Identification of the carriers of the mutant alleles in the cattle in the Central Black Earth region of Russia using NGS sequencing

Cover Page

Cite item

Full Text

Abstract

Background. To carry out high-quality breeding work in the cattle populations, it is necessary to use next generation sequencing (NGS) methods, which allow large samples of the animals to be assessed for a significant number of the single nucleotide substitutions (SNPs) in a short period of time.

Materials and methods. Genotyping of the Holstein black-and-white cattle bred in the Central Black Earth region of Russia (Belgorod region) was carried out using NGS sequencing (multilocus panel TruSeq® Bovine Parentage Kit, Illumina USA).

Results. It was found that most of the animals studied are the inter-line hybrids. Correlation analysis of the "Reflection Sovereign", "Montvik Chieftain" and "Vis Back Ideal" lines showed no correlation dependency (r=0,165, p=0,106). Additionally, 10,4% of the cattle were carriers of the gene related to the Holstein red-and-white coat color. Furthermore, 61,5% of the cattle were carriers of the mutant allele G (_SNPchr8_108833985), which lowers immunity and contributes to the development of moraxellosis. Carriers of several unfavorable mutations were identified, such as Syndactyly (SY) – 8,3%, mutations leading to leukism (MITF gene) – 12,3%, and mutations in the melanocortin receptor gene (MC1R) – 10,4%. Carriers of the semi-lethal mutation (allele T) in the APAF1 gene accounted for 3,0% of the cattle, carriers of the lethal mutation (allele C) in the HH3 gene – 14,6%, carriers of the lethal mutation (allele C) in the HHB (BLAD) gene – 1,0%, carriers of the semi-lethal mutation (allele A) in the SLC35A3 gene – 2,0%. All this indicates errors in the breeding work. Against the backdrop of these unfavorable genetic factors, carriers of mutations with a positive effect on meat and milk productivity were observed, namely carriers of the MSTN gene mutation (allele T) – 50%, carriers of the ABCG2 gene mutation (allele C) – 4.2%, carriers of the DGAT1 gene mutation (allele A) – 28,1%, carrier of the CSN1S1 gene mutation (allele A) – 1,0%.

Conclusion. We believe that adjusting the breeding work regarding these mutations, both with negative and positive effects, will allow farms to create core herds of high-productivity animals, which will contribute to increasing the quantity and quality of dairy products.

About the authors

Eduard A. Snegin

Belgorod National Research University

Author for correspondence.
Email: snegin@bsu.edu.ru
ORCID iD: 0000-0002-7574-6910
SPIN-code: 5655-7828

Dr. Sc. (Biology), Professor, Director of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

Anatoliy S. Barkhatov

Belgorod National Research University

Email: barkhatov@bsu.edu.ru
ORCID iD: 0000-0001-9996-7251
SPIN-code: 3833-2940
Scopus Author ID: 57197819027
ResearcherId: AAM-2535-2020

Cand. Sci. (Biol.), Junior Researcher of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

Anton A. Sychev

Belgorod National Research University

Email: sychev@bsu.edu.ru
ORCID iD: 0000-0002-3311-0914
SPIN-code: 6720-0967

Cand. Sci. (Biol.), Senior Researcher of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

Elena A. Snegina

Belgorod National Research University

Email: snegina@bsu.edu.ru
ORCID iD: 0000-0003-1789-1121
SPIN-code: 3402-6300

Researcher of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

Sergei R. Yusupov

Belgorod National Research University

Email: yusupov@bsu.edu.ru
ORCID iD: 0000-0002-5425-8942
SPIN-code: 6628-1450

Junior Researcher of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

Alexandra Yu. Yusupova

Belgorod National Research University

Email: tishchenko_ayu@bsu.edu.ru
ORCID iD: 0000-0003-1838-7816
SPIN-code: 9486-0844

Junior Researcher of the Research Center for Genomic Breeding

 

