, Russian Federation

Yuri Plugatar

Nikitsky Botanical Garden-National Scientific Center

Email: priemnaya-nbs-nnc@ya.ru

Corresponding Member of the Russian Academy of Sciences, Director

 

俄罗斯联邦, 52, Nikitsky descent, Yalta, 298648, Russian Federation

Valentina Tsiupka

Nikitsky Botanical Garden-National Scientific Center

Email: valentina.brailko@yandex.ru

PhD, Head of the Laboratory of Plant Genomics and Bioinformatics, Senior Researcher

 

俄罗斯联邦, 52, Nikitsky descent, Yalta, 298648, Russian Federation

Iliya Bulavin

Nikitsky Botanical Garden-National Scientific Center

Email: cellbiolnbs@yandex.ru

PhD, Head of the Laboratory of Plant Cell Biology and Anatomy, Senior Researcher

 

俄罗斯联邦, 52, Nikitsky descent, Yalta, 298648, Russian Federation

参考

  1. State Register of Selection Achievements Allowed for Use. Registry of Selection Achievements. URL: https://gossortrf.ru/registry/gosudarstvennyy-reestr-selektsionnykh-dostizheniy-dopushchennykh-k-ispolzovaniyu-tom-2-porody-zhivot/ (accessed August 8, 2024).
  2. Korсакova, S.P., & Korsakov, P.B. (2020). Climate Characteristics of Seasons in 2019 on the Southern Coast of Crimea. Natural Notes of Martyan Cape Nature Reserve, (11), 6-22. https://doi.org/10.36305/2413-3019-2020-11-06-22 EDN: https://elibrary.ru/ikwwkn
  3. Lischuk, A.I. (1991). Method for Determining Water Retention Capacity During Leaf Dehydration in Fruit Crops. In: Physiological and Biophysical Methods in Fruit Crop Breeding: Guidelines (pp. 33-36). Moscow.
  4. Resolution of the Government of the Russian Federation No. 872 of May 13, 2022 "On Amending Resolution No. 996 of the Government of the Russian Federation of August 25, 2017". URL: https://base.garant.ru/404734015 (accessed August 13, 2024).
  5. Samigullina, N.S. (2006). Practicum on Selection and Sorting of Fruit and Berry Crops: Textbook Edition. Michurinsk: Publishing House of Michurinsky State Agrarian University. 197 p.
  6. Abdallah, M. B., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., Zarrouk, M., Youssef, B., & Scippa, G. S. (2018). Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology, 220, 83-95.
  7. Ahmadipour, S., Arji, I., Ebadi, A., & Abdossi, V. (2018). Physiological and biochemical responses of some olive cultivars (Olea europaea L.) to water stress. Cellular and Molecular Biology, 64(15), 20-29. https://doi.org/10.14715/cmb/2017.64.15.4
  8. Ahmed, C. B., Rouina, B. B., & Boukhris, M. (2007). Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Scientia Horticulturae, 113(3), 267-277. https://doi.org/10.1016/j.scienta.2007.03.020
  9. Araujo, M., Prada, J., Mariz-Ponte, N., Santos, C., Pereira, J. A., Pinto, D. C. G. A., Silva, A. M. S., & Dias, M. C. (2021). Antioxidant adjustments of olive trees (Olea europaea) under field stress conditions. Plants, 10(4), 684. https://doi.org/10.3390/plants10040684 EDN: https://elibrary.ru/vgimhc
  10. Arias, N. S., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2021). Low-temperature acclimation and legacy effects of summer water deficits in olive freezing resistance. Tree Physiology, 41(10), 1836-1847. https://doi.org/10.1093/treephys/tpab040 EDN: https://elibrary.ru/rkchei
  11. Ayaz, M., Varol, N., & Yolcu, S. (2021). Three (Turkish) olive cultivars display contrasting salt stress-coping mechanisms under high salinity. Trees, 35, 1283-1298. https://doi.org/10.1007/s00468-021-02115-w EDN: https://elibrary.ru/knukeu
  12. Bacelar, E. A., Moutinho-Pereira, J. M., Gonçalves, B. C., Ferreira, H. F., & Correia, C. M. (2007). Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, (60), 183-192.
  13. Barranco, D., Fernandez-Escobar, R., & Rallo, L. (2010). Olive Growing. Mundi-Prensa: Junta de Andalucía, Australian Olive Association Ltd. 756 p.
  14. Bosabalidis, A. M., & Kofidis, G. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163(2), 375-379. https://doi.org/10.1016/S0168-9452(02)00135-8 EDN: https://elibrary.ru/bbaieu
