Pheno-genotypic characterization of the enteromicrobiota of wild and zoo animals as a natural reservoir of antibiotic-resistant microbial strains

Capa

Citar

Texto integral

Resumo

Background.  Currently, there is increasing attention to the rise in the number of cases of bacteria with multiple antimicrobial resistance found in the environment, including in wildlife. Wild animals may play a significant role in the transmission of antibiotic resistance on the local and global levels. The genetic determinants of antibiotic resistance originated in environmental microorganisms, thus a thorough analysis of habitats is necessary to predict the processes of evolution and spread of antibiotic resistance.

There is increasing attention of cases of antimicrobial-resistant bacteria being detected in wildlife is attracting increased attention from scientists. Wild animals are involved in the transmission of antibiotic resistance in microorganisms. The genetic determinants of resistance arose in environmental microorganisms, so a thorough analysis of their habitats is necessary to predict the processes of evolution and spread of this phenomenon.

 Purpose. The objective of the study is to examine the pheno-genotypic profile of antibiotic resistance in microorganisms isolated from the enteromicrobiota of wild and captive (zoo) animals. 

Materials and methods. Microorganisms were identified using bacteriological methods and time-of-flight mass spectrometry. The detection of genetic determinants of antibiotic resistance was performed using PCR.

Results. The studies have shown that the microbiota of the digestive tract of wild and zoo animals is represented by five families: Streptococcaceae, Enterobacteriaceae, Bacillaceae, Staphylococcaceae, and Pseudomonadaceae. A high resistance of certain bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, and others) to antimicrobial agents of the biosynthetic penicillin group and β-lactamase inhibitors has been established. Additionally, half of the E. coli isolates were found to carry the blaCTX-M gene, which encodes an extended-spectrum β-lactamase. The blaOXA10 gene, encoding class D β-lactamases, was detected in 15.2% of E. coli cultures.

Conclusion.  The analysis of actual data from microbiological and molecular-genetic monitoring can serve as an important and effective assessment of the dissemination of clinically significant antimicrobial-resistant microbiota among wild animals.

Sobre autores

Valentina Pleshakova

Omsk State Agrarian University named after P.A. Stolypin

Autor responsável pela correspondência
Email: vi.pleshakova@omgau.org
ORCID ID: 0000-0001-7896-2339
Código SPIN: 4372-5742
Scopus Author ID: 57214335417
Researcher ID: ABG-9332-2021

Doctor of Veterinary Sciences, Professor

 

Rússia, 1, Institutskaya Sq., Omsk, 644008, Russian Federation

Nadezhda Leshcheva

Omsk State Agrarian University named after P.A. Stolypin

Email: na.lescheva@omgau.org
ORCID ID: 0000-0001-6334-0422
Código SPIN: 1482-8172
Scopus Author ID: 57223669914
Researcher ID: AIF-2193-22

Head of the Department, Candidate of Veterinary Sciences, Associate Professor

 

Rússia, 1, Institutskaya Sq., Omsk, 644008, Russian Federation

Tatyana Lorengel

Omsk State Agrarian University named after P.A. Stolypin

Email: ti.lorengel@omgau.org
Código SPIN: 4352-5240
Scopus Author ID: 57214329921

Associate Professor, Candidate of Veterinary Sciences

 

