🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Dynamic Equation of Constrained Mechanical System

Cover Page

Cite item

Full Text

Abstract

This paper modifies an explicit dynamic equation of constrained mechanical system. Kinematic position of the system is defined by generalized coordinates, which are imposed on constraints. The equations of motion in the form of the Lagrange equations with undetermined multipliers are constructed based on d’Alambert-Lagrange’s principle. Dynamic equations are presented to the mind, resolved relative accelerations. Expressions for the undetermined multipliers are defined by considering the possible deviations from the constraints equations. For constraints stabilization additional variables used to estimate the deviations caused by errors in the initial conditions and the use of numerical methods. For approximation of ordinary differential equations solution, in particular, the nonlinear equations of first order, use explicit numerical methods. Linear equations of the constraints perturbation are constructed. The matrix of the coefficients of these equations is selected in the process of the dynamic equations numerical solution. Stability with respect to initial deviations from the constraints equations and stabilization of the numerical solution depend on the values of the elements of this matrix. As a result values for the matrix of coefficients corresponding to the solution of the dynamics equations by the method of Euler and fourth order Runge-Kutta method are defined. Suggested method for solving the problem of stabilization is used for modeling of the disk motion on a plane without slipping.

About the authors

Assaye Walelgn Beshaw

Bahir Dar University

Email: assayewalelgn@gmail.com
Department of Mathematics

Supplementary files

Supplementary Files
Action
1. JATS XML