Potential use of different forms of yeast such as Saccharomyces cerevisiae in agricultural animal diets (review)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Background.  Modern animal breeding and fodder production aim to create favourable conditions and provide a balanced diet, including feed additives that positively affect the growth and development of farm animals and poultry. Yeast has gained attention due to the beneficial effects of its cellular components and biologically active compounds.

Purpose. Review and analysis of scientific publications on the use of various forms of yeast, namely Saccharomyces cerevisiae, as a feed additive for farm animals and poultry.

Materials and methods. To achieve the objective, we conducted a review of the scientific literature on the topic under study. This involved searching for evaluating, selecting and analyzing data.

Results. This review provides a brief description of the main bioactive components of yeast cells, which are believed to be responsible for the positive effects on animal health, including improved productivity, immune response, antioxidant status, and rumen and intestinal condition. These effects are largely attributed to the ability of yeast cells to modulate the microbiota of the gastrointestinal tract, promoting the growth of beneficial bacteria and reducing colonisation by pathogens.

Conclusion. Although there is a significant amount of data demonstrating the positive effects of yeast, contradictions exist that make it impossible to fully assess its safety for the organism. Therefore, it is not recommended for use in officially approved diets on an industrial scale until further studies have been conducted to better understand and dissect the effects and mechanisms of action of yeast and its components.

Авторлар туралы

Kristina Lazebnik

Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: christinakondrashova94@yandex.ru
ORCID iD: 0000-0003-4907-9656
SPIN-код: 9820-8180
Scopus Author ID: 57209232529
ResearcherId: KFA-8181-2024

Junior Researcher Laboratory of Breeding and Genetic Research in Animal Husbandry

 

Ресей, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation

Diana Kosyan

Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: kosyan.diana@mail.ru
ORCID iD: 0000-0002-2621-108X
Scopus Author ID: 56698270900
ResearcherId: O-1790-2016

PhD of Biological Sciences, Senior Researcher Laboratory of Breeding and Genetic Research in Animal Husbandry

 

Ресей, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation

Galimzhan Duskaev

Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: gduskaev@mail.ru
ORCID iD: 0000-0002-9015-8367
SPIN-код: 7297-3319
Scopus Author ID: 56192764700
ResearcherId: N-4454-2014

Grand PhD in Biological Sciences, Leading Researcher of the Department of Animal Feeding and Feed Technology, Deputy Director

 

Ресей, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation

Vitaly Ryazanov

Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: vita7456@yandex.ru
ORCID iD: 0000-0003-0903-9561
SPIN-код: 6076-5714
Scopus Author ID: 0000-0003-0903-9561
ResearcherId: AAG-8005-2020

 PhD of Agricultural Sciences, Researcher of the Department of Animal Feeding and Feed Technology

 

