Optimization of protein intake in adults with catabolic conditions: a review

封面

如何引用文章

全文:

详细

Protein is one of the key macronutrients. Therefore, the development of protein deficiency adversely affects health status and treatment outcomes. At the same time, protein requirements vary considerably among different patient populations. Optimization of protein intake in at-risk groups remains an important issue, as it may influence the effectiveness of specialized treatment, quality of life, and social functioning of patients. The aim of this review was to examine approaches to correcting protein deficiency in the most vulnerable adult populations, including older and elderly individuals, oncology patients, and critically ill patients. Publications indexed in the Scientific Electronic Library (eLibrary.ru) and PubMed databases between 2000 and 2025 were analyzed. The analysis demonstrated the need for an individualized approach to protein prescription. The review discusses current trends in nutritional support for these patient populations. In cases of inadequate protein intake, the use of high-protein enteral formulas as a supplement to the regular diet can positively affect treatment outcomes and quality of life. Whey protein currently attracts particular interest. Its use has demonstrated promising results, especially in combination with omega-3 fatty acids. Thus, an individually tailored protein component in nutritional support may improve treatment outcomes and quality of life in older adults, oncology patients, and critically ill patients.

作者简介

Olga Obukhova

National Medical Research Center of Oncology named after N.N. Blokhin

编辑信件的主要联系方式.
Email: obukhova0404@yandex.ru
ORCID iD: 0000-0003-0197-7721
SPIN 代码: 6876-7701

MD, PhD, Cand. Sci. (Medicine)

