🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Sampling of integrand for integration using shallow neural network

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Inthispaper,westudytheeffectofusingtheMetropolis-Hastingsalgorithmforsamplingtheintegrand on the accuracy of calculating the value of the integral with the use of shallow neural network. In addition, a hybrid method for sampling the integrand is proposed, in which part of the training sample is generated by applying the Metropolis-Hastings algorithm, and the other part includes points of a uniform grid. Numerical experiments show that when integrating in high-dimensional domains, sampling of integrands both by the Metropolis-Hastings algorithm and by a hybrid method is more efficient with respect to the use of a uniform grid.

Авторлар туралы

Alexander Ayriyan

Joint Institute for Nuclear Research; Alikhanyan National Science Laboratory; Dubna State University

Email: ayriyan@jinr.ru
ORCID iD: 0000-0002-5464-4392

PhD in Physics and Mathematics, Head of sector of the Division of Computational Physics of JINR, Assistant professor of Department of Distributed Information Computing Systems of Dubna State University; Senior Researcher of AANL

6 Joliot-Curie St, Dubna, 141980, Russian Federation; 2 Alikhanyan Brothers St, Yerevan, 0036, Republic of Armenia; 19 Universitetskaya St, Dubna, 141980, Russian Federation

Hovik Grigorian

Joint Institute for Nuclear Research; Alikhanyan National Science Laboratory; Dubna State University; Yerevan State University

Email: hovik.grigorian@gmail.com
ORCID iD: 0000-0002-0003-0512

Candidate of Physical and Mathematical Sciences, Senior Researcher of JINR; Senior Researcher of AANL (YerPhI); Assistant professor of Dubna State University; assistant professor of Yerevan State University

6 Joliot-Curie St, Dubna, 141980, Russian Federation; 2 Alikhanyan Brothers St, Yerevan, 0036, Republic of Armenia; 19 Universitetskaya St, Dubna, 141980, Russian Federation; 1 Alex Manoogian St, Yerevan, 0025, Republic of Armenia

Vladimir Papoyan

Joint Institute for Nuclear Research; Alikhanyan National Science Laboratory; Dubna State University

Хат алмасуға жауапты Автор.
Email: vlpapoyan@jinr.ru
ORCID iD: 0000-0003-0025-5444

Junior researcher of JINR, Junior researcher of AANL (YerPhI), PhD student of Dubna State University

6 Joliot-Curie St, Dubna, 141980, Russian Federation; 2 Alikhanyan Brothers St, Yerevan, 0036, Republic of Armenia; 19 Universitetskaya St, Dubna, 141980, Russian Federation

Әдебиет тізімі

  1. Lloyd, S., Irani, R. A. & Ahmadi, M. Using neural networks for fast numerical integration and optimization. IEEE Access 8, 84519-84531. doi: 10.1109/access.2020.2991966 (2020).
  2. Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems 2, 303-314. doi: 10.1007/bf02551274 (Dec. 1989).
  3. Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109. doi: 10.1093/biomet/57.1.97 (Apr. 1970).
  4. Chib, S. & Greenberg, E. Understanding the Metropolis-Hastings algorithm. The American Statistician 49, 327. doi: 10.2307/2684568 (Nov. 1995).
  5. Ecosystem for tasks of machine learning, deep learning and data analysis http://hlit.jinr.ru/en/access-to-resources_eng/ecosystem-for-ml_dl_bigdataanalysistasks_eng/. Accessed: 2023-10-10.
  6. Chollet, F. et al. Keras https://keras.io.
  7. Johansson, F. et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18) http://mpmath.org.
  8. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431-441. doi: 10.1137/0111030 (June 1963).
  9. Marco, F. D. Tensorflow Levenberg-Marquardt https://github.com/fabiodimarco/tflevenberg-marquardt.
  10. Kişi, Ö. & Uncuoǧlu, E. Comparison of three back-propagation training algorithms for two case studies. Indian Journal of Engineering and Materials Sciences 12, 434-442 (Oct. 2005).
  11. Jiawei Han, M. K. & Pei, J. Data mining: concepts and techniques Third Edition. 703 pp. doi: 10.1016/c2009-0-61819-5 (Elsevier Inc., 225 Wyman Street, Waltham, MA 02451, USA, 2012).
  12. Genz, A. A package for testing multiple integration subroutines in Numerical Integration 337-340 (Springer Netherlands, 1987). doi: 10.1007/978-94-009-3889-2_33.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML