Identification of the carriers of the mutant alleles in the cattle in the Central Black Earth region of Russia using NGS sequencing
- Authors: Snegin E.A.1, Barkhatov A.S.1, Sychev A.A.1, Snegina E.A.1, Yusupov S.R.1, Yusupova A.Y.1
-
Affiliations:
- Belgorod National Research University
- Issue: Vol 17, No 2 (2025)
- Pages: 237-260
- Section: Biochemistry, Genetics and Molecular Biology
- Published: 30.04.2025
- URL: https://bakhtiniada.ru/2658-6649/article/view/310534
- DOI: https://doi.org/10.12731/2658-6649-2025-17-2-1072
- EDN: https://elibrary.ru/RCSHPU
- ID: 310534
Cite item
Full Text
Abstract
Background. To carry out high-quality breeding work in the cattle populations, it is necessary to use next generation sequencing (NGS) methods, which allow large samples of the animals to be assessed for a significant number of the single nucleotide substitutions (SNPs) in a short period of time.
Materials and methods. Genotyping of the Holstein black-and-white cattle bred in the Central Black Earth region of Russia (Belgorod region) was carried out using NGS sequencing (multilocus panel TruSeq® Bovine Parentage Kit, Illumina USA).
Results. It was found that most of the animals studied are the inter-line hybrids. Correlation analysis of the "Reflection Sovereign", "Montvik Chieftain" and "Vis Back Ideal" lines showed no correlation dependency (r=0,165, p=0,106). Additionally, 10,4% of the cattle were carriers of the gene related to the Holstein red-and-white coat color. Furthermore, 61,5% of the cattle were carriers of the mutant allele G (_SNPchr8_108833985), which lowers immunity and contributes to the development of moraxellosis. Carriers of several unfavorable mutations were identified, such as Syndactyly (SY) – 8,3%, mutations leading to leukism (MITF gene) – 12,3%, and mutations in the melanocortin receptor gene (MC1R) – 10,4%. Carriers of the semi-lethal mutation (allele T) in the APAF1 gene accounted for 3,0% of the cattle, carriers of the lethal mutation (allele C) in the HH3 gene – 14,6%, carriers of the lethal mutation (allele C) in the HHB (BLAD) gene – 1,0%, carriers of the semi-lethal mutation (allele A) in the SLC35A3 gene – 2,0%. All this indicates errors in the breeding work. Against the backdrop of these unfavorable genetic factors, carriers of mutations with a positive effect on meat and milk productivity were observed, namely carriers of the MSTN gene mutation (allele T) – 50%, carriers of the ABCG2 gene mutation (allele C) – 4.2%, carriers of the DGAT1 gene mutation (allele A) – 28,1%, carrier of the CSN1S1 gene mutation (allele A) – 1,0%.
Conclusion. We believe that adjusting the breeding work regarding these mutations, both with negative and positive effects, will allow farms to create core herds of high-productivity animals, which will contribute to increasing the quantity and quality of dairy products.
Keywords
About the authors
Eduard A. Snegin
Belgorod National Research University
Author for correspondence.