俄罗斯联邦, 24 Kashirskoe hwy, Moscow, 115522

Ildar Kurmukov

National Medical Research Center of Oncology named after N.N. Blokhin

Email: kurmukovia@gmail.com
ORCID iD: 0000-0001-8463-2600
SPIN 代码: 3692-5202

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Alla Ryk

N.V. Sklifosovsky Research Institute for Emergency

Email: alla-ryk@yandex.ru
ORCID iD: 0000-0002-3968-3713
SPIN 代码: 3984-7800

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

参考

  1. Obukhova OA, Kurmukov IA, Kashiya ShR. Components of parenteral nutrition: amino acids. Difficult patient. 2010:8(10):22-27. EDN: OGBONL
  2. Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002;102(11):1621-30. doi: 10.1016/s0002-8223(02)90346-9
  3. Spaaij CJK, Pijls LTJ. New dietary reference intakes in the Netherlands for energy, proteins, fats and digestible carbohydrates. Eur. J. Clin. Nutr. 2004;58(1):191-4. doi: 10.1038/sj.ejcn.1601788
  4. Tutelyan VA, Nikityuk DB, Aksenov IV, et al. Methodical recommendations MP 2.3.1.0253-21 «Norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation» (approved by the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing on July 22, 2021). [Electronic resource] (In Russ.) Available from: https://upp.alregn.ru/pharmaceutical-industry/docs/inaya-poleznaya-informatsiya/MP%202.3.1.0253-21.pdf EDN: MAYTEB
  5. Gotina AD, Ivannikova EV, Eruslanova KA, et al. Assessment of nutrition and nutritional status of centenarians (based on the materials of the study “Centenarian Citizen” in Moscow). Clinical nutrition and metabolism. 2023:4(2);54–65. doi: 10.17816/clinutr383783 EDN: VBVBHC
  6. Martyushev-Poklad AV, Yankevich DS, Petrova MV, Savitskaya NG. New approaches to optimizing nutrition of older people Clinical nutrition and metabolism. 2022:3(2):91–104. doi: 10.17816/clinutr108594 EDN: ZLPHGN
  7. Fernandez SSM, Cipolli GC, Merchant RA, et al. Global prevalence of anorexia of aging: a systematic review and meta-analysis. Maturitas. 2025;198:108603. doi: 10.1016/j.maturitas.2025.108603
  8. Rudzińska A, Piotrowicz K, Perera I, et al. Poor appetite in frail older persons — a systematic review. Nutrients. 2023;15(13):2966. doi: 10.3390/nu15132966 EDN: ZCVZPX
  9. Maier A, Riedel-Heller SG, Pabst A, Luppa M. Risk factors and protective factors of depression in older people 65+. A systematic review. PLoS One. 2021;16(5):e0251326. doi: 10.1371/journal.pone.0251326 EDN: XZJQGQ
  10. Magnuson A, Sattar S, Nightingale G, et al. A practical guide to geriatric syndromes in older adults with cancer: a focus on falls, cognition, polypharmacy, and depression. Am. Soc. Clin. Oncol. Educ. Book. 2019:39:e96-e109. doi: 10.1200/EDBK_237641
  11. Kocyigit SE, Bulut EA, Aydin AE, et al. The relationship between cognitive frailty, physical frailty and malnutrition in Turkish older adults. Nutrition. 2024;126:112504. doi: 10.1016/j.nut.2024.112504 EDN: ZHPXAX
  12. Coelho-Junior HJ, Marzetti E, Picca A, et al. Protein intake and frailty: a matter of quantity, quality, and timing. Nutrients. 2020;12(10):2915. doi: 10.3390/nu12102915 EDN: REKEAB
  13. Liao CD, Lee PH, Hsiao DJ, et al. Effects of protein supplementation combined with exercise intervention on frailty indices, body composition, and physical function in frail older adults. Nutrients. 2018;10(12):1916. doi: 10.3390/nu10121916
  14. Ying L, Zhang Q, Yang Y-M, Zhou J-Y. A combination of serum biomarkers in elderly patients with sarcopenia: a cross-sectional observational study. Int. J. Endocrinol. 2022:2022:4026940. doi: 10.1155/2022/4026940 EDN: FNXMIA
  15. Tseng LY, Liang CK, Peng LN, et al. The distinct impacts of sarcopenic and dynapenic obesity on mortality in middle-aged and older adults based on different adiposity metrics: results from I-Lan longitudinal aging study. Clin. Nutr. 2024;43(8):1892-1899. doi: 10.1016/j.clnu.2024.06.035 EDN: TUBMSU
