🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Index of Sobolev Problems Associated with Lie Group Action

Cover Page

Cite item

Full Text

Abstract

In relative elliptic theory or “Sobolev” problem as B. Yu. Sternin named it in his works one is required to construct a Fredholm elliptic theory and find an index formula in the category of smooth pairs of manifolds (M,X), where X is a submanifold in M. From the point of view of (pseudo)differential equations the Sobolev problem deals with the comparison Du ≡ f(modX), where D is a pseudodifferential operator, while the sign “ ≡” means that the left and right hand sides are equal modulo distributions supported on X. Obviously, if the dimension of the submanifold is greater than one, the comparison written above does not define a Fredholm operator, since its kernel is infinite-dimensional. It turns out, that if we add to the comparison some operators B defined on X, which are related by an algebraic condition (of coercitivity type) with operator D, then the obtained operator (D,B) is already Fredholm in appropriate Sobolev spaces. Remarkably, this condition can be formulated invariantly as an ellipticity condition of some operator, which is induced by the problem on the submanifold X. Hence, the ellipticity conditions of operators D and (D,B) together give us a Fredholm operator. This theorem and the corresponding index formula were proved by B.Yu. Sternin. Note that all operators appearing in this theory are pseudodifferential. In particular, (D,B) is a pseudodifferential operator, meanwhile, this enabled one to define its ellipticity. We have a quite different situation, if the manifold M is endowed with an additional structure, for example, if it carries a Lie group action. In this case, (D,B) is in general no longer a pseudodifferential operator and, hence, the question of its ellipticity, formally speaking, can not even be rised. However, in our work, under certain conditions, we can examine the resulting operator (D,B), define its symbol and prove its Fredholm property. Moreover, we give an index formula in this more general situation. This is the subject of this work.

About the authors

D A Loshhenova

Peoples’ Friendship University of Russia

Email: darya.loshhenova.90@bk.ru
Department of Applied Mathematics

Supplementary files

Supplementary Files
Action
1. JATS XML