Email: snegin@bsu.edu.ru
ORCID iD: 0000-0002-7574-6910
SPIN-code: 5655-7828
Dr. Sc. (Biology), Professor, Director of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
Anatoliy S. Barkhatov
Belgorod National Research University
Email: barkhatov@bsu.edu.ru
ORCID iD: 0000-0001-9996-7251
SPIN-code: 3833-2940
Scopus Author ID: 57197819027
ResearcherId: AAM-2535-2020
Cand. Sci. (Biol.), Junior Researcher of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
Anton A. Sychev
Belgorod National Research University
Email: sychev@bsu.edu.ru
ORCID iD: 0000-0002-3311-0914
SPIN-code: 6720-0967
Cand. Sci. (Biol.), Senior Researcher of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
Elena A. Snegina
Belgorod National Research University
Email: snegina@bsu.edu.ru
ORCID iD: 0000-0003-1789-1121
SPIN-code: 3402-6300
Researcher of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
Sergei R. Yusupov
Belgorod National Research University
Email: yusupov@bsu.edu.ru
ORCID iD: 0000-0002-5425-8942
SPIN-code: 6628-1450
Junior Researcher of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
Alexandra Yu. Yusupova
Belgorod National Research University
Email: tishchenko_ayu@bsu.edu.ru
ORCID iD: 0000-0003-1838-7816
SPIN-code: 9486-0844
Junior Researcher of the Research Center for Genomic Breeding
Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation
References
- Romanishko, E. L., Mikhailova, M. E., Kireeva, A. I., & Sheiko, R. I. (2021). Identification of fertility haplotypes in the Belarusian population of Holstein cattle. Molecular and Applied Genetics, 31, 7-21. https://doi.org/10.47612/1999-9127-2021-31-7-21 EDN: https://elibrary.ru/SOVXXS
- Epishko, O. A., Pestis, V. K., Tanana, L. A., Kuzmina, T. I., Cheburanova, E. S., Shevchenko, M. Yu., Petrova, A. P., Glinkskaya, N. A., & Trakhimchik, R. V. (2017). Detection of BLAD, CVM and BS recessive mutations in the population of dairy cattle of the Republic of Belarus. Collection of Scientific Papers. Agriculture — Problems and Prospects. Animal Husbandry, 37, 44-51. EDN: https://elibrary.ru/YOZAWL
- Zagidullin, L. R., Shaydullin, R. R., Akhmetov, T. M., & Tyulkyn, S. V. (2020). Polymorphism of kappa-casein and diacylglycerol O-acyltransferase genes in black-and-white cattle. Dairy Industry Herald, 37(1), 24-34. EDN: https://elibrary.ru/TUJEVN
- Romanenkova, O. V., Gladyr, E. A., Kostyunina, O. V., & Zinovieva, N. A. (2016). Screening of the Russian population of cattle for the presence of a mutation in APAF1 associated with the fertility haplotype HH1. Achievements of Science and Technology of Agroindustrial Complex, 30(2), 94-97. EDN: https://elibrary.ru/VPIDTX
- Tyulkyn, S. V. (2019). Molecular genetic testing of cattle for milk protein genes, hormones, enzymes and hereditary diseases (Doctoral dissertation). Kazan. 46 p. EDN: https://elibrary.ru/BBNXRA
- Usenbekov, E. S., Yakovlev, A. F., & Akimzhan, N. A. (2016). Results of monitoring bulls for genetic defects. Bulletin of KazNU. Biological Series, 67(2), 129-139.
- Shuklin, S. Yu. (2022). Use of STR markers and SNP chips in the formation of a highly productive herd of dairy cattle (Master's thesis). Lesnaya Polyana, Moscow region. 22 p. EDN: https://elibrary.ru/ZNOYQF
- Turner, L. B., Harrison, B. E., Bunch, R. J., Porto Neto, L. R., Li, Y., & Barendse, W. (2010). A genome-wide association study of tick burden and milk composition in cattle. Animal Production Science, 50(4), 235-245. https://doi.org/10.1071/AN09135
- Zhang, Y., Fan, X., Sun, D., Wang, Y., Yu, Y., Xie, Y., Zhang, S., & Zhang, Y. (2012). A novel method for rapid and reliable detection of complex vertebral malformation and bovine leukocyte adhesion deficiency in Holstein cattle. Journal of Animal Science and Biotechnology, 3(1), 24. https://doi.org/10.1186/2049-1891-3-24
- Akyüz, B., & Ertuğrul, O. (2006). Detection of bovine leukocyte adhesion deficiency (BLAD) in Turkish native and Holstein cattle. Acta Veterinaria Hungarica, 54(2), 173-178. https://doi.org/10.1556/AVet.54.2006
- Sifuentes-Rincón, A. M., Puentes-Montiel, H. E., Moreno-Medina, V. R., & Rosa-Reyna, X. F. (2006). Assessment of the myostatin Q204X allele using an allelic discrimination assay. Genetics and Molecular Biology, 29(3), 496-497. https://doi.org/10.1590/S1415-47572006000300017
- Mesquita, A. Q., Rezende, C. S. M., Mesquita, A. J., Jardim, E. A. G. V., & Kipnis, A. P. J. (2012). Association of TLR4 polymorphisms with subclinical mastitis in Brazilian Holsteins. Brazilian Journal of Microbiology, 43(2), 692-697. https://doi.org/10.1590/S1517-83822012000200034
- Cole, J. B., Null, D. J., & Van Raden, P. M. (2016). Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility. Journal of Dairy Science, 99(9), 7274-7288. https://doi.org/10.3168/jds.2015-10777
- Igoshin, A. V., Romashov, G. A., Chernyaeva, E. N., Elatkin, N. P., Yudin, N. S., & Larkin, D. M. (2022). Comparative analysis of allele frequencies for DNA polymorphisms associated with disease and economically important traits in the genomes of Russian and foreign cattle breeds. Vavilov Journal of Genetics and Breeding, 26(3), 298-307. https://doi.org/10.18699/VJGB-22-28 EDN: https://elibrary.ru/WLUUNI
- Ghanem, M. E., Akita, M., Suzuki, T., Kasuga, A., & Nishiboi, M. (2008). Complex vertebral malformation in Holstein cows in Japan and its inheritance to crossbred F1 generation. Animal Reproduction Science, 103(3-4), 348-354. https://doi.org/10.1016/j.anireprosci.2007.05.006
- Johnson, E. B., Steffen, D. J., Lynch, K. W., & Herz, J. (2006). Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics, 88, 600-609. https://doi.org/10.1016/j.ygeno.2006.08.005
- Kumar, A., Gupta, I. D., Mohan, G., Vineeth, M. R., Kumar, D. R., Jayakumar, S., & Niranjan, S. K. (2020). Development of PCR based assays for detection of lethal Holstein haplotype 1, 3 and 4 in Holstein Friesian cattle. Molecular and Cellular Probes, 50, 101503. https://doi.org/10.1016/j.mcp.2019.101503 EDN: https://elibrary.ru/FNVMGE
- Fritz, S., Capitan, A., Djari, A., Rodriguez, S. C., Barbat, A., Baur, A., Grohs, C., Weiss, B., Boussaha, M., Esquerre, D., Klopp, C., Rocha, D., & Boichard, D. (2013). Detection of Haplotypes Associated with Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2. PLoS ONE, 8(6), e65550. https://doi.org/10.1371/journal.pone.0065550 EDN: https://elibrary.ru/RJOLRV
- Li, F., Cai, C., Qu, K., Liu, J., Jia, Y., Hanif, Q., Chen, N., Zhang, J., Chen, H., Huang, B., & Lei, C. (2021). DGAT1 K232A polymorphism is associated with milk production traits in Chinese cattle. Animal Biotechnology, 32(4), 427-431. https://doi.org/10.1080/10495398.2020.1711769 EDN: https://elibrary.ru/MPQIGT
- Arora, D., Srikanth, K., Lim, D., Park, J., Choi, S., Lee, S. H., Shin, D. H., & Park, W. (2021). Exploration of OMIA Registered Recessive Mutations in Hanwoo Cattle. Journal of Agriculture & Life Science, 55(2), 137-143. https://doi.org/10.14397/jals.2021.55.2.137 EDN: https://elibrary.ru/PPVEAS
- Fontanesi, L., Scotti, E., & Russo, V. (2012). Haplotype variability in the bovine MITF gene and association with piebaldism in Holstein and Simmental cattle breeds. Animal Genetics, 43(3), 250-256. https://doi.org/10.1111/j.1365-2052.2011.02242.x
- Häfliger, I. M., Spengeler, M., Seefried, F. R., & Drögemüller, C. (2022). Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Scientific Reports, 12(1), 5435. https://doi.org/10.1038/s41598-022-09403-6 EDN: https://elibrary.ru/SGDZQS