  16. Liu B, Liu R, Jin Y, et al. Association between possible sarcopenia, all-cause mortality, and adverse health outcomes in community-dwelling older adults in China. Sci. Rep. 2024;14(1):25913. doi: 10.1038/s41598-024-77725-8 EDN: XWSSSK
  17. Safonova YuA, Zotkin EG. Frequency of sarcopenia in older age groups: assessment of diagnostic criteria. Scientific and practical rheumatology. 2020;58(2):147-153. doi: 10.14412/1995-4484-2020-147-153 EDN: SPYYUX
  18. Obukhova OA, Kurmukov IA, Ryk AA. The impact of nutritional support on nutritional status, quality of life, and survival in cancer patients receiving systemic antitumor drug treatment. Clinical nutrition and metabolism. 2022:3(1):50–61. doi: 10.17816/clinutr104771 EDN: VJKFTI
  19. Gao Q, Mei F, Shang Y, et al. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin. Nutr. 2021;40(7):4633-4641. doi: 10.1016/j.clnu.2021.06.009 EDN: WQCJLY
  20. Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin. Nutr. 2017;36(1):267-274. doi: 10.1016/j.clnu.2015.11.013
  21. Amini N, Devriendt A, Lapauw L, et al. Estimating protein intake in sarcopenic older adults: combining food diaries and weighed powders versus 24-hour urine collections. J. Nutr. Health Aging. 2025;29(3):100474. doi: 10.1016/j.jnha.2024.100474 EDN: ZFXIUV
  22. Niskanen RT, Reinders I, Wijnhoven HAH, et al. The feasibility of a 6-month dietary intervention aiming to increase protein intake among community-dwelling older adults with low habitual protein intake: A secondary analysis of the PROMISS randomised controlled trial. J. Hum. Nutr. Diet. 2023;36(5):1811-1820. doi: 10.1111/jhn.13197 EDN: NZNDBC
  23. Unterberger S, Aschauer R, Zöhrer PA, et al. Effects of an increased habitual dietary protein intake followed by resistance training on fitness, muscle quality and body composition of seniors: a randomised controlled trial. Clin. Nutr. 2022;41(5):1034-1045. doi: 10.1016/j.clnu.2022.02.017 EDN: IUQSJA
  24. Cheah KJ, Cheah LJ. Benefits and side effects of protein supplementation and exercise in sarcopenic obesity: a scoping review. Nutr. J. 2023;22(1):52. doi: 10.1186/s12937-023-00880-7 EDN: WPJRGT
  25. Carroll CC, Campbell NW, Lewis RL, et al. Greater protein intake emphasizing lean beef does not affect resistance training-induced adaptations in skeletal muscle and tendon of older women: a randomized controlled feeding trial. J. Nutr. 2024;154(6):1803-1814. doi: 10.1016/j.tjnut.2024.04.001 EDN: FKOOPA
  26. López-Daza D, López-Ucrós N, Posada-Álvarez C, Savino-Lloreda P. Effect of oral supplementation with whey protein on muscle mass in adults with type 2 diabetes mellitus: a systematic review of randomized controlled trials. Endocrinol. Diabetes Nutr. (Engl Ed). 2024;71(7):308-316. doi: 10.1016/j.endien.2024.07.002 EDN: RZZNEA
  27. Nilsson MI, Mikhail A, Lan L, et al. A five-ingredient nutritional supplement and home-based resistance exercise improve lean mass and strength in free-living elderly. Nutrients. 2020;12(8):2391. doi: 10.3390/nu12082391 EDN: FOOVTV
  28. Thormann M, Meyer HJ, Wienke A, et al. The prevalence of sarcopenia in patients with solid tumors differs across regions: a systematic review. Nutr. Cancer. 2025;77(1):102-114. doi: 10.1080/01635581.2024.2401648
  29. Obukhova OA, Kurmukov IA, Yunaev GS. Nutritional support as part of complex therapy of palliative cancer patients (review). Clinical nutrition and metabolism. 2024:5(3):134–144. doi: 10.17816/clinutr679021 EDN: EMLTSK
  30. Mercadante S, Bellavia GM, Fusco F, et al. Malnutrition is associated with fatigue and anxiety in advanced cancer patients admitted to home palliative care. Am. J. Hosp. Palliat. Care. 2024:10499091241278924. doi: 10.1177/10499091241278924 EDN: KLOWMG
