🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Foundational Aspects of Theory of Statistical Function Estimation and Pattern Recognition

Cover Page

Cite item

Full Text

Abstract

This paper provides a gentle introduction to the foundational ideas, concepts and results in the field of science dedicated to the theory of statistical function estimation and pattern recognition. The so-called VC Theory of Vapnik and Chervonenkis is introduced and explored gradually. The emphasis is placed on helping the reader appreciate the importance of the extension of the classical law of large numbers to function spaces, and the key role that "new" concepts such as Empirical Risk Minimization (ERM) principle, ERM consistency, VC dimension, and complexity control play in constructing algorithms that yield function estimators with optimal properties. As much as possible, each key concept is introduced via a tangible example, with the hope of helping the reader grasp the essential core of the foundational concept under exploration.

About the authors

E Fokoue

Kettering University

Университет им. Кеттеринга; Kettering University

Supplementary files

Supplementary Files
Action
1. JATS XML