Russian Federation, 85, Pobedy Str., Belgorod, 308015, Russian Federation

References

  1. Romanishko, E. L., Mikhailova, M. E., Kireeva, A. I., & Sheiko, R. I. (2021). Identification of fertility haplotypes in the Belarusian population of Holstein cattle. Molecular and Applied Genetics, 31, 7-21. https://doi.org/10.47612/1999-9127-2021-31-7-21 EDN: https://elibrary.ru/SOVXXS
  2. Epishko, O. A., Pestis, V. K., Tanana, L. A., Kuzmina, T. I., Cheburanova, E. S., Shevchenko, M. Yu., Petrova, A. P., Glinkskaya, N. A., & Trakhimchik, R. V. (2017). Detection of BLAD, CVM and BS recessive mutations in the population of dairy cattle of the Republic of Belarus. Collection of Scientific Papers. Agriculture — Problems and Prospects. Animal Husbandry, 37, 44-51. EDN: https://elibrary.ru/YOZAWL
  3. Zagidullin, L. R., Shaydullin, R. R., Akhmetov, T. M., & Tyulkyn, S. V. (2020). Polymorphism of kappa-casein and diacylglycerol O-acyltransferase genes in black-and-white cattle. Dairy Industry Herald, 37(1), 24-34. EDN: https://elibrary.ru/TUJEVN
  4. Romanenkova, O. V., Gladyr, E. A., Kostyunina, O. V., & Zinovieva, N. A. (2016). Screening of the Russian population of cattle for the presence of a mutation in APAF1 associated with the fertility haplotype HH1. Achievements of Science and Technology of Agroindustrial Complex, 30(2), 94-97. EDN: https://elibrary.ru/VPIDTX
  5. Tyulkyn, S. V. (2019). Molecular genetic testing of cattle for milk protein genes, hormones, enzymes and hereditary diseases (Doctoral dissertation). Kazan. 46 p. EDN: https://elibrary.ru/BBNXRA
  6. Usenbekov, E. S., Yakovlev, A. F., & Akimzhan, N. A. (2016). Results of monitoring bulls for genetic defects. Bulletin of KazNU. Biological Series, 67(2), 129-139.
  7. Shuklin, S. Yu. (2022). Use of STR markers and SNP chips in the formation of a highly productive herd of dairy cattle (Master's thesis). Lesnaya Polyana, Moscow region. 22 p. EDN: https://elibrary.ru/ZNOYQF
  8. Turner, L. B., Harrison, B. E., Bunch, R. J., Porto Neto, L. R., Li, Y., & Barendse, W. (2010). A genome-wide association study of tick burden and milk composition in cattle. Animal Production Science, 50(4), 235-245. https://doi.org/10.1071/AN09135
  9. Zhang, Y., Fan, X., Sun, D., Wang, Y., Yu, Y., Xie, Y., Zhang, S., & Zhang, Y. (2012). A novel method for rapid and reliable detection of complex vertebral malformation and bovine leukocyte adhesion deficiency in Holstein cattle. Journal of Animal Science and Biotechnology, 3(1), 24. https://doi.org/10.1186/2049-1891-3-24
  10. Akyüz, B., & Ertuğrul, O. (2006). Detection of bovine leukocyte adhesion deficiency (BLAD) in Turkish native and Holstein cattle. Acta Veterinaria Hungarica, 54(2), 173-178. https://doi.org/10.1556/AVet.54.2006
  11. Sifuentes-Rincón, A. M., Puentes-Montiel, H. E., Moreno-Medina, V. R., & Rosa-Reyna, X. F. (2006). Assessment of the myostatin Q204X allele using an allelic discrimination assay. Genetics and Molecular Biology, 29(3), 496-497. https://doi.org/10.1590/S1415-47572006000300017
  12. Mesquita, A. Q., Rezende, C. S. M., Mesquita, A. J., Jardim, E. A. G. V., & Kipnis, A. P. J. (2012). Association of TLR4 polymorphisms with subclinical mastitis in Brazilian Holsteins. Brazilian Journal of Microbiology, 43(2), 692-697. https://doi.org/10.1590/S1517-83822012000200034