  15. Brito, C., Dinis, L.-T., Silva, E., Gonçalves, A., Matos, C., Rodrigues, M. A., Moutinho-Pereira, J., Barros, A., & Correia, C. (2018). Kaolin and salicylic acid foliar application modulate yield, quality and phytochemical composition of olive pulp and oil from rainfed trees. Scientia Horticulturae, (237), 176-183.
  16. Carr, M. K. V. (2013). The water relations and irrigation requirements of olive (Olea europaea L.): A review. Experimental Agriculture, 49(4), 597-639. https://doi.org/10.1017/S0014479713000276
  17. Connor, D. J. (2005). Adaptation of olive (Olea europaea L.) to water-limited environments. Australian Journal of Agricultural Research, 56(11), 1181-1189. https://doi.org/10.1071/AR05169
  18. Denaxa, N. K., Damvakaris, T., & Roussos, P. A. (2020). Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Scientia Horticulturae, (259), 108812. https://doi.org/10.1016/j.scienta.2019.108812 EDN: https://elibrary.ru/kxmzvc
  19. Deslauriers, A., Caron, L., & Rossi, S. (2015). Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir. Frontiers in Plant Science, 6, 338.
  20. Dias, M. C., Correia, S., Serodio, J., Silva, A. M. S., Freitas, H., & Santos, C. (2018). Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Scientia Horticulturae, 231, 31-35. https://doi.org/10.1016/j.scienta.2017.12.007 EDN: https://elibrary.ru/yexjid
  21. Faraloni, C., Cutino, I., Petruccelli, R., Leva, A. R., Lazzeri, S., & Torzillo, G. (2011). Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environmental and Experimental Botany, 73, 49-56. https://doi.org/10.1016/j.envexpbot.2010.10.011 EDN: https://elibrary.ru/pmzbfb
  22. Food and Agriculture Organization of the United Nations (2021). Global Outlook on Climate Services in Agriculture: Investment Opportunities to Reach the Last Mile. Rome, Italy: Food & Agriculture Org. ISBN: 978-92-5-135011-9
  23. Food and Agriculture Organization of the United Nations, FAOSTAT [Electronic resource] // Available online: URL: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 23 December 2023).
  24. Gambella, F., Bianchini, L., Cecchini, M., Egidi, G., Ferrara, A., Salvati, L., Colantoni, A., & Morea, D. (2021). Moving toward the north? The spatial shift of olive groves in Italy. Agricultural Economics, 67(4), 129-135. https://doi.org/10.17221/467/2020-AGRICECON EDN: https://elibrary.ru/mejiyc
  25. Gucci, R., Lombardini, L., & Tattini, M. (1997). Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiology, 17(1), 13-21.
  26. Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W., & Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119(3), 257-263. https://doi.org/10.1016/j.scienta.2008.08.006 EDN: https://elibrary.ru/yarjez
  27. Gul, N., Haq, Z. U., Ali, H., Munsif, F., Hassan, S. S. U., & Bungau, S. (2022). Melatonin Pretreatment Alleviated Inhibitory Effects of Drought Stress by Enhancing Anti-Oxidant Activities and Accumulation of Higher Proline and Plant Pigments and Improving Maize Productivity. Agronomy, 12(10), 2398. https://doi.org/10.3390/agronomy12102398 EDN: https://elibrary.ru/padsde
  28. Hammer, G. M., Cooper, M., & Reynolds, M. P. (2021). Plant production in water-limited environments. Journal of Experimental Botany, 72(14), 5097-5101. https://doi.org/10.1093/jxb/erab273 EDN: https://elibrary.ru/zivrhc
  29. Hammer, Ø., & Harper, D. A. T. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontological Electronica, 4, 4. URL: http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  30. Islam, M. S., Hasan, K., Islam, R., Chowdhury, K., Pramanik, M. H., Iqbal, M. A., Rajendran, K., Iqbal, R., Soufan, W., Kamran, M., & Islam, M. S. (2023). Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Frontiers in Ecology and Evolution, 11, 1048768. https://doi.org/10.3389/fevo.2023.1048768 EDN: https://elibrary.ru/qavfis
  31. Larcher, W. (2003). Physiological Plant Ecology. 4th ed. Heidelberg/Berlin, Germany; New York, NY, USA: Springer-Verlag. 164 p.
  32. Larsen, F. E., Higgins, S. S., & Al Wir, A. (1989). Diurnal water relations of apple, apricot, grape, olive and peach in an arid environment (Jordan). Scientia Horticulturae, 39(3), 211-222.