- Kumar, S., Kumar, S., Singh, R. V., Chauhan, A., Kumar, A., Sulabh, S., Bharati, J., & Singh, S. V. (2019). Genetic association of polymorphisms in bovine TLR2 and TLR4 genes with Mycobacterium avium subspecies paratuberculosis infection in Indian cattle population. Veterinary Research Communications, 43, 105-114. https://doi.org/10.1007/s11259-019-09750-2 EDN: https://elibrary.ru/OBMXRA
- Sermyagin, A. A., Conte, A. F., Volkova, V. V., Romanenkova, O. S., Kharzhau, A. A., Reyer, H., Wimmers, K., Brem, G., & Zinovieva, N. A. (2018). Genetic highlights for reproduction and health traits in Russian black-and-white and Holstein animals selected for production of high-quality embryos. Reproduction, Fertility and Development, 30(1), 199. https://doi.org/10.1071/RDv30n1Ab119 EDN: https://elibrary.ru/XVWBID
- Wang, X., Xu, S., Gao, X., Ren, H., & Chen, J. (2007). Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle. Journal of Genetics and Genomics, 34(5), 406-412. https://doi.org/10.1016/S1673-8527(07)60044-7
- Ruiz-Larranaga, O., Manzano, C., Iriondo, M., Garrido, J. M., Molina, E., Vazquez, P., Juste, R. A., & Estonba, A. (2011). Genetic variation of toll-like receptor genes and infection by Mycobacterium avium ssp. paratuberculosis in Holstein-Friesian cattle. Journal of Dairy Science, 94(7), 3635-3641. https://doi.org/10.3168/jds.2010-3788
- Cohen-Zinder, M., Seroussi, E., Larkin, D. M., Loor, J. J., Wind, A. E., Lee, J.-H., Drackley, J. K., Band, M. R., Hernandez, A. G., Shani, M., Lewin, H. A., Weller, J. I., & Ron, M. (2006). Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Research, 15, 936-944. https://doi.org/10.1101/gr.3806705
- Tăbăran, A., Balteanu, V. A., Gal, E., Pusta, D., Mihaiu, R., Dan, S. D., Tăbăran, A. F., & Mihaiu, M. (2015). Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Animal Biotechnology, 26(2), 105-111. https://doi.org/10.1080/10495398.2014.933740
- Khatib, A., Mazur, A. M., & Prokhortchouk, E. (2020). The distribution of lethal Holstein haplotypes affecting female fertility among the Russian Black-and-White cattle. EurAsian Journal of Biosciences, 14(2), 2545-2552. EDN: https://elibrary.ru/WVDVMW
- Komisarek, J., & Dorynek, Z. (2009). Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50(2), 125-132. https://doi.org/10.1007/BF03195663 EDN: https://elibrary.ru/BLUBGD
- Kaminski, S. (2020). Novel method for identification of the lethal mutation in bovine APAF1 gene and its preliminary prevalence in Polish Holstein-Friesian bulls. Polish Journal of Veterinary Sciences, 23(1), 157-160. https://doi.org/10.24425/pjvs.2020.132760 EDN: https://elibrary.ru/SEPOII
- Kowalewska-Łuczak, I., & Kulig, H. (2013). Polymorphism of the FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A genes and somatic cell count of Jersey cows - Preliminary study. Research in Veterinary Science, 94(2), 252-255. https://doi.org/10.1016/j.rvsc.2012.08.006 EDN: https://elibrary.ru/RMJNIZ
- Kolenda, M., & Sitkowska, B. (2021). The Polymorphism in Various Milk Protein Genes in Polish Holstein-Friesian Dairy Cattle. Animals, 11(2), 389. https://doi.org/10.3390/ani11020389 EDN: https://elibrary.ru/TABYKS
- Briano-Rodriguez, C., Romero, A., Llambí, S., Sica, A. B., Rodriguez, M. T. F., Giannitti, F., Rubén Dario Caffarena, R. D., Schild, C. O., Casaux, M. L., & Quintela, F. D. (2021). Lethal and semi-lethal mutations in Holstein calves in Uruguay. Ciência Rural, 51(7). https://doi.org/10.1590/0103-8478cr20200734 EDN: https://elibrary.ru/UFIVOF
- Logar, B., Kavar, T., & Meglič, V. (2008). Detection of recessive mutations (CVM, BLAD and RED factor) in holstein bulls in Slovenia. Journal of Central European Agriculture, 9(1), 101-106.
