Using NeuralPDE.jl to solve differential equations
- 作者: Belicheva D.M.1, Demidova E.A.1, Shtepa K.A.1, Gevorkyan M.N.1, Korolkova A.V.1, Kulyabov D.S.1,2
-
隶属关系:
- RUDN University
- Joint Institute for Nuclear Research
- 期: 卷 33, 编号 3 (2025)
- 页面: 284-298
- 栏目: Modeling and Simulation
- URL: https://bakhtiniada.ru/2658-4670/article/view/348823
- DOI: https://doi.org/10.22363/2658-4670-2025-33-3-284-298
- EDN: https://elibrary.ru/HHCVPK
- ID: 348823
如何引用文章
全文:
详细
This paper describes the application of physics-informed neural network (PINN) for solving partial derivative equations. Physics Informed Neural Network is a type of deep learning that takes into account physical laws to solve physical equations more efficiently compared to classical methods. The solution of partial derivative equations (PDEs) is of most interest, since numerical methods and classical deep learning methods are inefficient and too difficult to tune in cases when the complex physics of the process needs to be taken into account. The advantage of PINN is that it minimizes a loss function during training, which takes into account the constraints of the system and th e laws of the domain. In this paper, we consider the solution of ordinary differential equations (ODEs) and PDEs using PINN, and then compare the efficiency and accuracy of this solution method compared to classical methods. The solution is implemented in the Julia programming language. We use NeuralPDE.jl, a package containing methods for solving equations in partial derivatives using physics-based neural networks. The classical method for solving PDEs is implemented through the DifferentialEquations.jl library. As a result, a comparative analysis of the considered solution methods for ODEs and PDEs has been performed, and an evaluation of their performance and accuracy has been obtained. In this paper we have demonstrated the basic capabilities of the NeuralPDE.jl package and its efficiency in comparison with numerical methods.
作者简介
Daria Belicheva
RUDN University
Email: dari.belicheva@yandex.ru
ORCID iD: 0009-0007-0072-0453
Master student of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationEkaterina Demidova
RUDN University
Email: eademid@gmail.com
ORCID iD: 0009-0005-2255-4025
Master student of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationKristina Shtepa
RUDN University
Email: shtepa-ka@rudn.ru
ORCID iD: 0000-0002-4092-4326
Researcher ID: GLS-1445-2022
Assistent Professor of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationMigran Gevorkyan
RUDN University
Email: gevorkyan-mn@rudn.ru
ORCID iD: 0000-0002-4834-4895
Scopus 作者 ID: 57190004380
Researcher ID: E-9214-2016
Docent, Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationAnna Korolkova
RUDN University
Email: korolkova-av@rudn.ru
ORCID iD: 0000-0001-7141-7610
Scopus 作者 ID: 36968057600
Researcher ID: I-3191-2013
Docent, Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationDmitry Kulyabov
RUDN University; Joint Institute for Nuclear Research
编辑信件的主要联系方式.
Email: kulyabov-ds@rudn.ru
ORCID iD: 0000-0002-0877-7063
Scopus 作者 ID: 35194130800
Researcher ID: I-3183-2013
Professor, Doctor of Sciences in Physics and Mathematics, Professor of Department of Probability Theory and Cyber Security of RUDN University; Senior Researcher of Laboratory of Information Technologies, Joint Institute for Nuclear Research
6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; 6 Joliot-Curie St, Dubna, 141980, Russian Federation参考
- Zubov, K. et al. NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations 2021. doi: 10.48550/ARXIV.2107.09443.
- Engheim, E. Julia as a Second Language 400 pp. (Manning Publications, 2023).
- Engheim, E. Julia for Beginners. From Romans to Rockets 472 pp. (Leanpub, 2020).
- Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 (2018).
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural networks 4, 251-257 (1991).
- Zubov, K. et al. NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations. doi: 10.48550/ARXIV.2107.09443 (2021).
- SciML Open Source Scientific Machine Learning https://github.com/SciML.
- Bararnia, H. & Esmaeilpour, M. On the application of physics informed neural networks (PINN) to solve boundary layer thermal-fluid problems. International Communications in Heat and Mass Transfer 132, 105890. doi: 10.1016/j.icheatmasstransfer.2022.105890 (2022).
- SciML Open Source Scientific Machine Learning https://github.com/SciML/NeuralPDE.jl.
- Flux The Elegant Machine Learning Stack https://fluxml.ai/.
- LuxDL DocsElegant and Performant Deep Learning in JuliaLang https://lux.csail.mit.edu/stable/.
- Ma, Y., Gowda, S., Anantharaman, R., Laughman, C., Shah, V. & Rackauckas, C. ModelingToolkit: A Composable Graph Transformation System For Equation-Based Modeling 2021. arXiv: 2103.05244 [cs.MS].
- Gowda, S., Ma, Y., Cheli, A., Gwóźzdź, M., Shah, V. B., Edelman, A. & Rackauckas, C. HighPerformance Symbolic-Numerics via Multiple Dispatch. ACM Commun. Comput. Algebra 55, 92-96. doi: 10.1145/3511528.3511535 (Jan. 2022).
- Volterra, V. Leçons sur la Théorie mathématique de la lutte pour la vie (Gauthiers-Villars, Paris, 1931).
- Demidova, E. A., Belicheva, D. M., Shutenko, V. M., Korolkova, A. V. & Kulyabov, D. S. Symbolicnumeric approach for the investigation of kinetic models. Discrete and Continuous Models and Applied Computational Science 32, 306-318. doi: 10.22363/2658-4670-2024-32-3-306-318 (2024).
- Rackauckas, C. & Nie, Q. DifferentialEquations.jl - A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software 5, 15-25. doi:10. 5334/jors.151 (2017).
- Bruns, H. Das Eikonal in Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften (S. Hirzel, Leipzig, 1895).
- Klein, F. C. Über das Brunssche Eikonal. Zeitscrift für Mathematik und Physik 46, 372-375 (1901).
- Fedorov, A. V., Stepa, C. A., Korolkova, A. V., Gevorkyan, M. N. & Kulyabov, D. S. Methodological derivation of the eikonal equation. Discrete and Continuous Models and Applied Computational Science 31, 399-418. doi: 10.22363/2658-4670-2023-31-4-399-418 (Dec. 2023).
- Stepa, C. A., Fedorov, A. V., Gevorkyan, M. N., Korolkova, A. V. & Kulyabov, D. S. Solving the eikonal equation by the FSM method in Julia language. Discrete and Continuous Models and Applied Computational Science 32, 48-60. doi: 10.22363/2658-4670-2024-32-1-48-60 (2024).
- Kulyabov, D. S., Korolkova, A. V., Sevastianov, L. A., Gevorkyan, M. N. & Demidova, A. V. Algorithm for Lens Calculations in the Geometrized Maxwell Theory in Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII; and Computational Biophysics and Analysis of Biomedical Data IV (eds Derbov, V. L. & Postnov, D. E.) 10717 (SPIE, Saratov, Apr. 2018), 107170Y.1-6. doi: 10.1117/12.2315066. arXiv: 1806.01643.
补充文件