  31. Trestini I, Belluomini L, Dodi A, et al. Body composition derangements in lung cancer patients treated with first-line pembrolizumab: a multicentre observational study. J. Cachexia Sarcopenia Muscle. 2024;15(6):2349-2360. doi: 10.1002/jcsm.13568 EDN: WVJSBF
  32. Koh JH, Lim CYJ, Tan LTP, et al. Prevalence and association of sarcopenia with mortality in patients with head and neck cancer: a systematic review and meta-analysis. Ann. Surg. Oncol. 2024;31(9):6049-6064. doi: 10.1245/s10434-024-15510-7 EDN: AFZYFY
  33. Keshavjee S, Mckechnie T, Shi V, et al. The impact of sarcopenia on postoperative outcomes in colorectal cancer surgery: an updated systematic review and meta-analysis. Am. Surg. 2025;91(5):887-900. doi: 10.1177/00031348251329748
  34. Tian L, Wang Y, Che G. Association of preoperative sarcopenia with the risk of anastomotic leakage in surgical esophageal cancer patients: a meta-analysis. Nutr. Cancer. 2025;77(6):640-647. doi: 10.1080/01635581.2025.2479878
  35. Liu C, Li Y, Xu Y, Hou H. The impact of preoperative skeletal muscle mass index-defined sarcopenia on postoperative complications and survival in gastric cancer: an updated meta-analysis. Eur. J. Surg. Oncol. 2025;51(3):109569. doi: 10.1016/j.ejso.2024.109569 EDN: LJZREW
  36. Wang F, Zhen H, Yu K, Liu P. The prognostic value of sarcopenia in clinical outcomes in cervical cancer: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2025;16(1):e13674. doi: 10.1002/jcsm.13674 EDN: HBGGPX
  37. Hu X, Liao DW, Yang ZQ, et al. Sarcopenia predicts prognosis of patients with renal cell carcinoma: A systematic review and meta-analysis. Int. Braz. J. Urol. 2020;46(5):705-715. doi: 10.1590/S1677-5538.IBJU.2019.0636 EDN: MEPJLR
  38. Su Y, Wu Y, Li C, et al. Sarcopenia among treated cancer patients before and after neoadjuvant chemotherapy: a systematic review and meta-analysis of high-quality studies. Clin. Transl. Oncol. 2024;26(8):1844-1855. doi: 10.1007/s12094-024-03421-8 EDN: RQEZOF
  39. Sato R, Tokunaga M, Mizusawa J, et al. Clinical impact of skeletal muscle mass change during the neoadjuvant chemotherapy period in patients with gastric cancer: an ancillary study of JCOG1002. World J. Surg. 2024;48(1):163-174. doi: 10.1002/wjs.12041 EDN: SYKJXV
  40. Yamaoka Y, Fujitani K, Tsujinaka T, et al. Skeletal muscle loss after total gastrectomy, exacerbated by adjuvant chemotherapy. Gastric Cancer. 2015;18(2):382-9. doi: 10.1007/s10120-014-0365-z EDN: WCWXOT
  41. Hasegawa Y, Ijichi H, Saito K, et al. Protein intake after the initiation of chemotherapy is an independent prognostic factor for overall survival in patients with unresectable pancreatic cancer: A prospective cohort study. Clin. Nutr. 2021;40(7):4792-4798. doi: 10.1016/j.clnu.2021.06.011 EDN: PBKWNU
  42. Obukhova OA, Kurmukov IA, Semenova AA, et al. Nutritional deficiency in patients with newly diagnosed diffuse large B-cell lymphoma. Prevalence and approaches to correction. Oncohematology. 2024;19(3):233-42. doi: 10.17650/1818-8346-2024-19-3-233-242 EDN: RUTLZP
  43. Okada G, Matsumoto Y, Habu D, et al. Relationship between preoperative nitrogen balance and energy and protein intake in patients with esophageal cancer. Nutr. Health. 2023:2601060231176878. doi: 10.1177/02601060231176878 EDN: XNTELT
  44. Obukhova OA, Shalenkov VA. Results of the rehabilitation program for cancer patients radically operated for gastric cancer in the early postoperative period. In the book: VII St. Petersburg International Oncology Forum “White Nights 2021”. Forum Abstracts. Proceedings of the VII St. Petersburg International Oncology Forum. St. Petersburg: ANSMO Oncology issues, 2021. P. 339. (In Russ.) EDN: FXDHRL