Ресей, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation

Әдебиет тізімі

  1. Овсепьян, В. А., Юрина, Н. А., Тлецерук, И. Р., & Юрин, Д. А. (2023). Применение кормовых добавок в рационах цыплят-бройлеров: монография. Краснодар: Краснодарский научный центр по зоотехнии и ветеринарии. 166 с. https://doi.org/10.48612/monograph-2023-1 (Ovsepian, V. A., Yurina, N. A., Tlezeruk, I. R., & Yurin, D. A. (2023). Application of feed additives in broiler chickens' diets: Monograph. Krasnodar: Krasnodar Scientific Centre for Animal Husbandry and Veterinary Science. 166 p. https://doi.org/10.48612/monograph-2023-1)
  2. Рядчиков, В. Г., Астахова, Д. П., Сень, Т. А., Шляхова, О. Г., Потехин, С. А., & Тарасенко, О. А. (2014). Эффективность сухих пекарских дрожжей рода Saccharomyces cerevisiae в рационах молочных коров. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, (101), 1500–1515. (Ryadchikov, V. G., Astakhova, D. P., Sen’, T. A., Shlyakhova, O. G., Potekhin, S. A., & Tarasenko, O. A. (2014). Efficiency of dry baker's yeast genus Saccharomyces cerevisiae in dairy cows' diet. Polythematic Network Electronic Scientific Journal of Kuban State Agrarian University, (101), 1500–1515.)
  3. Смоленцев, С. Ю. (2023). Влияние пробиотиков на росто-весовые показатели молодняка крупного рогатого скота. Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки», 9(2), 197–204. (Smolentsev, S. Y. (2023). Effect of probiotics on growth-weight parameters of young cattle. Bulletin of Mari State University. Series "Agricultural sciences. Economic sciences", 9(2), 197–204.)
  4. Шацких, Е. В., Нуфер, А. И., & Галиев, Д. М. (2019). Рациональный подход к замене кормовых антибиотиков в рационах цыплят-бройлеров на альтернативные ростостимулирующие добавки СафМаннан и Иммуносан. Вестник Курганской ГСХА, 31(3), 47–49. (Shatskikh, E. V., Nufer, A. I., & Galiev, D. M. (2019). Rational approach to replacing feed antibiotics in broiler chickens' diets with alternative growth stimulators SafMannan and Immunosan. Bulletin of Kurgan State Agricultural Academy, 31(3), 47–49.)
  5. Ahiwe, E. U., Abdallh, M. E., Chang’a, E. P., Omede, A. A., Al-Qahtani, M., Gausi, H., Graham, H., & Iji, P. A. (2020). Influence of dietary supplementation of autolysed whole yeast and yeast cell wall products on broiler chickens. Asian-Australasian Journal of Animal Sciences, 33(4), 579–587. https://doi.org/10.5713/ajas.19.0220
  6. Alizadeh, M., Rodriguez, J. C., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2016). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge. Poultry Science, 95(10), 2266–2273. https://doi.org/10.3382/ps/pew154
  7. Al-Nasrawi, M. A., Al-Kassie, G. A., & Ali, N. A. (2020). Role of yeast (Saccharomyces cerevisiae) as a source of probiotics in poultry diets. European Journal of Molecular & Clinical Medicine, 7(7), 6611–6617. https://www.researchgate.net/publication/348351795_Role_Of_Yeast_Saccharomyces_Cereviciae_As_A_Source_Of_Probiotics_In_Poultry_Diets
  8. Bach, A., Iglesias, C., & Devant, M. (2007). Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology, 136, 156–163. https://doi.org/10.1016/j.anifeedsci.2006.09.011
  9. Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86, 1070–1078. https://doi.org/10.1093/ps/86.6.1070
  10. Bonis, V., Rossell, C., & Gehart, H. (2021). The intestinal epithelium – fluid fate and rigid structure from crypt bottom to villus tip. Frontiers in Cell and Developmental Biology, 20(9), 661931. https://doi.org/10.3389/fcell.2021.661931
  11. Bontempo, V., Di Giancamillo, A., Savoini, G., Dell’Orto, V., & Domeneghini, C. (2006). Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Animal Feed Science and Technology, 129(3), 224–236. https://doi.org/10.1016/j.anifeedsci.2005.12.015
  12. Chacher, M. F. A., Kamran, Z., & Ahsan, U. (2017). Use of mannan oligosaccharide in broiler diets: an overview of underlying mechanism. World's Poultry Science Journal, 73, 831–844. https://doi.org/10.1017/S0043933917000757
  13. Chand, N., Khan, R. U., Mobashar, M., Naz, S., Rowghani, E., & Khan, M. A. (2019). Mannanoligosaccharide (MOS) in broiler ration during the starter phase: 1. Growth performance and intestinal histomorphology. Pakistan Journal of Zoology, 51, 173–176. https://doi.org/10.17582/journal.pjz/2019.51.1.173.176
  14. Chaucheyras-Durand, F., Chevaux, E., Martin, C., & Forano, E. (2012). Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Rigobelo, E. (Ed.), Probiotic in Animals (pp. 119–152). IntechOpen. http://dx.doi.org/10.5772/50192
