О численном решении прямой и обратной задачи рассеяния на сферически симметричных потенциалах,зависящих от параметров

Обложка

Цитировать

Аннотация

Задача рассеяния для радиального уравнения Шрёдингера, в отличие от постановки её как задачи Коши, формулируется как граничная задача для волновой функции с нелинейным асимптотическим условием, в котором неизвестная фаза рассеяния исключена. Фаза определяется после вычисления с помощью итераций на основе непрерывного аналога метода Ньютона (НАМН) волновой функции с учётом её асимптотики. Обратная задача для уравнения с потенциалом, зависящим от параметров, сводится к минимизации по параметрам функционала, представляющего собой сумму квадратов отклонений заданных значений фаз от вычисленных. Особенности вычислительных схем продемонстрированы решением задачи с потенциалом Морзе, имеющей аналитическое решение, и задачи с потенциалом Вудса–Саксона.

Об авторах

Таисия Петровна Пузынина

Объединённый институт ядерных исследований

Email: puzynina@jinr.ru
Лаборатория информационных технологий

Во Чонг Тхак

Объединённый институт ядерных исследований

Email: votrongthach@jinr.ru
Лаборатория информационных технологий

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).