  45. Kipouros M, Vamvakari K, Kalafati IP, et al. The level of adherence to the ESPEN guidelines for energy and protein intake prospectively influences weight loss and nutritional status in patients with cancer. Nutrients. 2023;15(19):4232. doi: 10.3390/nu15194232 EDN: CVBSYA
  46. Wang CJ, Suh YS, Lee HJ, et al. Postoperative quality of life after gastrectomy in gastric cancer patients: a prospective longitudinal observation study. Ann. Surg. Treat. Res. 2022;103(1):19-31. doi: 10.4174/astr.2022.103.1.19 EDN: TBTLSM
  47. Liu P, Wang Z. Postoperative anxiety and depression in surgical gastric cancer patients: their longitudinal change, risk factors, and correlation with survival. Medicine (Baltimore). 2022;101(11):e28765. doi: 10.1097/MD.0000000000028765 EDN: AEEGWA
  48. Burstad K, Erickson A, Gholizadeh E, et al. Evaluation of dietary protein and amino acid requirements: a systematic review. Rockville (MD): Agency for Healthcare Research and Quality (US); 2024. doi: 10.23970/AHRQEPCSRPROTEINAMINO
  49. Ford KL, Arends J, Atherton PJ, et al. The importance of protein sources to support muscle anabolism in cancer: an expert group opinion. Clin. Nutr. 2022;41(1):192-201. doi: 10.1016/j.clnu.2021.11.032 EDN: FBKIVX
  50. Obukhova OA, Kurmukov IA, Egofarov NM, et al. Impact of perioperative high-protein nutritional support on postoperative outcomes in the treatment of primary lung cancer: Russian prospective multicenter comparative study (NUTRILUNC-study). Clinical nutrition and metabolism. 2023;4(3):150-164. doi: 10.17816/ clinutr625481 EDN: OEPTCY
  51. Li C, Zhang S, Liu Y, et al. Effects of nutritional interventions on cancer patients receiving neoadjuvant chemoradiotherapy: a meta-analysis of randomized controlled trials. Support Care Cancer. 2024;32(9):583. doi: 10.1007/s00520-024-08780-0 EDN: SDLWZD
  52. Rabie ASI, Alhomsi T, AbouKhatwa MM, et al. Impact of whey protein supplementation as adjuvant therapy on malnourished cancer patients: systematic review and meta-analysis. Discov. Food. 2024;4:118. doi: 10.1007/s44187-024-00171-y EDN: LAJZKE
  53. Gillis C, Loiselle SE, Fiore JF Jr, et al. Prehabilitation with whey protein supplementation on perioperative functional exercise capacity in patients undergoing colorectal resection for cancer: a pilot double-blinded randomized placebo-controlled trial. J. Acad. Nutr. Diet. 2016;116(5):802-12. doi: 10.1016/j.jand.2015.06.007
  54. Orsso CE, Caretero A, Poltronieri TS, et al. Effects of high-protein supplementation during cancer therapy: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2024;120(6):1311-1324. doi: 10.1016/j.ajcnut.2024.08.016 EDN: XPQHKY
  55. Kaur H, Pisu M, Pekmezi DW, et al. How healthy are the diets of cancer survivors? Characteristics of those most at risk and opportunities for improvement. J. Natl. Compr. Canc. Netw. 2025;23(6):e257012. doi: 10.6004/jnccn.2025.7012
  56. Fazzini B, Märkl T, Costas C, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit. Care. 2023;27(1):2. doi: 10.1186/s13054-022-04253-0 EDN: SBGKLB
  57. Strukov EYu, Klimov AG, Timofeev AB, Obukhova OA. Nutritional support quality assessment in burn patients. Clinical nutrition and metabolism. 2024;5(3):105–113. doi: 10.17816/clinutr643464 EDN: RIVQXL
  58. Rosseel Z, Cortoos PJ, Leemans L, et al. Energy and protein nutrition adequacy in general wards among intensive care unit survivors: a systematic review and meta-analysis. JPEN. 2025;49(1):18-32. doi: 10.1002/jpen.2699 EDN: QVAIHF
  59. Singer P, Blaser AR, Berger MM, et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023;42(9):1671-1689. doi: 10.1016/j.clnu.2023.07.011 EDN: TQSVZO
  60. Lin J, Chen W, Ye X, et al. Trajectories of protein intake and 28-day mortality in critically ill patients: A secondary analysis of a cluster-randomized controlled trial. Clin. Nutr. 2022;41(8):1644-1650. doi: 10.1016/j.clnu.2022.05.017 EDN: ECKFMC