  13. Cole, J. B., Null, D. J., & Van Raden, P. M. (2016). Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility. Journal of Dairy Science, 99(9), 7274-7288. https://doi.org/10.3168/jds.2015-10777
  14. Igoshin, A. V., Romashov, G. A., Chernyaeva, E. N., Elatkin, N. P., Yudin, N. S., & Larkin, D. M. (2022). Comparative analysis of allele frequencies for DNA polymorphisms associated with disease and economically important traits in the genomes of Russian and foreign cattle breeds. Vavilov Journal of Genetics and Breeding, 26(3), 298-307. https://doi.org/10.18699/VJGB-22-28 EDN: https://elibrary.ru/WLUUNI
  15. Ghanem, M. E., Akita, M., Suzuki, T., Kasuga, A., & Nishiboi, M. (2008). Complex vertebral malformation in Holstein cows in Japan and its inheritance to crossbred F1 generation. Animal Reproduction Science, 103(3-4), 348-354. https://doi.org/10.1016/j.anireprosci.2007.05.006
  16. Johnson, E. B., Steffen, D. J., Lynch, K. W., & Herz, J. (2006). Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics, 88, 600-609. https://doi.org/10.1016/j.ygeno.2006.08.005
  17. Kumar, A., Gupta, I. D., Mohan, G., Vineeth, M. R., Kumar, D. R., Jayakumar, S., & Niranjan, S. K. (2020). Development of PCR based assays for detection of lethal Holstein haplotype 1, 3 and 4 in Holstein Friesian cattle. Molecular and Cellular Probes, 50, 101503. https://doi.org/10.1016/j.mcp.2019.101503 EDN: https://elibrary.ru/FNVMGE
  18. Fritz, S., Capitan, A., Djari, A., Rodriguez, S. C., Barbat, A., Baur, A., Grohs, C., Weiss, B., Boussaha, M., Esquerre, D., Klopp, C., Rocha, D., & Boichard, D. (2013). Detection of Haplotypes Associated with Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2. PLoS ONE, 8(6), e65550. https://doi.org/10.1371/journal.pone.0065550 EDN: https://elibrary.ru/RJOLRV
  19. Li, F., Cai, C., Qu, K., Liu, J., Jia, Y., Hanif, Q., Chen, N., Zhang, J., Chen, H., Huang, B., & Lei, C. (2021). DGAT1 K232A polymorphism is associated with milk production traits in Chinese cattle. Animal Biotechnology, 32(4), 427-431. https://doi.org/10.1080/10495398.2020.1711769 EDN: https://elibrary.ru/MPQIGT
  20. Arora, D., Srikanth, K., Lim, D., Park, J., Choi, S., Lee, S. H., Shin, D. H., & Park, W. (2021). Exploration of OMIA Registered Recessive Mutations in Hanwoo Cattle. Journal of Agriculture & Life Science, 55(2), 137-143. https://doi.org/10.14397/jals.2021.55.2.137 EDN: https://elibrary.ru/PPVEAS
  21. Fontanesi, L., Scotti, E., & Russo, V. (2012). Haplotype variability in the bovine MITF gene and association with piebaldism in Holstein and Simmental cattle breeds. Animal Genetics, 43(3), 250-256. https://doi.org/10.1111/j.1365-2052.2011.02242.x
  22. Häfliger, I. M., Spengeler, M., Seefried, F. R., & Drögemüller, C. (2022). Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Scientific Reports, 12(1), 5435. https://doi.org/10.1038/s41598-022-09403-6 EDN: https://elibrary.ru/SGDZQS
  23. Kumar, S., Kumar, S., Singh, R. V., Chauhan, A., Kumar, A., Sulabh, S., Bharati, J., & Singh, S. V. (2019). Genetic association of polymorphisms in bovine TLR2 and TLR4 genes with Mycobacterium avium subspecies paratuberculosis infection in Indian cattle population. Veterinary Research Communications, 43, 105-114. https://doi.org/10.1007/s11259-019-09750-2 EDN: https://elibrary.ru/OBMXRA