  15. Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeast on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology, 145, 5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
  16. Chung, Y. H., Walker, N. D., McGinn, S. M., & Beauchemin, K. A. (2011). Differing effects of two active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in non-lactating dairy cows. Journal of Dairy Science, 94, 2431–2439. https://doi.org/10.3168/jds.2010-3277
  17. Cox, C. M., Sumners, L. H., Kim, S., McElroy, A. P., Bedford, M. R., & Dalloul, R. A. (2010). Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poultry Science, 89, 2597–2607. https://doi.org/10.3382/ps.2010-00987
  18. Cui, C., Li, L., Wu, L., Wang, X., Zheng, Y., Wang, F., Wei, H., & Peng, J. (2023). Paneth cells in farm animals: current status and future direction. Journal of Animal Science and Biotechnology, 14(1), 118. https://doi.org/10.1186/s40104-023-00905-5
  19. Dalmo, R. A., & Bøgwald, J. (2008). β-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25, 384–396. https://doi.org/10.1016/j.fsi.2008.04.008
  20. Ding, B., Zheng, J., Wang, X., Zhang, L., Sun, D., Xing, Q., Pirone, A., & Fronte, B. (2019). Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian-Australasian Journal of Animal Sciences, 32(10), 1558–1564. https://doi.org/10.5713/ajas.18.0962
  21. Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Monroy, J. C., & Salem, A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non‐ and pseudo‐ruminant feeding: A review. Journal of Applied Microbiology, 128(3), 658–674. https://doi.org/10.1111/jam.14416
  22. Enculescu, M. (2021). Effects of Saccharomyces cerevisiae addition in dairy cow diets. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78(1), 18–26. https://doi.org/10.15835/buasvmcn-asb:2020.0022
  23. Feldmann, H. (2012). Yeast: Molecular and Cell Biology (2nd ed.). John Wiley & Sons: Hoboken, NJ. ISBN: 978-3-527-65918-0
  24. Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Pratti Daniel, J. L., Iank Bueno, A. V., & Gonçalves Ribeiro, M. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE, 13(11), e0207127. https://doi.org/10.1371/journal.pone.0207127
  25. Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Bolson, D. C., & Pratti Daniel, J. L. (2018). Correction: Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE, 13(4), e0196184. https://doi.org/10.1371/journal.pone.0193313
  26. Ghazanfar, S., Khalid, N., Ahmed, I., & Imran, M. (2017). Probiotic yeast: Mode of action and its effects on ruminant nutrition. In Yeast—Industrial Applications (pp. 179–202). IntechOpen. https://doi.org/10.5772/intechopen.70778
  27. Ghosh, T., Haldar, S., Bedford, M., Muthusami, N., & Samanta, I. (2012). Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: Effects on performance, intestinal histo-morphology and humoral immune responses. Journal of Animal Physiology and Animal Nutrition, 96, 275–284. https://doi.org/10.1111/j.1439-0396.2011.01155.x
  28. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., et al. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75
  29. Göncü, S., Bozkurt, S., & Görgülü, M. (2020). The effect of yeast (Saccharomyces cerevisiae) on fattening performances of growing cattle. MOJ Ecology & Environmental Sciences, 5(3), 109–111. https://doi.org/10.15406/mojes.2020.05.00182
  30. Guo, J., Chang, G., Zhang, K., Xu, L., Jin, D., Bilal, M. S., & Shen, X. (2017). Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget, 8(29), 46769–46780. https://doi.org/10.18632/oncotarget.18151
  31. Gurbuz, E., Balevi, T., Kurtoglu, V., & Oznurlu, Y. (2011). Effects of adding yeast cell walls and Yucca schidigera extract to diets of layer chicks. British Poultry Science, 52(5), 625–631. https://doi.org/10.1080/00071668.2011.619517
  32. Hampson, D. J. (1986). Alterations in piglets' small intestinal structure at weaning. Research in Veterinary Science, 40, 32–40. https://doi.org/10.1016/S0034-5288(18)30482-X
  33. He, T., Mahfuz, S., Piao, X., Wu, D., Wang, W., Yan, H., Ouyang, T., & Liu, Y. (2021). Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. Journal of Applied Animal Research, 49(1), 15–22. https://doi.org/10.1080/09712119.2021.1876705
  34. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
  35. Imrich, I., Copik, S. T., Mlyneková, E., Mlynek, J., Hascik, P., & Kanka, T. (2021). The effect of Saccharomyces cerevisiae additive to cattle ration on milk yield of dairy cows. Acta Fytotechnica Et Zootechnica, 24, 45–48. https://doi.org/10.15414/afz.2021.24.mi-prap.45-48