  61. Bels JLM, Thiessen S, van Gassel RJJ, et al. Effect of high versus standard protein provision on functional recovery in people with critical illness (PRECISe): an investigator-initiated, double-blinded, multicentre, parallel-group, randomised controlled trial in Belgium and the Netherlands. Lancet. 2024;404(10453):659-669. doi: 10.1016/S0140-6736(24)01304-7 EDN: PCYDTW
  62. Tweel LE, Compher C, Bear DE, et al. A comparison of high and usual protein dosing in critically ill patients with obesity: a post hoc analysis of an international, pragmatic, single-blinded, randomized clinical trial. Crit. Care Med. 2024;52(4):586-595. doi: 10.1097/CCM.0000000000006117 EDN: XSUQXD
  63. Reignier J, Plantefeve G, Mira J-P, et al. Low versus standard calorie and protein feeding in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group trial (NUTRIREA-3). Lancet Respir. Med. 2023;11(7):602-612. doi: 10.1016/S2213-2600(23)00092-9 EDN: HYPEMH
  64. Van Zanten ARH, Petit L, De Waele J, et al. Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: a double-blind randomized trial. Crit. Care. 2018;22(1):156. doi: 10.1186/s13054-018-2070-5 EDN: ZZRPSP
  65. Suzuki G, Ichibayashi R, Yamamoto S, et al. Effect of high-protein nutrition in critically ill patients: A retrospective cohort study. Clin. Nutr. ESPEN. 2020:111-117. doi: 10.1016/j.clnesp.2020.05.022 EDN: YPSUJM
  66. Stoppe C, Patel JJ, Zarbock A, et al. The impact of higher protein dosing on outcomes in critically ill patients with acute kidney injury: a post hoc analysis of the EFFORT protein trial. Crit. Care. 2023;27(1):399. doi: 10.1186/s13054-023-04663-8 EDN: ZKPCOH
  67. Zhang Q, Zhou J, Zhu D, Zhou S. Evaluation of the effect of high protein supply on diaphragm atrophy in critically ill patients receiving prolonged mechanical ventilation. Nutr. Clin. Pract. 2022;37(2):402-412. doi: 10.1002/ncp.10672 EDN: NONYLC
  68. Sumritpradit P, Shantavasinkul PC, Ungpinitpong W, et al. Effect of high-protein peptide-based formula compared with isocaloric isonitrogenous polymeric formula in critically ill surgical patient. World J. Gastrointest Surg. 2024;16(6):1765-1774. doi: 10.4240/wjgs.v16.i6.1765 EDN: BRDMSM
  69. Curry AS, Chadda S, Danel A, Nguyen DL. Early introduction of a semi-elemental formula may be cost saving compared to a polymeric formula among critically ill patients requiring enteral nutrition: a cohort cost-consequence model. Clinicoecon. Outcomes Res. 2018:10:293-300. doi: 10.2147/CEOR.S155312
  70. Tedeschi-Jockers F, Reinhold S, Hollinger A, et al. A new high protein-to-energy enteral formula with a whey protein hydrolysate to achieve protein targets in critically ill patients: a prospective observational tolerability study. Eur. J. Clin. Nutr. 2022;76(3):419-427. doi: 10.1038/s41430-021-00956-9 EDN: AFWMKN
  71. Nakamura K, Nakano H, Naraba H, et al. High protein versus medium protein delivery under equal total energy delivery in critical care: A randomized controlled trial. Clin. Nutr. 2021;40(3):796-803. doi: 10.1016/j.clnu.2020.07.036 EDN: JKRTVS
  72. Verceles AC, Serra M, Davis D, et al. Combining exercise, protein supplementation and electric stimulation to mitigate muscle wasting and improve outcomes for survivors of critical illness-The ExPrES study. Heart Lung. 2023:58:229-235. doi: 10.1016/j.hrtlng.2022.11.013 EDN: AKVMNQ
  73. Badjatia N, Sanchez S, Judd G, et al. Neuromuscular electrical stimulation and high-protein supplementation after subarachnoid hemorrhage: a single-center phase 2 randomized clinical trial. NeuroCrit. Care. 2021;35(1):46-55. doi: 10.1007/s12028-020-01138-4 EDN: KBBRGB
  74. Matsushima S, Yoshida M, Yokoyama H, et al. Effects on physical performance of high protein intake for critically ill adult patients admitted to the intensive care unit: A retrospective propensity-matched analysis. Nutrition. 2021;91-92:111407. doi: 10.1016/j.nut.2021.111407 EDN: UHRHZS