  24. Sermyagin, A. A., Conte, A. F., Volkova, V. V., Romanenkova, O. S., Kharzhau, A. A., Reyer, H., Wimmers, K., Brem, G., & Zinovieva, N. A. (2018). Genetic highlights for reproduction and health traits in Russian black-and-white and Holstein animals selected for production of high-quality embryos. Reproduction, Fertility and Development, 30(1), 199. https://doi.org/10.1071/RDv30n1Ab119 EDN: https://elibrary.ru/XVWBID
  25. Wang, X., Xu, S., Gao, X., Ren, H., & Chen, J. (2007). Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle. Journal of Genetics and Genomics, 34(5), 406-412. https://doi.org/10.1016/S1673-8527(07)60044-7
  26. Ruiz-Larranaga, O., Manzano, C., Iriondo, M., Garrido, J. M., Molina, E., Vazquez, P., Juste, R. A., & Estonba, A. (2011). Genetic variation of toll-like receptor genes and infection by Mycobacterium avium ssp. paratuberculosis in Holstein-Friesian cattle. Journal of Dairy Science, 94(7), 3635-3641. https://doi.org/10.3168/jds.2010-3788
  27. Cohen-Zinder, M., Seroussi, E., Larkin, D. M., Loor, J. J., Wind, A. E., Lee, J.-H., Drackley, J. K., Band, M. R., Hernandez, A. G., Shani, M., Lewin, H. A., Weller, J. I., & Ron, M. (2006). Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Research, 15, 936-944. https://doi.org/10.1101/gr.3806705
  28. Tăbăran, A., Balteanu, V. A., Gal, E., Pusta, D., Mihaiu, R., Dan, S. D., Tăbăran, A. F., & Mihaiu, M. (2015). Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Animal Biotechnology, 26(2), 105-111. https://doi.org/10.1080/10495398.2014.933740
  29. Khatib, A., Mazur, A. M., & Prokhortchouk, E. (2020). The distribution of lethal Holstein haplotypes affecting female fertility among the Russian Black-and-White cattle. EurAsian Journal of Biosciences, 14(2), 2545-2552. EDN: https://elibrary.ru/WVDVMW
  30. Komisarek, J., & Dorynek, Z. (2009). Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50(2), 125-132. https://doi.org/10.1007/BF03195663 EDN: https://elibrary.ru/BLUBGD
  31. Kaminski, S. (2020). Novel method for identification of the lethal mutation in bovine APAF1 gene and its preliminary prevalence in Polish Holstein-Friesian bulls. Polish Journal of Veterinary Sciences, 23(1), 157-160. https://doi.org/10.24425/pjvs.2020.132760 EDN: https://elibrary.ru/SEPOII
  32. Kowalewska-Łuczak, I., & Kulig, H. (2013). Polymorphism of the FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A genes and somatic cell count of Jersey cows - Preliminary study. Research in Veterinary Science, 94(2), 252-255. https://doi.org/10.1016/j.rvsc.2012.08.006 EDN: https://elibrary.ru/RMJNIZ
  33. Kolenda, M., & Sitkowska, B. (2021). The Polymorphism in Various Milk Protein Genes in Polish Holstein-Friesian Dairy Cattle. Animals, 11(2), 389. https://doi.org/10.3390/ani11020389 EDN: https://elibrary.ru/TABYKS
  34. Briano-Rodriguez, C., Romero, A., Llambí, S., Sica, A. B., Rodriguez, M. T. F., Giannitti, F., Rubén Dario Caffarena, R. D., Schild, C. O., Casaux, M. L., & Quintela, F. D. (2021). Lethal and semi-lethal mutations in Holstein calves in Uruguay. Ciência Rural, 51(7). https://doi.org/10.1590/0103-8478cr20200734 EDN: https://elibrary.ru/UFIVOF
