The eco-friendly synthesis of silver nanoparticles (AgNPs) using Maranta leuconeura ethanolic extract with the assessment of antibacterial, antioxidant, anticancer activities

Cover Page

Cite item

Full Text

Abstract

Background. Considering the significant interest in the use of biosynthesized silver nanoparticles (AgNPs) obtained from plant extracts.

Purpose. The study is aimed to utilize the ethanolic extract of Maranta leuconeura as a reducing agent to form AgNPs, and evaluate its biological potential effect.

Materials and methods. The plant was extracted using 70% ethanol to create silver nanoparticles.The synthesis of AgNPs was initially confirmed by surface plasmon resonance at 400 nm, facilitated by biologically active compounds that contributed to reduction, capping, and stabilization, as evidenced by FTIR analysis, while zeta potential analysis indicated good stability at -37.1 mV. The fabricated AgNPs microscopic study revealed spherical particles of average sizes 39.9 nm, whereas XRD analysis indicated a face-centred cubic (FCC) crystalline nature.

Results and discussion. The antibacterial efficacy of AgNPs against tested isolates indicated that Staphylococcus epidermidis and Proteus mirabilis exhibited the highest sensitivity to silver nanoparticles, with an average inhibition zone measuring 14.4 mm. The results of the antioxidant activity demonstrated comparable radical scavenging to ascorbic acid, depending on the concentration. The evaluation of cytotoxicity against cancer SiHa cell line and normal HdFn cell line, revealed a concentration-dependent effect and potential anticancer impact, with an IC50 of 17.49 and 125 μg/ml for SiHa and HdFn respectively.

Conclusion. Nanoparticles produced from Maranta leuconeura leaf extract may be significant in medicinal applications owing to their distinctive features.

About the authors

Noor M. Alassadi

College of Education for Pure Sciences, University of Basrah

Author for correspondence.
Email: nooralassadi887@gmail.com
ORCID iD: 0009-0006-0700-2852

MSc. Student, Department of Biology

 

Iraq, Basrah, Iraq

Ghaida'a J. Al-Ghizzawi

College of Education for Pure Sciences, University of Basrah

Email: ghaeda.abdulnabi@uobasrah.edu.iq
ORCID iD: 0000-0003-0533-1143

PhD, Prof., Department of Biology

 