  75. De Azevedo JRA, Lima HCM, Frota PHDB, et al. High-protein intake and early exercise in adult intensive care patients: a prospective, randomized controlled trial to evaluate the impact on functional outcomes. BMC Anesthesiol. 2021;21(1):283. doi: 10.1186/s12871-021-01492-6 EDN: SJBMPN
  76. Gataa IS, Abdullah Z, González Cabrera MV, et al. Impact of whey protein on lipid profiles: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2025;35(6):103858. doi: 10.1016/j.numecd.2025.103858
  77. Moriya T, Fukatsu K, Noguchi M, et al. Effects of semielemental diet containing whey peptides on Peyer’s patch lymphocyte number, immunoglobulin A levels, and intestinal morphology in mice. J. Surg Res. 2018;222:153-159. doi: 10.1016/j.jss.2017.10.015
  78. Tsutsumi R, Horikawa YT, Kume K, et al. Whey peptide-based formulas with omega-3 fatty acids are protective in lipopolysaccharide-mediated sepsis. JPEN. 2015;39(5):552-61. doi: 10.1177/0148607114520993
  79. Farahmandpour F, Haidari F, Heidari Z, et al. Whey protein intervention and inflammatory factors and oxidative stress: systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2025;83(4):609-621. doi: 10.1093/nutrit/nuae100 EDN: TQGESZ
  80. Su R, Wen W, Jin Y, et al. Dietary whey protein protects against Crohn’s disease by orchestrating cross-kingdom interaction between the gut phageome and bacteriome. Gut. 2025;74(8):1246-1260. doi: 10.1136/gutjnl-2024-334516
  81. Kishta OA, Guo Y, Mofarrahi M, et al. Pulmonary Pseudomonas aeruginosa infection induces autophagy and proteasome proteolytic pathways in skeletal muscles: effects of a pressurized whey protein-based diet in mice. Food Nutr. Res. 2017;61(1):1325309. doi: 10.1080/16546628.2017.1325309
  82. Chitti W, Insin P, Prueksaritanond N. Effect of whey protein supplementation on postoperative outcomes after gynecological cancer surgery: a randomized controlled trial world. J. Oncol. 2025;16(1):70-82. doi: 10.14740/wjon1990 EDN: YLIZTB
  83. Vella R, Pizzocaro E, Bannone E, et al. Nutritional intervention for the elderly during chemotherapy: a systematic review. Cancers (Basel). 2024;16(16):2809. doi: 10.3390/cancers16162809 EDN: JSYXJE
  84. Lin CC, Shih MH, Chen CD, Yeh SL. Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: an open-label, parallel-group study. Clin. Nutr. 2021;40(3):1323-1329. doi: 10.1016/j.clnu.2020.08.017 EDN: EIYZOF
  85. Li F, He R, Yue Z, et al. Effect of a 12-mo intervention with whey protein powder on cognitive function in older adults with mild cognitive impairment: a randomized controlled trial. Am. J. Clin. Nutr. 2025;121(2):256-264. doi: 10.1016/j.ajcnut.2024.11.019 EDN: ZOPSWH
  86. Ding G, Lu M, Li J. BMI, weight change, appetite reduction and cognitive impairment of elderly patients with diabetes. Sci. Rep. 2024;14(1):14050. doi: 10.1038/s41598-024-65005-4 EDN: KZHKUX
  87. Pinelli G, Siri C, Ranghetti A, et al. Can we add whey protein supplementation in patients with Parkinson’s disease without interfering with levodopa response? Int. J. Neurosci. 2024;134(9):973-977. doi: 10.1080/00207454.2023.2178433
  88. Yamamoto S, Allen K, Jones KR, et al. Meeting calorie and protein needs in the critical care unit: a prospective observational pilot study. Nutr. Metab. Insights. 2020.26;13:1178638820905992. doi: 10.1177/1178638820905992 EDN: KWMCCO
  89. Hashemilar M, Khalili M, Rezaeimanesh N, et al. Effect of whey protein supplementation on inflammatory and antioxidant markers, and clinical prognosis in acute ischemic ctroke (TNS Trial): a randomized, double blind, controlled, clinical trial. Adv. Pharm. Bull. 2020;10(1):135-140. doi: 10.15171/apb.2020.018 EDN: BBLOPL

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».