  36. Jacob, J., & Pescatore, A. (2017). Glucans and the poultry immune system. American Journal of Immunology, 13(3), 45–49. https://doi.org/10.3844/ajisp.2017.45.49
  37. Javadi, A., Mirzaei, H., Safarmashaei, S., & Vahdatpour, S. (2012). Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. African Journal of Biotechnology, 11(57), 12083–12087. https://doi.org/10.5897/AJB12.232
  38. Johnson, C. N., Hashim, M. M., Bailey, C. A., Byrd, J. A., Kogut, M. H., & Arsenault, R. J. (2020). Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poultry Science Journal, 99(6), 2955–2966. https://doi.org/10.1016/j.psj.2020.03.012
  39. Klis, F. M., Mol, P., Hellingwerf, K., & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 26(3), 239–256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
  40. Koc, F., Samli, H., Okur, A., Ozduven, M., Akyurek, H., & Senkoylu, N. (2010). Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulgarian Journal of Agricultural Science, 16, 643–650. https://www.agrojournal.org/16/05-15-10.pdf
  41. Kogan, G., Pajtinka, M., Babincova, M., Miadokova, E., Rauko, P., Slamenova, D., & Korolenko, T. A. (2008). Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma, 55(5), 387–393.
  42. Konca, Y., Kirkpinar, F., & Mert, S. (2009). Effects of mannan-oligosaccharides and live yeast in diets on the carcass, cut yields, meat composition and color of finishing turkeys. Asian-Australasian Journal of Animal Sciences, 22, 550–556. https://doi.org/10.5713/ajas.2009.80350
  43. Kovačević, M. (2015). Morphological and physiological characteristics of the yeast Saccharomyces cerevisiae cells differing in lifespan: Master thesis. Zagreb. 87 p. https://core.ac.uk/download/pdf/53873457.pdf
  44. Krizkova, L., Durackova, Z., Sandula, J., Sasinkova, V., & Krajcovic, J. (2001). Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 497, 213–222. https://doi.org/10.1016/s1383-5718(01)00257-1
  45. Lascano, G. J., & Heinrichs, A. J. (2009). Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science, 124, 48–57. https://doi.org/10.1016/j.livsci.2008.12.007
  46. Lei, C. L., Dong, G. Z., Jin, L., Zhang, S., & Zhou, J. (2013). Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livestock Science, 158, 57–63. https://doi.org/10.1016/j.livsci.2013.08.019
  47. Li, X. H., Chen, Y. P., Cheng, Y. F., Yang, W. L., Wen, C., & Zhou, Y. M. (2016). Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Animal Feed Science and Technology, 212, 81–89. https://doi.org/10.1016/j.anifeedsci.2015.12.011
  48. Lynch, H. A., & Martin, S. A. (2002). Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science, 85(10), 2603–2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
  49. Maamouri, O., Mabrouk, S., & Mathlouthi, L. M. (2019). Effects of Saccharomyces cerevisiae as dead yeast culture on feed supplement in fattening cattle on growth, intake parameters and nutrient digestibility. Large Animal Review, 25(3), 83–87. https://www.largeanimalreview.com/index.php/lar/article/view/325
  50. Magrin, L., Gottardo, F., Fiore, E., Gianesella, M., Martin, B., Chevaux, E., & Cozzi, G. (2018). Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: Effects on growth, slaughter performance, behavior, and rumen environment. Animal Feed Science and Technology, 241, 84–93. https://doi.org/10.1016/j.anifeedsci.2018.04.021
  51. Masék, T., Mikulec, Ž., Valpotić, H., Kušće, L., Mikulec, N., & Antunac, N. (2008). The influence of live yeast cells (Saccharomyces cerevisiae) on the performance of grazing dairy sheep in late lactation. Veterinarski Arhiv, 78(2), 95–104. https://wwwi.vef.hr/vetarhiv/papers/2008-78-2-1.pdf
  52. Maturana, M., Castillejos, L., Martin-Orue, S. M., Minel, A., Chetty, O., Felix, A. P., & Lesaux, A. A. (2023). Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Frontiers in Veterinary Science, 10, 1279506. https://doi.org/10.3389/fvets.2023.1279506
  53. McCord, J. M. (1979). Superoxide: Superoxide dismutase and oxygen toxicity. Reviews of Biochemistry and Toxicology, 1, 109–124.
  54. Meledina, T. V., Ivanova, V. A., Golovinskaia, O. V., & Harba, R. (2021). Yeast. Morphology and physiology: Study guide. Saint-Petersburg: ITMO University. 68 p. https://books.ifmo.ru/file/pdf/2760.pdf
