On the algebraic properties of difference approximations of Hamiltonian systems

封面

如何引用文章

全文:

详细

In this paper, we examine difference approximations for dynamic systems characterized by polynomial Hamiltonians, specifically focusing on cases where these approximations establish birational correspondences between the initial and final states of the system. Difference approximations are commonly used numerical methods for simulating the evolution of complex systems, and when applied to Hamiltonian dynamics, they present unique algebraic properties due to the polynomial structure of the Hamiltonian. Our approach involves analyzing the conditions under which these approximations preserve key features of the Hamiltonian system, such as energy conservation and phase-space volume preservation. By investigating the algebraic structure of the birational mappings induced by these approximations, we aim to provide insights into the stability and accuracy of numerical simulations in identifying the true behavior of Hamiltonian systems. The results offer a framework for designing efficient and accurate numerical schemes that retain essential properties of polynomial Hamiltonian systems over time.

作者简介

Lyubov Lapshenkova

RUDN University

Email: lapshenkova_lo@pfur.ru
ORCID iD: 0000-0002-1053-4925

PhD student of the chair of Mathematical Modeling and Artificial Intelligence

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Mikhail Malykh

RUDN University; Joint Institute for Nuclear Research

编辑信件的主要联系方式.
Email: malykh_md@pfur.ru
ORCID iD: 0000-0001-6541-6603
Scopus 作者 ID: 6602318510
Researcher ID: P-8123-2016

Doctor of Physical and Mathematical Sciences, Head of the department of Mathematical Modeling and Artificial Intelligence of RUDN University and research fellow of LIT JINR

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; 6 Joliot-Curie St, Dubna, 141980, Russian Federation

Elena Matyukhina

RUDN University

Email: matykhina_en@pfur.ru
Senior lecturer of the chair of Mathematical Modeling and Artificial Intelligence 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

参考

  1. Butcher, J. C. Numerical Methods for Ordinary Differential Equations (Wiley, 2008).
  2. Sanz-Serna, J. & Abia, L. Order conditions for canonical Runge-Kutta schemes. SIAM Journal on Numerical Analysis 28, 1081-1096 (1991).
  3. Wisdom, J. & Holman, M. Symplectic maps for the N-body problem. The Astronomical Journal 102, 152-164. doi: 10.1086/117903 (1996).
  4. Leimkuhler, B. & Reich, S. Simulating Hamiltonian dynamics 14th ed. (Cambridge University Press, 2004).
  5. Hairer, E., Lubich, C. & Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Springer, 2006).
  6. Berzins, M. Symplectic Time Integration Methods for the Material Point Method, Experiments, Analysis and Order Reduction. 14th WCCM-ECCOMAS Congress (2021).
  7. Hairer, E., Lubich, C. & Wanner, G. Symplectic Runge-Kutta methods. Acta Numerica, 211-266. doi: 10.1017/S096249290500008X (2006).
  8. Neishtadt, A. I. On the behavior of Hamiltonian systems under small perturbations. English. Russian Academy of Sciences. Izvestiya Mathematics 40, 547-556. doi: 10.1070/IM1991v040n03ABEH002018 (1991).
  9. Candy, J. & Cary, J. R. Symplectic Particle-in-Cell Algorithms. Journal of Computational Physics 174, 118-143. doi: 10.1006/jcph.2001.6771 (2001).
  10. Severi, F. Lezioni di geometria algebrica (Angelo Graghi, Padova, 1908).
  11. Dattani, N. Quadratization in discrete optimization and quantum mechanics 2019. ArXiv: 1901.04405.
  12. Malykh, M., Gambaryan, M., Kroytor, O. & Zorin, A. Finite Difference Models of Dynamical Systems with Quadratic Right-Hand Side. Mathematics 12, 167 (2024).
  13. Feynman, R. P. Feynman lectures on computation Expanded edition (ed Hey, A. J.) trans. by Hey, T. (CRC Press, Boca Raton, FL, 2018).
  14. Quispel, G. R. W., McLaren, D. & Evripidou, C. Deducing properties of ODEs from their discretization 2021. ArXiv: 2104.05951.
  15. Petrera, M. & Suris, Y. New results on integrability of the Kahan-Hirota-Kimura discretizations 2018.
  16. Bogfjellmo, G., Celledoni, E., Robert, I. M., O., B. & Reinout, Q. Using aromas to search for preserved measures and integrals in Kahan’s method. Math. Comput. 93, 1633-1653 (2022).
  17. Petrera, M., Smirin, J. & Suris, Y. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Proceedings of the Royal Society A 475 (2018).
  18. Kahan, W. Pracniques: further remarks on reducing truncation errors. Communications of the ACM 8, 40 (1965).
  19. Bychkov, A. & Pogudin, G. Optimal Monomial Quadratization for ODE Systems in Combinatorial Algorithms (eds Flocchini, P. & Moura, L.) 122-136 (Springer International Publishing, Cham, 2021). doi: 10.1007/978-3-030-85550-5_8.
  20. Bychkov, A. Qbee https://github.com/AndreyBychkov/QBee. 2021.
  21. Celledoni, E., D I McLaren, D., Owren, B. & Quispel, G. R. W. Integrability properties of Kahans method. Journal of Physics A: Mathematical and Theoretical 47 (2014).
  22. Malykh, M., Ayryan, E., Lapshenkova, L. & Sevastianov, L. Difference Schemes for Differential Equations with a Polynomial Right-Hand Side, Defining Birational Correspondences. Mathematics 12, 2725. doi: 10.3390/math12172725 (2024).
  23. McLachlan, R. & Quispel, G. R. W. A Survey of Symplectic Integrators. Acta Numerica 11, 341- 387. doi: 10.1017/S0962492902000075 (2002).
  24. Iserles, A. & Nørsett, S. P. Symplectic Integrators for Hamiltonian Systems. SIAM Journal on Numerical Analysis 39, 1-20. doi: 10.1137/S0036142900366583 (2001).
  25. Leimkuhler, D. & Reich, S. Numerical Methods for Hamiltonian Systems. Acta Numerica 13, 1- 50. doi: 10.1017/S0962492904000010 (2004).
  26. Rerikh, K. V. General Approach to Integrating Invertible Dynamical Systems Defined by Transformations from the Cremona group Cr (P kn) of Birational Transformations. Mathematical Notes 68, 594-601 (2000).

补充文件

附件文件
动作
1. JATS XML