Soil Erosion Factors in Basin Geosystems of the Asian Part of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A quantitative assessment of soil erosion factors and intensity was carried out for the Asian Russia over the 2015–2021 period, with a spatial resolution of 100 meters. The results were subsequently generalized to small river basins. Rainfall erosion was evaluated using the USLE/RUSLE model. Melt runoff was assessed using the methodology of the Soil Erosion and Fluvial Processes Research Laboratory at Moscow State University. New approaches to estimating the erosion factor were implemented for the first time in this macroregion: the erosive potential of rainfall (R-factor) and the vegetation cover factor (C-factor). The R-factor was estimated based on developed statistical models utilizing intra-day precipitation data collected by Roshydromet meteorological stations, as well as spatial covariates derived from remote sensing data. The C-factor was calculated monthly using multi-temporal remote sensing data providing information on land cover types, vegetation density, spectral vegetation indices, and phenological metrics (products from CGLSLC, Fcover, MOD13Q1, MYD13Q1, and VNP22Q2). This is the first time that a modern estimate of the snowmelt erosion factor—the maximum (pre-spring) water reserves in snow—has been obtained in this macroregion. This assessment used the CGLS SWE satellite product, which is derived from remote sensing data. The annual soil erosion intensity across the entire macroregion averaged 3.1 t per ha per year, with a median of 0.045 t per ha per year. On the limited arable lands within the region, erosion rates averaged 1.8 t per ha per year, with a median of 0.54 t per ha per year.