- Matsumoto, H., Kojya, M., Takamuku, H., Kimura, S., Kashimura, A., Imai, S., Yamauchi, K., & Ito, S. (2020). MC1R c.310G>- and c.871G > A determine the coat color of Kumamoto sub-breed of Japanese Brown cattle. Animal Science Journal, 91(1), 13367. https://doi.org/10.1111/asj.13367 EDN: https://elibrary.ru/NKCTQT
- Meydan, H., Yildiz, M. A., & Agerholm, J. S. (2010). Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey. Acta Veterinaria Scandinavica, 52(1), 56. https://doi.org/10.1186/1751-0147-52-56 EDN: https://elibrary.ru/OMEZZT
- Morales, R., & Ungerfeld, E. M. (2016). Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genetics and Molecular Research, 15(2), 15027057. https://doi.org/10.4238/gmr.15027057
- Nanaei, H. A., Mahyari, S. A., & Edriss, M.-A. (2014). Effect of LEPR, ABCG2 and SCD1 Gene Polymorphisms on Reproductive Traits in the Iranian Holstein Cattle. Reproduction in Domestic Animals, 49(5), 769-774. https://doi.org/10.1111/rda.12365
- Zhang, Y., Li, Q., Ye, S., Faruque, M. O., Yu, Y., Sun, D., Zhang, S., & Wang, Y. (2014). New variants in the melanocortin 1 receptor gene (MC1R) in Asian cattle. Animal Genetics, 45(4), 609-610. https://doi.org/10.1111/age.12160
- Pritchard, J. K., Wen, X., & Falush, D. (2010). Documentation for structure software: Version 2.3. Retrieved from http://pritch.bsd.unicado.edu/structure.html
- Ron, M., Cohen-Zinder, M., Peter, C., Weller, J. I., & Erhardt, G. (2006). Short Communication: A Polymorphism in ABCG2 in Bos indicus and Bos taurus Cattle Breeds. Journal of Dairy Science, 89, 4921-4923. https://doi.org/10.3168/jds.S0022-0302(06)72542-5
- Gopi, B., Singh, R. V., Kumar, S. a., Kumar, S. u., Chauhan, A., Kumar, A., & Singh, S. V. (2020). Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. Journal of Genetics, 99, 14. https://doi.org/10.1007/s12041-019-1172-4 EDN: https://elibrary.ru/GPALQP
- Zhang, Y., Liang, D., Huang, H., Yang, Z., Wang, Y., Yu, Y., Liu, L., Zhang, S., Han, J., & Xiao, W. (2020). Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. Journal of Dairy Science, 103(1), 619-624. https://doi.org/10.3168/jds.2019-16345 EDN: https://elibrary.ru/CKCEKF
- Chessa, S., Gattolin, S., Cremonesi, P., Soglia, D., Finocchiaro, R., Van Kaam, J. T., Marusi, M., & Civati, G. (2020). The effect of selection on casein genetic polymorphisms and haplotypes in Italian Holstein cattle. Italian Journal of Animal Science, 19(1), 833-839. https://doi.org/10.1080/1828051X.2020.1802356 EDN: https://elibrary.ru/MQDAIV
- Allais, S., Levéziel, H. H., Payet-Duprat, N., Hocquette, J. F., Lepetit, J., Rousset, S., Denoyelle, C., Bernard-Capel, C., Journaux, L., Bonnot, A., & Renand, G. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. Journal of Animal Science, 88(2), 446-454. https://doi.org/10.2527/jas.2009-2385
- Yildirim, M., & Sahin, E. (2010). ABCG2 Gene polymorphism in Holstein cows of Turkey. Kafkas Universitesi Veteriner Fakultesi Dergisi, 16(3), 473-476. https://doi.org/10.9775/kvfd.2009.1047
Supplementary files