  55. Mirza, R. A., Muhammad, S. D., & Kareem, K. Y. (2020). Effect of commercial baker's yeast supplementation (Saccharomyces cerevisiae) in diet and drinking water on productive performance, carcass traits, haematology, and microbiological characteristics of local quails. Zanco Journal of Pure and Applied Sciences, 32(3), 200–205. https://doi.org/10.21271/ZJPAS.32.3.21
  56. Mohammed, S., Enas, A., & Farook, S. (2018). Review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal of Entomology and Zoology Studies, 6(2), 629–635. https://doi.org/10.13140/RG.2.2.10675.37926
  57. Moyad, M. A., Robinson, L. E., Kittelsrud, J. M., Reeves, S. G., Weaver, S. E., & Guzman, A. I. (2009). Immunogenic yeast-based fermentation product reduces allergic rhinitis-induced nasal congestion: A randomized, double-blind, placebo-controlled trial. Advances in Therapy, 26, 795–804. https://doi.org/10.1007/s12325-009-0057-y
  58. Newbold, C. J., Wallace, R. J., Chen, X. B., & McIntosh, F. M. (1995). Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. Journal of Animal Science, 73, 1811–1818. https://doi.org/10.2527/1995.7361811x
  59. Newbold, C. J., Wallace, R. J., & McIntosh, F. M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition, 76, 249–261. https://doi.org/10.1079/bjn19960029
  60. Nguyen, T. H., Fleet, G. H., & Rogers, P. L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology, 50(2), 206–212. https://doi.org/10.1007/s002530051278
  61. Nochta, I., Tuboly, T., Halas, V., & Babinszky, L. (2009). Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 93(4), 496–504. https://doi.org/10.1111/j.1439-0396.2008.00835.x
  62. Öztürk, H., Emre, G., & Breves, G. (2016). Effects of hydrolysed yeasts on ruminal fermentation in the rumen simulation technique (Rusitec). Veterinary Medicine, 61, 195–203. https://doi.org/10.17221/8820-VETMED
  63. Olagaray, K. E., Sivinski, S. E., Saylor, B. A., Mamedova, L. K., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2019). Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. Journal of Dairy Science, 102(9), 8092–8107. https://doi.org/10.3168/jds.2019-16315
  64. Omara, I. I., Pender, C. M., White, M. B., & Dalloul, R. A. (2021). The modulating effect of dietary beta-glucan supplementation on expression of immune response genes of broilers during a coccidiosis challenge. Animals, 11(1), 159. https://doi.org/10.3390/ani11010159
  65. Ovinge, L. A., Sarturi, J. O., Galyean, M. L., Ballou, M. A., Trojan, S. J., Campanili, P. R. B., Alrumaih, A. A., & Pellarin, L. A. (2018). Effects of a live yeast in natural-program finishing feedlot diets on growth performance, digestibility, carcass characteristics, and feeding behavior. Journal of Animal Science, 96(2), 684–693. https://doi.org/10.1093/jas/sky011
  66. Patterson, R., Rogiewicz, A., Kiarie, E. G., & Slominski, B. A. (2022). Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Frontiers in Veterinary Science, 9, 1067383. https://doi.org/10.3389/fvets.2022.1067383
  67. Penner, G. B., Aschenbach, J. R., Gäbel, G., & Oba, M. (2009). Epithelial capacity for the apical uptake of short-chain fatty acids is a key determinant for intra-ruminal pH and the susceptibility to sub-acute ruminal acidosis in sheep. The Journal of Nutrition, 139, 1714–1720. https://doi.org/10.3945/jn.109.108506
  68. Perricone, V., Sandrini, S., Irshad, N., Savoini, G., Comi, M., & Agazzi, A. (2022). Yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition. A review. Animals, 12, 1426. https://doi.org/10.3390/ani12111426
  69. Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E., & Newbold, C. J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE, 8(7), e67824. https://doi.org/10.1371/journal.pone.0067824
  70. Plaizier, J., Khafipour, E., Li, S., Gozho, G., & Krause, D. (2012). Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 172, 9–21. https://doi.org/10.1016/j.anifeedsci.2011.12.004
  71. Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signaling. Current Medicinal Chemistry, 11(9), 1163–1182. https://doi.org/10.2174/0929867043365323
  72. Qui, N. H. (2023). Baker's yeast (Saccharomyces cerevisiae) and its application on poultry's production and health: A review. Iraqi Journal of Veterinary Sciences, 37(1), 213–221. https://doi.org/10.33899/ijvs.2022.132912.2146
  73. Roto, S. M., Rubinelli, P. M., & Ricke, S. C. (2015). An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Frontiers in Veterinary Science, 2, 28. https://doi.org/10.3389/fvets.2015.00028