About the authors

O. P Yermolaev

Kazan Federal University

Kazan, Russia

S. S Mukharamova

Kazan Federal University

Kazan, Russia

A. R Polyakova

Kazan Federal University

Email: zakieva.alika@mail.ru
Kazan, Russia

A. A Saveliev

Kazan Federal University

Kazan, Russia

References

  1. Баженова О.И., Любцова Е.М., Рыжов Ю.В., Макаров С.А. Пространственно-временной анализ динамики эрозионных процессов на юге Восточной Сибири. Новосибирск: Наука, 1997. 208 с.
  2. Bazhenova O.I., Lyubtsova E.M., Ryzhov Yu.V., Makarov S.A. Prostranstvenno-vremennoi analiz dinamiki erozionnykh protsessov na yuge Vostochnoi Sibiri [Spatio-Temporal Analysis of the Dynamics of Erosion Processes in the South of Eastern Siberia]. Novosibirsk: Nauka Publ., 1997. 202 p.
  3. Баженова О.И. Современная денудация предгорных степных равнин Сибири / науч. ред. В.П. Чичагов. Новосибирск: СО РАН, Академическое изд-во “Гео”, 2018. 259 с. https://doi.org/10.21782/B978-5-6041445-2-7
  4. Bazhenova O.I. Sovremennaya denudatsiya predgornykh stepnykh ravnin Sibiri [Modern Denudation of the Foothill Steppe Plains of Siberia]. Chichagov V.P., Ed. Novosibirsk: Akadem. Izd-vo “Geo”, 2018. 259 p. https://doi.org/10.21782/B978-5-6041445-2-7
  5. Баженова О.И., Тюменцева Е.М., Черкашина А.А., Голубцов В.А., Тухта С.А. Почвенные ресурсы юга Сибири // География и природные ресурсы. 2023. № 4. С. 37–45.
  6. Bazhenova O.I., Tyumetseva E.M., Cherkashina A.A., Golubtsov V.A., Tuhta S.A. Soil resources of southern Siberia. Geogr. Nat. Resour., 2023, vol. 44, pp. 325– 332. https://doi.org/10.1134/S1875372823040030
  7. Географический атлас мира / отв. ред. В.И. Юрченко. М.: ГУГК, 1982. 252 с.
  8. Geograficheskii atlas mira [Geographical Atlas of the World]. Yurchenko V.I., Ed. Moscow: GUGK Publ., 1982. 252 p.
  9. Ермолаев О.П., Мухарамова С.С., Мальцев К.А., Поляковa А.Р., Савельев А.А. Факторы эрозии почв в макрорегионе Европейской части России: моделирование, геоинформационное картографирование и пространственный анализ // Почвоведение. 2025. № 2. С. 287–300.
  10. Yermolaev O.P., Mukharamova S.S., Maltsev K.A., Polyakova A.R., Saveliev A.A. Soil Erosion Factors in the European Russia Macroregion: Modeling, Geoinformation Mapping, and Spatial Analysis. Eurasian Soil Sci., 2025, vol. 58, art. 30. https://doi.org/10.1134/S1064229324603561
  11. Ларионов Г.А. Эрозия и дефляция почв: основные закономерности и количественные оценки. М.: Изд-во МГУ, 1993. 198 с.
  12. Larionov G.A. Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki [Soil Erosion and Deflation: Basic Patterns and Quantitative Assessments]. Moscow: Izd-vo MGU, 1993. 198 p.
  13. Лисецкий Ф.Н., Половинко В.В. Эрозионные катены на земляных фортификационных сооружений // Геоморфология. 2012. № 2. С. 65–78.
  14. Lisetskii F.N., Polovinko V.V. Erosion catenas on earthen fortifications. Geomorfol., 2012, vol. 2, pp. 65–77. (In Russ.). https://doi.org/10.15356/0435-4281-2012-2-65-77
  15. Лисецкий Ф.Н., Светличный А.А., Черный С.Г. Современные проблемы эрозиоведения. Белгород: Константа, 2012. 456 с.
  16. Lisetskii F.N., Svetlitchnyi A.A., Chornyi S.G. Sovremennye problemy eroziovedeniya [Recent Developments in Erosion Science]. Belgorod: Konstanta Publ., 2012. 456 p. https://doi.org/10.13140/2.1.1029.9682
  17. Литвин Л.Ф. География эрозии почв сельскохозяйственных земель России. Дис. … д-ра геогр. наук. М.: Академкнига, 2002. 256 с.
  18. Litvin L.F. Geografiya erozii pochv sel’skokhozyaistvennykh zemel’ Rossii [Geography of Soil Erosion in Agricultural Lands In Russia]. Moscow: Akademkniga Publ., 2002. 255 p.
  19. Литвин Л.Ф., Кирюхина З.П., Краснов С.Ф., Добровольская Н.Г. География динамики земледельческой эрозии почв на Европейской территории России // Почвоведение. 2017. № 11. С. 1390–1400. https://doi.org/10.7868/S0032180X17110089
  20. Litvin L.F., Kiryukhina Z.P., Krasnov S.F., Dobrovol’skaya N.G. Dynamics of agricultural soil erosion in European Russia. Eurasian Soil Sci., 2017, vol. 11, pp. 1343–1352. https://doi.org/10.1134/S1064229317110084
  21. Литвин Л.Ф., Кирюхина З.П., Краснов С.Ф., Добровольская Н.Г., Горобец А.В. География динамики земледельческой эрозии почв Сибири и дальнего востока // Почвоведение. 2021. № 1. С. 136–148. https://doi.org/10.31857/S0032180X2101007X
  22. Litvin L.F., Kiryukhina Z.P., Krasnov S.F., Dobrovol’skaya N.G., Gorobets A.V. Dynamics of agricultural soil erosion in Siberia and Far East. Eurasian Soil Sci., 2021, vol. 54, pp. 150–160. https://doi.org/10.1134/S1064229321010075
  23. Национальный атлас России. Т. 2. Природа. Экология / гл. ред. В.М. Котляков, отв. ред. Г.Ф. Кравченко. М.: Роскартография, 2007. 495 с.
  24. Natsional’nyi atlas Rossii. Tom. 2. Priroda. Ekologiya [National Atlas of Russia. Vol. 2. Nature. Ecology]. Kotlyakov V.M., Kravchenko G.F., Eds. Moscow: Roskartografiya Publ., 2007. 495 p.
