“Probable acetyltransferase” TTHA1209 Thermus thermophilus bacteria: Gene cloning, structural and functional analysis of the enzyme
- Authors: Kudryashov T.A.1, Loktyushov E.V.1, Trunilina M.V.1, Bykov V.V.1, Sokolov A.S.1, Lapteva Y.S.1
-
Affiliations:
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
- Issue: Vol 17, No 2 (2025)
- Pages: 295-314
- Section: Biochemistry, Genetics and Molecular Biology
- Published: 30.04.2025
- URL: https://bakhtiniada.ru/2658-6649/article/view/310908
- DOI: https://doi.org/10.12731/2658-6649-2025-17-2-1121
- EDN: https://elibrary.ru/PJYJXI
- ID: 310908
Cite item
Full Text
Abstract
Background. In the last decade, bacterial N-acetyltransferases (ATs) have been intensively studied because they are involved in the biosynthesis/inactivation of antibiotics, form the “toxin-antitoxin” system and the acetylation status of proteins and peptides influences their virulence and pathogenicity. AT enzymes have a low percentage of amino acid sequence identity, which complicates their identification and annotation in genomes. In this regard, the aim of this work was the structural and functional analysis of a new “probable” acetyltransferase encoded by the open reading frame (ORF) TTHA1209 of the bacterium T. thermophilus.
Materials and methods. Structural analysis of the enzyme was carried out using bioinformatics methods. Genetic engineering methods were used to clone the TTHA1209 gene. Affinity chromatography was used to purify the protein. The protein activity was tested in an in vitro reaction of acetylation of the model protein parvalbumin (PA). The incorporation of an acetyl group at the N-terminus of PA was evaluated by mass spectrometry.
Results. It was found that TTHA1209 share single GNAT domain in its structure and exhibits the alternation of secondary structure elements and three-dimensional folding characteristic of N-terminal At (NAT). The similarity of the structure of the TTHA1209 enzyme with orthologous proteins from E. coli was investigated. The highest percentage identity of TTHA1209 is observed with the RimI enzyme (27%). It has been shown that the TTHA1209 enzyme acetylates parvalbumin, i.e. has a specific Nα-acetyltransferase activity.
Conclusion. The new enzyme TTHA1209 from the bacterium T. thermophilus exhibits properties characteristic of NAT at all levels of organization, has a specific activity and can be annotated in the genome as an N-terminal acetyltransferase. The results obtained create the prerequisites for further investigation of the substrate specificity and biochemical properties of the new NAT TTHA1209, which will open up prospects for its use in biotechnology for the acetylation of proteins and peptides.
About the authors
Timofey A. Kudryashov
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Author for correspondence.
Email: kudryashovtimm@gmail.com
ORCID iD: 0009-0001-2092-7028
Junior Researcher at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
Eugene V. Loktyushov
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Email: zhenyaloktushov@gmail.com
ORCID iD: 0000-0003-2028-1789
Research Fellow at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
Maria V. Trunilina
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Email: masha.trunilina@mail.ru
ORCID iD: 0009-0002-9171-3083
Biotechnologist at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
Vyacheslav V. Bykov
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Email: naggilan88@gmail.com
ORCID iD: 0009-0001-3978-7862
Technician at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
Andrey S. Sokolov
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Email: 212sok@gmail.com
ORCID iD: 0000-0002-7145-251X
Cand. of Bio. Sc., Senior Research at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
Yulia S. Lapteva
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation
Email: yulia.s.lapteva@gmail.com
ORCID iD: 0000-0002-6607-9861
SPIN-code: 9441-3917
Scopus Author ID: 55257828600
ResearcherId: D-7227-2012
Cand. of Bio. Sc., Assistant professor, Senior Research at the Laboratory of New Methods in Biology
Russian Federation, 3, Nauki Ave., Pushchino, Moscow region, 142290, Russian Federation
References
- Bernal-Perez, L. F., & Ryu, Y. (2015). RimJ-Catalyzed Sequence-Specific Protein N-Terminal Acetylation in Escherichia coli. Advances in Bioscience and Biotechnology, 6, 12. https://doi.org/10.4236/abb.2015.63018
- Bernal-Perez, L. F., Sahyouni, F., Prokai, L., & Ryu, Y. (2012). RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in Escherichia coli. Mol Biosyst, 8, 1128-1130. https://doi.org/10.1039/c2mb05499j
- Bienvenut, W. V., Giglione, C., & Meinnel, T. (2015). Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Proteomics, 15, 2503-2518. https://doi.org/10.1002/pmic.201500027
- Burckhardt, R. M., & Escalante-Semerena, J. C. (2020). Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev, 84. https://doi.org/10.1128/MMBR.00090-19 EDN: https://elibrary.ru/ATYYYZ
- Chen, W., Biswas, T., Porter, V. R., Tsodikov, O. V., & Garneau-Tsodikova, S. (2011). Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci U S A, 108, 9804-9808. https://doi.org/10.1073/pnas.1105379108