Iraq, Basrah, Iraq

References

  1. Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., Sahoo, A. K., & Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, 1-13. https://doi.org/10.1016/j.btre.2020.e00427 EDN: https://elibrary.ru/BSVIFJ
  2. Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 1-20.
  3. Arif, R., & Uddin, R. (2021). A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices & Sensors, 4(1), 1-20.
  4. Paiva-Santos, A. C., Herdade, A. M., Guerra, C., Peixoto, D., Pereira-Silva, M., Zeinali, M., Mascarenhas-Melo, F., Paranhos, A., & Veiga, F. (2021). Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. International Journal of Pharmaceutics, 597, 1-10. https://doi.org/10.1016/j.ijpharm.2021.120311 EDN: https://elibrary.ru/LURTJC
  5. Sharma, B., Singh, I., Bajar, S., Gupta, S., Gautam, H., & Kumar, P. (2020). Biogenic silver nanoparticles: Evaluation of their biological and catalytic potential. Indian Journal of Microbiology, 60, 468-474. https://doi.org/10.1007/s12088-020-00889-0 EDN: https://elibrary.ru/TXQPEC
  6. Khan, S. A., Shahid, S., & Lee, C. S. (2020). Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules, 10, 835-865. https://doi.org/10.3390/biom10060835 EDN: https://elibrary.ru/ORGNHP
  7. AlKhafaji, M. H., Mohsin, R. H., & Faqri, A. M. A. (2024). Food Additive Mediated Biosynthesis of AgNPs with Antimicrobial Activity Against Hypermucoviscous Enterotoxigenic Foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278-295. https://doi.org/10.37077/25200860.2024.37.1.21 EDN: https://elibrary.ru/XGOOMR
  8. Fatima, A., Shehzad A., Shahzad R., Khan S., Al-Suhaimi E.A. (2024). Impact of nanoparticles on structural elements within the cells. In Molecular impacts of nanoparticles on plants and algae (pp. 111-141). Cambridge, US: Academic Press.
  9. Ratan, Z. A., Haidere, M. F., Nurunnabi, M. D., Shahriar, S. M., Ahammad, A. S., Shim, Y. Y., Reaney, M. J. T., & Cho, J. Y. (2020). Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers, 12(4), 855-881. https://doi.org/10.3390/cancers12040855 EDN: https://elibrary.ru/LGYCNB
  10. Habtemariam, S., & Varghese, G. K. (2015). Extractability of rutin in herbal tea preparations of Moringa stenopetala leaves. Beverages, 1(3), 169-182.
  11. Amoah, S. K., Sandjo, L. P., Kratz, J. M., & Biavatti, M. W. (2016). Rosmarinic acid-pharmaceutical and clinical aspects. Planta Medica, 82(5), 388-406. https://doi.org/10.1055/s-0035-1568274 EDN: https://elibrary.ru/UNJOEO
  12. Swilam, N., & Nematallah, K. A. (2020). Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-71847-5 EDN: https://elibrary.ru/JLNOXK
  13. Reddy, N. V., Li, H., Hou, T., Bethu, M. S., Ren, Z., & Zhang, Z. (2021). Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. International Journal of Nanomedicine, 16, 15-29.
  14. Weeranantanapan, O., Chudapongse, N., Limphirat, W., & Nantapong, N. (2022). Streptomyces chiangmaiensis SSUT88A mediated green synthesis of silver nanoparticles: Characterization and evaluation of antibacterial action against clinical drug-resistant strains. RSC Advances, 12, 4336-4345. https://doi.org/10.1039/d1ra08238h EDN: https://elibrary.ru/HXCGDV
  15. Vijapur, L. S., Srinivas, Y., Desai, A. R., Gudigennavar, A. S., Shidramshettar, S. L., & Yaragattimath, P. (2023). Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. Journal of Research in Pharmacy, 27(2), 769-782.
  16. CLSI. (2024). Performance standards for antimicrobial susceptibility testing, M100, 34th ed. US: Clinical and Laboratory Standards Institute.
  17. Hussein, A. A., Albarazanchi, S. I., & Al-Shanon, A. F. (2020). Evaluation of anticancer potential for L-glutaminase purified from Bacillus subtilis. International Journal of Pharmaceutical Research, 12(1), 293–299.
  18. Al-Saffar, A. Z., Al-Shanon, A. F., Al-Brazanchi, S. L., Sabry, F. A., Hassan, F., & Hadi, N. A. (2017). Phytochemical analysis, antioxidant and cytotoxic potentials of Pelargonium graveolens extract in human breast adenocarcinoma (MCF-7) cell line. Asian Journal of Biochemistry, 12(1), 16-26.
  19. Urnukhsaikhan, E., Bold, B. E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), 1-12. https://doi.org/10.1038/s41598-021-00520-2 EDN: https://elibrary.ru/WAGIAC
  20. Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566-1586. https://doi.org/10.3390/nano10081566 EDN: https://elibrary.ru/TCWRJZ
  21. Raja, S., Ramesh, V., & Thivaharan, V. (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry, 10, 253–261.
  22. Abdulsahib, S. S. (2021). Synthesis, characterization and biomedical applications of silver nanoparticles. Biomedicine, 41(2), 458-464. https://doi.org/10.51248/.v41i2.1058 EDN: https://elibrary.ru/DTUPFA
  23. Sharifi-Rad, M., Pohl, P., & Epifano, F. (2021). Phytofabrication of silver nanoparticles (AgNPs) with pharmaceutical capabilities using Otostegia persica (Burm.) Boiss. leaf extract. Nanomaterials, 11(4), 1045-1063. https://doi.org/10.3390/nano11041045 EDN: https://elibrary.ru/RZCTAX
  24. Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2024). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196(1), 85-98. https://doi.org/10.1007/s12010-023-04482-1 EDN: https://elibrary.ru/CXJVUY