Rússia, 1, Institutskaya Sq., Omsk, 644008, Russian Federation

Bibliografia

  1. Ereschenko, M. I., Denisenko, T. E., & Boltunov, A. N. (2019). Biological properties of microorganisms isolated from Atlantic walrus. In Actual problems of veterinary medicine, animal husbandry and biotechnology: Proceedings (pp. 453-454). EDN: https://elibrary.ru/vcxlox
  2. Zemlyanko, O. M., Rogoza, T. M., & Zhuravleva, G. A. (2018). Mechanisms of multiple antibiotic resistance in bacteria. Ecological Genetics, 16(3), 4-17. https://doi.org/10.17816/ecogen1634-17 EDN: https://elibrary.ru/ynfkb
  3. Lyakh, Yu. G., Grinek, A. N., Sukotskaya, E. A., & Solodkyi, M. A. (2019). Importance of diagnostics, analysis of carriage of bacterial infection pathogens in hunting waterfowl of Belarus. In Zoological readings - 2019: Proceedings of the International Scientific and Practical Conference (pp. 172-174).
  4. Kalashnikova, V. A., & Demerchyan, A. V. (2018). Antibiotic resistance of bacteria isolated from monkeys with intestinal infections. Veterinary Clinic, (7), 12-15. EDN: https://elibrary.ru/rkmbvk
  5. Kiseleva, S. V., & Denisenko, T. E. (2017). Indication of antibiotic resistance of staphylococcus strains in various species of domestic and wild animals. In Abstracts of the 70th All-Russian Conference (pp. 81-102). EDN: https://elibrary.ru/ysmkvk
  6. Lartseva, L. V., & Isteleva, A. A. (2011). Geoecological features of antibiotic resistance of microflora of internal waterways of Astrakhan. Geology, Geography and Global Energy, (3), 180-186. EDN: https://elibrary.ru/nykzkh
  7. Lykov, I. N., & Bitkov, M. P. (2022). Antibiotic resistance of grasshopper microflora. International Research Journal, (11), 11. https://doi.org/10.23670/IRJ.2022.125.107 EDN: https://elibrary.ru/wmdhsm
  8. Obukhova, O. V., & Lartseva, L. V. (2014). Features of antibiotic resistance of enterobacteria in the Volga Delta. Hygiene and Sanitation, (3), 21-23. EDN: https://elibrary.ru/sjsxoh
  9. Davidovich, N. V., Kukalevskaya, N. N., Bashilova, E. N., & Bazhukova, T. A. (2020). Main principles of evolution of antibiotic resistance in bacteria. Clinical Laboratory Diagnostics, 65(6), 387-393. https://doi.org/10.18821/0869-2084-2020-65-6-387-393 EDN: https://elibrary.ru/ejuexx
  10. Manzhurina, O. A., Skogoreva, A. M., Romashov, B. V., & Romashova, N. B. (2017). Current trends in antibiotic resistance of microbiota of domestic and wild animals. Bulletin of Voronezh State Agrarian University, (1), 41-45. https://doi.org/10.17238/issn2071-2243.2017.1.41 EDN: https://elibrary.ru/yqunuv
  11. Antimicrobial resistance. (2024). World Health Organization. Retrieved from https://www.who.int/ru/health-topics/antimicrobial-resistance (Accessed: June 11, 2024)
  12. Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., Martinez-Solano, L., & Sanchez, M. B. (n.d.). A global view of antibiotic resistance. FEMS Microbiol. Rev., 33, 44-65.
  13. Baquero, F., Alvarez-Ortega, C., & Martinez, J. L. (2009). Ecology and evolution of antibiotic resistance. Environ Microbiol Rep, 1(6), 469-476.
  14. Bonnedahl, J., & Järhult, J. D. (2014). Antibiotic resistance in wild birds. Ups J Med Sci, 119(2), 113-116.
  15. Koeck, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A. W., Mevius, D., & Schwarz, S., Jurke, A. (2018). Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect, 10, 441-449.
  16. Dolejska, M., & Literak, I. (2019). Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob Agents Chemother, 63(8), 142-151.
  17. Guenther, S., Ewers, C., & Wieler, L. H. (2011). Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol, 128-158.
  18. Martínez, J. L. (2012). Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front Microbiol, 1-3.
  19. Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M. et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis, 13(2), 155-165.
  20. Furness, L. E., Campbell, A., Zhang, L., Gaze, W. H., & McDonald, R. A. (2017). Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ Res, 3, 1121-1129.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».