- Christensen, D. G., Meyer, J. G., Baumgartner, J. T., D’Souza, A. K., Nelson, W. C., Payne, S. H., Kuhn, M. L., Schilling, B., & Wolfe, A. J. (2018). Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. mBio, 9. https://doi.org/10.1128/mBio.01905-18
- Collars, O. A., Jones, B. S., Hu, D. D., Weaver, S. D., Sherman, T. A., Champion, M. M., & Champion, P. A. (2023). An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio, 14, e0098723. https://doi.org/10.1128/mbio.00987-23 EDN: https://elibrary.ru/TZOYBZ
- D’Accolti, M., Bellotti, D., Dzien, E., Leonetti, C., Leveraro, S., Albanese, V., Marzola, E., Guerrini, R., Caselli, E., Rowinska-Zyrek, M., & Remelli, M. (2023). Impact of C- and N-terminal protection on the stability, metal chelation and antimicrobial properties of calcitermin. Sci Rep, 13, 18228. https://doi.org/10.1038/s41598-023-45437-0 EDN: https://elibrary.ru/MTBIVO
- Dash, A., & Modak, R. (2021). Protein Acetyltransferases Mediate Bacterial Adaptation to a Diverse Environment. J Bacteriol, 203, e0023121. https://doi.org/10.1128/JB.00231-21 EDN: https://elibrary.ru/DSNGDE
- Deng, S., & Marmorstein, R. (2021). Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation. Trends Biochem Sci, 46, 15-27. https://doi.org/10.1016/j.tibs.2020.08.005 EDN: https://elibrary.ru/HVAAQD
- Esipov, R. S., Makarov, D. A., Stepanenko, V. N., & Miroshnikov, A. I. (2016). Development of the intein-mediated method for production of recombinant thymosin beta4 from the acetylated in vivo fusion protein. J Biotechnol, 228, 73-81. https://doi.org/10.1016/j.jbiotec.2016.02.021 EDN: https://elibrary.ru/WWJBLJ
- Favrot, L., Blanchard, J. S., & Vergnolle, O. (2016). Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry, 23, 989-1002. https://doi.org/10.1021/acs.biochem.5b01269 EDN: https://elibrary.ru/WVMSQP
- Huang, E., & Yousef, A. E. (2015). Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol Res, 181, 15-21. https://doi.org/10.1016/j.micres.2015.08.001 EDN: https://elibrary.ru/YECKUW
- Isono, K., & Isono, S. (1980). Ribosomal protein modification in Escherichia coli. II. Studies of a mutant lacking the N-terminal acetylation of protein S18. Mol. Gen. Genet, 177, 645-651. https://doi.org/10.1007/bf00272675 EDN: https://elibrary.ru/IFVGVY
- Kazakov, T., Kuznedelov, K., Semenova, E., Mukhamedyarov, D., Datsenko, K. A., Metlitskaya, A., Vondenhoff, G. H., Tikhonov, A., Agarwal, V., Nair, S., Van Aerschot, A., & Severinov, K. (2014). The RimL transacetylase provides resistance to translation inhibitor microcin C. J Bacteriology, 196, 3377-3385. https://doi.org/10.1128/JB.01584-14 EDN: https://elibrary.ru/UEYGQT
- Kudryashov, T. A., Trunilina, M. V., Bykov, V. V., Boldaevsky, I. S., Sokolov, A. S., & Lapteva, Y. S. (2023). Development of an algorithm for N-terminal acetyltransferases identification and verification of their functional activity. JOURNAL BIOMED, 19, 43-46. https://doi.org/10.33647/2713-0428-19-3 EDN: https://elibrary.ru/BJNZTF
- Lapteva, Y. S., Vologzhannikova, A. A., Sokolov, A. S., Ismailov, R. G., Uversky, V. N., & Permyakov, S. E. (2021). In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-020-03324-8 EDN: https://elibrary.ru/CZOUMS
- Le, V. T. B., Tsimbalyuk, S., Lim, E. Q., Solis, A., Gawat, D., Boeck, P., Lim, E. Q., Renolo, R., Forwood, J. K., & Kuhn, M. L. (2021). The Vibrio cholerae SpeG Spermidine/Spermine N-Acetyltransferase Allosteric Loop and beta6-beta7 Structural Elements Are Critical for Kinetic Activity. Front Mol Biosci, 8, 645768. https://doi.org/10.3389/fmolb.2021.645768 EDN: https://elibrary.ru/HFGLJF
- Lee, K., & Back, K. (2023). Escherichia coli RimI Encodes Serotonin N-Acetyltransferase Activity and Its Overexpression Leads to Enhanced Growth and Melatonin Biosynthesis. Biomolecules, 13, 908. https://doi.org/10.3390/biom13060908 EDN: https://elibrary.ru/KUBTTZ
- Li, D., Yang, Y., Li, R., Huang, L., Wang, Z., Deng, Q., & Dong, S. (2021). N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci, 27, e3337. https://doi.org/10.1002/psc.3337 EDN: https://elibrary.ru/HPPSFL
- Miao, L., Fang, H., Li, Y., & Chen, H. (2007). Studies of the in vitro Nalpha-acetyltransferase activities of E. coli RimL protein. Biochem Biophys Res Commun, 357, 641-647. https://doi.org/10.1016/j.bbrc.2007.03.171
- Miasaki, K. M. F., Wilke, N., Neto, J. R., & Alvares, D. S. (2020). N-terminal acetylation of a mastoparan-like peptide enhances PE/PG segregation in model membranes. Chem Phys Lipids, 232, 104975. https://doi.org/10.1016/j.chemphyslip.2020.104975 EDN: https://elibrary.ru/TSXNWP
- Nesterchuk, M. V., Sergiev, P. V., & Dontsova, O. A. (2011). Posttranslational Modifications of Ribosomal Proteins in Escherichia coli. Acta Naturae, 3, 22-33. https://doi.org/10.32607/20758251-2011-3-2-22-33 EDN: https://elibrary.ru/OXKWAZ
- Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci., 4, 2411-2423. https://doi.org/10.1002/pro.5560041120 EDN: https://elibrary.ru/XZNIPR
- Pal, M., Yadav, V. K., Pal, P., Agarwal, N., & Rao, A. (2023). The physiological effect of rimI/rimJ silencing by CRISPR interference in Mycobacterium smegmatis mc(2)155. Arch Microbiol, 205, 211. https://doi.org/10.1007/s00203-023-03561-5 EDN: https://elibrary.ru/WNBFRF
- Pathak, D., Bhat, A. H., Sapehia, V., Rai, J., & Rao, A. (2016). Biochemical evidence for relaxed substrate specificity of Na-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis. Scientific reports, 6, 12.