  25. Mohammadi, S., Pourseyedi, S., & Amini, A. (2016). Green synthesis of silver nanoparticles with a long lasting stability using colloidal solution of cowpea seeds (Vigna sp. L). Journal of Environmental Chemical Engineering, 4(2), 2023-2032. https://doi.org/10.1016/j.jece.2016.03.026 EDN: https://elibrary.ru/WVCOSR
  26. Chand, K., Cao, D., Fouad, D. E., Shah, A. H., Dayo, A. Q., Zhu, K., Lakhan, M. N., Mehdi, G., & Dong, S. (2020). Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arabian Journal of Chemistry, 13(11), 8248-8261. https://doi.org/10.1016/j.arabjc.2020.01.009 EDN: https://elibrary.ru/VUOGGA
  27. Gevorgyan, S., Schubert, R., Falke, S., Lorenzen, K., Trchounian, K., & Betzel, C. (2022). Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Scientific Reports, 12(1), 1-12. https://doi.org/10.1038/s41598-022-17929-y EDN: https://elibrary.ru/YEMCEQ
  28. Nagaraja, S., Ahmed, S. S., DR, B., Goudanavar, P., Fattepur, S., Meravanige, G., Shariff, A., Shiroorkar, P. N., Habeebuddin, M., & Telsang, M. (2022). Green synthesis and characterization of silver nanoparticles of Psidium guajava leaf extract and evaluation for its antidiabetic activity. Molecules, 27(14), 1-12. https://doi.org/10.3390/molecules27144336 EDN: https://elibrary.ru/HCTIUU
  29. Wan Mat Khalir, W. K. A., Shameli, K., Jazayeri, S. D., Othman, N. A., Che Jusoh, N. W., & Hassan, N. M. (2020). Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Frontiers in Chemistry, 8, 620-635.
  30. Velgosova, O., Mačák, L., Čižmárová, E., & Mára, V. (2022). Influence of reagents on the synthesis process and shape of silver nanoparticles. Materials, 15(19), 1-10. https://doi.org/10.3390/ma15196829 EDN: https://elibrary.ru/CLTUTY
  31. Akter, S., Lee, S. Y., Siddiqi, M. Z., Balusamy, S. R., Ashrafudoulla, M., Rupa, E. J., & Huq, M. A. (2020). Ecofriendly synthesis of silver nanoparticles by Terrabacter humi sp. nov. and their antibacterial application against antibiotic-resistant pathogens. International Journal of Molecular Sciences, 21(24), 1-19.
  32. Shareef, A. A., Hassan, Z. A., Kadhim, M. A., & Al-Mussawi, A. A. (2022). Antibacterial Activity of Silver Nanoparticles Synthesized by Aqueous Extract of Carthamus oxycantha M. Bieb. Against Antibiotics Resistant Bacteria. Baghdad Science Journal, 19(3), 460-468. https://doi.org/10.21123/BSJ.2022.19.3.0460 EDN: https://elibrary.ru/HDLJFK
  33. Aref, M. S., & Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology, 27. https://doi.org/10.1016/j.bcab.2020.101689 EDN: https://elibrary.ru/KZJPMQ
  34. Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603-26619. https://doi.org/10.1039/d2ra04717a EDN: https://elibrary.ru/WGFIIV
  35. Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., & Nabiev, I. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 13, 1-21. https://doi.org/10.1186/s11671-018-2457-x EDN: https://elibrary.ru/XYCZJR
  36. Pucelik, B., Sułek, A., Borkowski, M., Barzowska, A., Kobielusz, M., & Dąbrowski, J. M. (2022). Synthesis and characterization of size-and charge-tunable silver nanoparticles for selective anticancer and antibacterial treatment. ACS Applied Materials & Interfaces, 14(13), 14981-14996. https://doi.org/10.1021/acsami.2c01100 EDN: https://elibrary.ru/WSSINJ
  37. Mohammed Asik, R., Manikkaraja, C., Tamil Surya, K., Suganthy, N., Priya Aarthy, A., Mathe, D., Sivakumar, M., Archunan, G., & Padmanabhan, P., Gulyas, B. (2021). Anticancer Potential of L-Histidine-Capped Silver Nanoparticles against Human Cervical Cancer Cells (SiHA). Nanomaterials, 11(11), 3154-3171. https://doi.org/10.3390/nano11113154 EDN: https://elibrary.ru/EQLPXQ
  38. Tripathi, D., Modi, A., Smita, S. S., Narayan, G., & Pandey-Rai, S. (2022). Biomedical potential of green synthesized silver nanoparticles from root extract of Asparagus officinalis. Journal of Plant Biochemistry and Biotechnology, 31(1), 213-218.
  39. Gowda, A. T. C. S., Anil, V. S., & Raghavan, S. (2024). Phytosynthesis of silver nanoparticles using aqueous sandalwood (Santalum album L.) leaf extract: Divergent effects of SW-AgNPs on proliferating plant and cancer cells. PLOS ONE, 19(4), 1-32.
  40. Subramanyam, G. K., Gaddam, S. A., Kotakadi, V. S., Palithya, S., Penchalaneni, J., & Challagundla, V. N. (2021). Argyreia nervosa (Samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 634-649. https://doi.org/10.1080/21691401.2021.1996384 EDN: https://elibrary.ru/PGOFBV
  41. Palle, S. R., Penchalaneni, J., Lavudi, K., Gaddam, S. A., Kotakadi, V. S., & Challagundala, V. N. (2020). Green synthesis of silver nanoparticles by leaf extracts of Boerhavia erecta and spectral characterization and their antimicrobial, antioxidant and cytotoxic studies on ovarian cancer cell lines. Letters in Applied NanoBioScience, 9(3), 1165-1176. https://doi.org/10.33263/lianbs93.11651176 EDN: https://elibrary.ru/OOAEQA
  42. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013-8024.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».