  74. Sallam, S. M. A., Abdelmalek, M. L. R., Kholif, A. E., Zahran, S. M., Ahmed, M. H., Zeweil, H. S., Attia, M. F. A., Osama, H. M., & Olafadehan, O. A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Animal Biotechnology, 31(6), 491–497. https://doi.org/10.1080/10495398.2019.1625783
  75. Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., & Quigley, E. M. M. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649–667. https://doi.org/10.1038/s41575-021-00440-6
  76. Satoshi, S., Kiyoji, T., Hiroyo, K., & Fumio, N. (1989). Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. International Journal of Biochemistry, 21(8), 835–838. https://doi.org/10.1016/0020-711x(89)90280-2
  77. Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 235, 60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010
  78. Sivinski, S. E., Meier, K. E., Mamedova, L. K., Saylor, B. A., Shaffer, J. E., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2022). Effect of Saccharomyces cerevisiae fermentation product on oxidative status, inflammation, and immune response in transition dairy cattle. Journal of Dairy Science, 105(11), 8850–8865. https://doi.org/10.3168/jds.2022-21998
  79. Spring, P., Wenk, C., Connolly, A., & Kiers, A. (2015). A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second-generation mannose-rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition, 3, E8. https://doi.org/10.1017/jan.2015.6
  80. Suarez, C., & Guevara, C. A. (2018). Probiotic use of yeast Saccharomyces cerevisiae in animal feed. Research Journal of Zoology, 1, 1–6. https://doi.org/10.4172/RJZ.1000103
  81. Swyers, K. L., Wagner, J. J., Dorton, K. L., & Archibeque, S. L. (2014). Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavyweight yearling beef steers. Journal of Animal Science, 92, 2538–2545. https://doi.org/10.2527/jas.2013-7559
  82. Tohid, T., Hasan, G., & Alireza, T. (2010). Efficacy of mannanoligosaccharides and humate on immune response to avian influenza (H9) disease vaccination in broiler chickens. Veterinary Research Communications, 34(8), 709–717. https://doi.org/10.1007/s11259-010-9444-8
  83. Tufail, M., Chand, N., Rafiullah, A. S., Khan, R. U., Mobashar, M., & Naz, S. (2019). Mannanoligosaccharide (MOS) in broiler diet during the finisher phase: 2. Growth traits and intestinal histomorphology. Pakistan Journal of Zoology, 51, 597–602. https://doi.org/10.17582/journal.pjz/2019.51.2.597.602
  84. USDA. Leavening agents, yeast, baker's, active dry.
  85. Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132. https://doi.org/10.1264/jsme2.ME14176
  86. Vyas, D., Uwizeye, A., Mohammed, R., Yang, W. Z., Walker, N. D., & Beauchemin, K. A. (2014). The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. Journal of Animal Science, 92(2), 724–732. https://doi.org/10.2527/jas.2013-7072
  87. Wu, C., Yang, Z., Song, C., Liang, C., Li, H., Chen, W., Lin, W., & Xie, Q. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific-pathogen-free chickens. Poultry Science, 97(11), 3837–3846. https://doi.org/10.3382/ps/pey268
  88. Xiao, R., Power, R. F., Mallonee, D., Routt, K., Spangler, L., Pescatore, A. J., Cantor, A. H., Ao, T., Pierce, J. L., & Dawson, K. A. (2012). Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poultry Science, 91(7), 1660–1669. https://doi.org/10.3382/ps.2011-02035
  89. Zanello, G., Meurens, F., Serreau, D., Chevaleyre, C., Melo, S., Berri, M. D., Inca, R., Auclair, E., & Salmon, H. (2013). Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Veterinary Immunology and Immunopathology, 152, 20–27. https://doi.org/10.1016/j.vetimm.2012.09.023
  90. Zebeli, Q., & Ametaj, B. N. (2009). Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. Journal of Dairy Science, 92(8), 3800–3809. https://doi.org/10.3168/jds.2009-2178
  91. Zhang, A. W., Lee, B. D., Lee, S. K., Lee, K. W., An, G. H., Song, K. B., & Lee, C. H. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry Science Journal, 84(7), 1015–1021. https://doi.org/10.1093/ps/84.7.1015
  92. Zhang, B., Guo, Y., & Wang, Z. (2008). The modulating effect of β-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(2), 237–244. https://doi.org/10.5713/ajas.2008.70207
  93. Zhang, J., Wan, K., Xiong, Z. B., Luo, H., Zhou, Q. F., Liu, A. F., Cao, T. T., & He, H. (2021). Effects of dietary yeast culture supplementation on the meat quality and antioxidant capacity of geese. Journal of Applied Poultry Research, 30(1), 100116. https://doi.org/10.1016/j.japr.2020.100

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».