- Peri, S., Steen, H., & Pandey, A. (2001). GPMAW-a software tool for analyzing proteins and peptides. Trends Biochem Sci, 26, 687-689. https://doi.org/10.1016/s0968-0004(01)01954-5 EDN: https://elibrary.ru/AQGWYS
- Permyakov, S. E., Vologzhannikova, A. A., Emelyanenko, V. I., Knyazeva, E. L., Kazakov, A. S., Lapteva, Y. S., Permyakova, M. E., Zhadan, A. P., & Permyakov, E. A. (2012). The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium, 52, 366-376. https://doi.org/10.1016/j.ceca.2012.06.002 EDN: https://elibrary.ru/SOHVBX
- Pletnev, P. I., Shulenina, O., Evfratov, S., Treshin, V., Subach, M. F., Serebryakova, M. V., Osterman, I. A., Paleskava, A., Bogdanov, A. A., Dontsova, O. A., Konevega, A. L., & Sergiev, P. V. (2022). Ribosomal protein S18 acetyltransferase RimI is responsible for the acetylation of elongation factor Tu. J Biol Chem, 298, 101914. https://doi.org/10.1016/j.jbc.2022.101914 EDN: https://elibrary.ru/PJSPCV
- Ren, Y., Yao, X., Dai, H., Li, S., Fang, H., Chen, H., & Zhou, C. (2011). Production of Na-acetylated thymosin a1 in Escherichia coli. Microbial Cell Factories, 10, 2-8. https://doi.org/10.1186/1475-2859-10-26 EDN: https://elibrary.ru/ONECBZ
- Roy-Chaudhuri, B., Kirthi, N., Kelley, T., & Culver, G. M. (2008). Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol Microbiol, 68, 1547-1559. https://doi.org/10.1111/j.1365-2958.2008.06252.x
- Schmidt, A., Kochanowski, K., Vedelaar, S., Ahrne, E., Volkmer, B., Callipo, L., Knoops, K., Bauer, M., Aebersold, R., & Heinemann, M. (2016). The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol, 34, 104-110. https://doi.org/10.1038/nbt.3418 EDN: https://elibrary.ru/BUYYEB
- Vetting, M. W., Bareich, D. C., Yu, M., & Blanchard, J. S. (2008). Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein Sci, 17, 1781-1790. https://doi.org/10.1110/ps.035899.108
- Vetting, M. W., Carvalho, L. P. S., Roderick, S. L., & Blanchard, J. S. (2005). A Novel Dimeric Structure of the RimL Nα-acetyltransferase from Salmonella typhimurium. J Biol Chem, 280, 22108-22114. https://doi.org/10.1074/jbc.M502401200 EDN: https://elibrary.ru/MINOZH
- Vetting, M. W., Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., & Blanchard, J. S. (2005). Structure and functions of the GNAT superfamily of acetyltransferases. Archives of Biochemistry and Biophysics, 433, 212-226. https://doi.org/10.1016/j.abb.2004.09.003
- White-Ziegler, C. A., Black, A. M., Eliades, S. H., Young, S., & Porter, K. (2002). The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J Bacteriol, 184, 4334-4342. https://doi.org/10.1128/JB.184.16.4334-4342.2002
- White-Ziegler, C. A., & Low, D. A. (1992). Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. J Bacteriol, 174, 7003-7012. https://doi.org/10.1128/jb.174.21.7003-7012.1992
- Yoshikawa, A., Isono, S., Sheback, A., & Isono, K. (1987). Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol. Gen. Genet., 209, 481-488. https://doi.org/10.1007/BF00331153 EDN: https://elibrary.ru/SZGZVG
Supplementary files