  33. Liu, H., Na, H. E., Li, Y. J., Ning, D. L., Ting, M. A., & Xiao, L. J. (2013). Evaluation on drought stress tolerance of six olive varieties cultivated in Yunnan. Journal of West China Forestry Science, 42, 107-110.
  34. Martin-Palomo, M. J., Andreu, L., Perez-Lopez, D., Centeno, A., Galindo, A., Moriana, A., & Corell, M. (2022). Trunk growth rate frequencies as water stress indicator in almond trees. Agricultural Water Management, 271, 107765. https://doi.org/10.1016/j.agwat.2022.107765 EDN: https://elibrary.ru/batbay
  35. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 EDN: https://elibrary.ru/mlwiix
  36. Murzabulatova, F. K., & Zhigunov, O. Yu. (2019). Features of water regime of some species of Deutzia Thumb. genus in the South-Ural Botanical Garden (Ufa). Bulletin of the State Nikit Botanical Garden, (130), 137-140. https://doi.org/10.25684/NBG.boolt.130.2019.19 EDN: https://elibrary.ru/igsgfd
  37. Nguyen, T. C., Jo, H., Tran, H. A., Lee, J., Lee, J.-D., Kim, J. H., Seo, H. S., & Song, J. T. (2024). Assessment of drought responses of wild soybean accessions at different growth stages. Agronomy, 14(3), 471. https://doi.org/10.3390/agronomy14030471 EDN: https://elibrary.ru/teqyzu
  38. Parri, S., Romi, M., Hoshika, Y., Giovannelli, A., Dias, M. C., Piritore, F. C., Cai, G., & Cantini, C. (2023). Morpho-physiological responses of three Italian olive tree (Olea europaea L.) cultivars to drought stress. Horticulturae, 9(7), 830. https://doi.org/10.3390/horticulturae9070830 EDN: https://elibrary.ru/wbwotr
  39. Parry, K. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hanson, C. E. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge, UK: Cambridge University Press. 22 p.
  40. Petridis, A., Therios, I., Samouris, G., Koundouras, S., & Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem., (60), 1-11.
  41. Proietti, P., Nasini, L., Del Buono, D., D’Amato, R., Tedeschini, E., & Businelli, D. (2013). Selenium protects olive (Olea europaea L.) from drought stress. Scientia Horticulturae, 164, 165-171. https://doi.org/10.1016/j.scienta.2013.09.034 ISSN 0304-4238
  42. Rallo, L., Diez, C. M., Morales-Sillero, A., Miho, H., Priego-Capote, F., & Rallo, P. (2018). Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic., 233, 491-509. https://doi.org/10.1016/j.scienta.2017.12.034
  43. Rezaei, M., & Rohani, A. (2023). Estimating Freezing Injury on Olive Trees: A Comparative Study of Computing Models Based on Electrolyte Leakage and Tetrazolium Tests. Agriculture, 13, 1137. https://doi.org/10.3390/agriculture13061137 EDN: https://elibrary.ru/yneacx
  44. Slobodova, N., Sharko, F., Gladysheva-Azgari, M., Petrova, K., Tsiupka, S., Tsiupka, V., Boulygina, E., Rastorguev, S., & Tsygankova, S. (2023). Genetic Diversity of Common Olive (Olea europaea L.) Cultivars from Nikita Botanical Gardens Collection Revealed Using RAD-Seq Method. Genes, 14(7), 1323. https://doi.org/10.3390/genes14071323 EDN: https://elibrary.ru/qejysj
  45. Tanentzap, F. M., Stempel, A., & Ryser, P. (2015). Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany, 93(9), 535-541. https://doi.org/10.1139/CJB-2015-0065
  46. The International Olive Council [Электронный ресурс]. URL: https://www.internationaloliveoil.org/ (дата обращения: 05.08.2024)
  47. Torres-Ruiz, J. M., Diaz-Espejo, A., Morales-Sillero, A., Martin-Palomo, M. J., Mayr, S., Beikircher, B., & Fernandez, J. E. (2013). Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions. Plant and Soil, 373, 77-87. https://doi.org/10.1007/s11104-013-1774-1 EDN: https://elibrary.ru/vavnxg
  48. Tsiupka, S. (2018). A historical review of olive germplasm evaluation and cultivar development in Crimea. Acta Hortic., 1208, 97-104. https://doi.org/10.17660/ActaHortic.2018.1208.13 EDN: https://elibrary.ru/valebr
  49. Tsiupka, V., Tsiupka, S., Plugatar, Y., Bulavin, I., & Komar-Tyomnaya, L. (2023). Assessment of the Drought-Tolerance Criteria for Screening Peach Cultivars. Horticulturae, 9, 1045. https://doi.org/10.3390/horticulturae9091045 EDN: https://elibrary.ru/imtmbp

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».