  35. Logar, B., Kavar, T., & Meglič, V. (2008). Detection of recessive mutations (CVM, BLAD and RED factor) in holstein bulls in Slovenia. Journal of Central European Agriculture, 9(1), 101-106.
  36. Matsumoto, H., Kojya, M., Takamuku, H., Kimura, S., Kashimura, A., Imai, S., Yamauchi, K., & Ito, S. (2020). MC1R c.310G>- and c.871G > A determine the coat color of Kumamoto sub-breed of Japanese Brown cattle. Animal Science Journal, 91(1), 13367. https://doi.org/10.1111/asj.13367 EDN: https://elibrary.ru/NKCTQT
  37. Meydan, H., Yildiz, M. A., & Agerholm, J. S. (2010). Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey. Acta Veterinaria Scandinavica, 52(1), 56. https://doi.org/10.1186/1751-0147-52-56 EDN: https://elibrary.ru/OMEZZT
  38. Morales, R., & Ungerfeld, E. M. (2016). Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genetics and Molecular Research, 15(2), 15027057. https://doi.org/10.4238/gmr.15027057
  39. Nanaei, H. A., Mahyari, S. A., & Edriss, M.-A. (2014). Effect of LEPR, ABCG2 and SCD1 Gene Polymorphisms on Reproductive Traits in the Iranian Holstein Cattle. Reproduction in Domestic Animals, 49(5), 769-774. https://doi.org/10.1111/rda.12365
  40. Zhang, Y., Li, Q., Ye, S., Faruque, M. O., Yu, Y., Sun, D., Zhang, S., & Wang, Y. (2014). New variants in the melanocortin 1 receptor gene (MC1R) in Asian cattle. Animal Genetics, 45(4), 609-610. https://doi.org/10.1111/age.12160
  41. Pritchard, J. K., Wen, X., & Falush, D. (2010). Documentation for structure software: Version 2.3. Retrieved from http://pritch.bsd.unicado.edu/structure.html
  42. Ron, M., Cohen-Zinder, M., Peter, C., Weller, J. I., & Erhardt, G. (2006). Short Communication: A Polymorphism in ABCG2 in Bos indicus and Bos taurus Cattle Breeds. Journal of Dairy Science, 89, 4921-4923. https://doi.org/10.3168/jds.S0022-0302(06)72542-5
  43. Gopi, B., Singh, R. V., Kumar, S. a., Kumar, S. u., Chauhan, A., Kumar, A., & Singh, S. V. (2020). Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. Journal of Genetics, 99, 14. https://doi.org/10.1007/s12041-019-1172-4 EDN: https://elibrary.ru/GPALQP
  44. Zhang, Y., Liang, D., Huang, H., Yang, Z., Wang, Y., Yu, Y., Liu, L., Zhang, S., Han, J., & Xiao, W. (2020). Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. Journal of Dairy Science, 103(1), 619-624. https://doi.org/10.3168/jds.2019-16345 EDN: https://elibrary.ru/CKCEKF
  45. Chessa, S., Gattolin, S., Cremonesi, P., Soglia, D., Finocchiaro, R., Van Kaam, J. T., Marusi, M., & Civati, G. (2020). The effect of selection on casein genetic polymorphisms and haplotypes in Italian Holstein cattle. Italian Journal of Animal Science, 19(1), 833-839. https://doi.org/10.1080/1828051X.2020.1802356 EDN: https://elibrary.ru/MQDAIV
  46. Allais, S., Levéziel, H. H., Payet-Duprat, N., Hocquette, J. F., Lepetit, J., Rousset, S., Denoyelle, C., Bernard-Capel, C., Journaux, L., Bonnot, A., & Renand, G. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. Journal of Animal Science, 88(2), 446-454. https://doi.org/10.2527/jas.2009-2385
  47. Yildirim, M., & Sahin, E. (2010). ABCG2 Gene polymorphism in Holstein cows of Turkey. Kafkas Universitesi Veteriner Fakultesi Dergisi, 16(3), 473-476. https://doi.org/10.9775/kvfd.2009.1047

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».