  25. Танасиенко А.А., Путилин А.Ф., Артамонова В.С. Экологические аспекты эрозионных процессов // Экология. Серия аналит. обзоров мировой лит. 1999. Вып. 55. С. 1–91.
  26. Tanasienko A.A., Putilin A.F., Artamonova V.S. Ecological aspects of erosion processes. Ekol., Ser. Analit. Obzor. Mir. Lit., 1999, no. 55, pp. 1–91. (In Russ.).
  27. Хмелев В.А., Танасиенко А.А. Земельные ресурсы Новосибирской области и пути их рационального использования. Новосибирск: Изд-во СО РАН, 2009. 349 с.
  28. Khmelev V.A., Tanasienko A.A. Zemel’nye resursy Novosibirskoi oblasti i puti ikh ratsional’nogo ispol’zovaniya [Land Resources of the Novosibirsk Region and Ways of Their Rational Use]. Novosibirsk: Izd-vo SO RAN, 2009. 349 p.
  29. Цыпленков А.С., Чалов С.Р., Шинкарева Г.Л. Водная эрозия почв в бассейнах крупнейших рек Сибири // Изв. РГО. 2022. Т. 154. № 5–6. С. 86–111.
  30. Tsyplenkov A.S., Chalov S.R, Shinkareva G.L. Water erosion of soils in the basins of the largest rivers of Siberia. Izv. RGO, 2022, vol. 154, no. 5–6, pp. 86–111. (In Russ.).
  31. Чалов Р.С., Сидорчук А.Ю., Голосов В.Н. Эрозионно-русловые системы. М.: ИНФРА-М, 2017. 698 с.
  32. Чалов С.Р. Речные наносы в эрозионно-русловых системах. Дис. … д-ра геогр. наук. М.: МГУ, 2021. 358 с.
  33. Chalov S.R. River sediments in erosion-channel systems. Dr. Sci. (Geogr.) Dissertation. Moscow: Moscow State Univ., 2021. 358 p.
  34. Bazhenova O.I., Cherkashina A.A., Tyumentseva E.M., Golubtsov V.A., Sorokovikova L.M. Ecological consequences of soil degradation and water pollution in the Asian part of Russia (Siberia) / Global Degradation of Soil and Water Resources. Beijing: Springer, 2022а. P. 594–616. https://doi.org/10.1007/978-981-16-7916-2
  35. Bazhenova O.I., Tyumentseva E.M., Golubtsov V.A. Soil erosion on the agricultural lands of the Asian part of Russia (Siberia): Processes, intensity and areal distribution / Global Degradation of Soil and Water Resources. Beijing: Springer, 2022б. P. 566–593. https://doi.org/10.1007/978-981-16-7916-2
  36. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K.V., Montanarella L., Panagos P. An assessment of the global impact of 21st century land use change on soil erosion // Nat. Commun. 2017. Vol. 8. Art. 2013. https://doi.org/10.1038/s41467-017-02142-7
  37. Borrelli P., Alewell C., Alvarez P., et al. Soil erosion modelling: A global review and statistical analysis // Sci. Total Environ. 2021. Vol. 780. Art. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  38. Chizhikova N., Yermolaev O., Golosov V. Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020 // Geosciences (Switzerland). 2022. Vol. 12. № 7. 279 p. https://doi.org/10.3390/geosciences12070279
  39. Das S., Jain M.K., Gupta V., et al. GloRESatE: A dataset for global rainfall erosivity derived from multi-source data // Sci. Data. 2024. Vol. 11. Art. 926. https://doi.org/10.1038/s41597-024-03756-5
  40. Desmet P.J.J., Govers G.A. GIS-procedure for automatically calculating the USLE LS-factor on topographically complex landscape units // JSWC. 1996. Vol. 51. № 5. P. 427–433.
  41. Golosov V.N., Collins A.L., Dobrovolskaya N.G., Bazhenova O.I., Ryzhov Yu.V., Sidorchuk A.Y. Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture // Geoderma. 2021. Vol. 381. Art. 114678. https://doi.org/10.1016/j.geoderma.2020.114678
  42. Hastie T., Tibshirani R. Generalized Additive Models // Statist. Sci. 1986. Vol. 1. № 3. P. 297–310. https://doi.org/10.1214/ss/1177013604
  43. Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. 1997. Vol. 9. № 8. P. 1735–1780.
  44. Ivanov M.A., Mukharamova S.S., Yermolaev O.P. Mapping croplands with a long history of crop cultivation using time series of Modis vegetation indices // Uchenye Zapiski Kazanskogo Univ. Ser. Estestvennye Nauki. 2021. Vol. 162. № 2. P. 302–313. https://doi.org/10.26907/2542-064X.2020.2.302-313
  45. Lee S., Wolberg G., Shin S.Y. Scattered data interpolation with multilevel B-splines // IEEE Trans. Visual. Comput. Graphics. 1997. Vol. 3. № 3. P. 228–244. https://doi.org/10.1109/2945.620490
  46. Matthews F., Borrelli P., Panagos P., Bezak N. Dynamic assessment of rainfall erosivity in Europe: evaluation of EURADCLIM ground-radar data // Hydrol. Earth Syst. Sci. Discuss. 2025. (In press). https://doi.org/10.5194/hess-2024-402
  47. Moore I.D., Nieber J.L. Landscape Assessment of Soil Erosion and Nonpoint Source Pollution // JMAS. 1989. Vol. 55. № 1. P. 18–25.
  48. Mukharamova S., Saveliev A., Ivanov M., Gafurov A., Yermolaev O. Estimating the Soil Erosion Cover-Management Factor at the European Part of Russia // IJGI. 2021. Vol. 10. № Art. 645. https://doi.org/10.3390/ijgi10100645
  49. Panagos P., Ballabio C., Borrelli P., et al. Rainfall erosivity in Europe // Sci. Total Environ. 2015. Vol. 511. P. 801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008
  50. Panagos P., Borrellia P., Meusburgerb K., Alewellb Ch., Lugatoa E., Montanarella L. Estimating the soil erosion cover-management factor at the European scale // Land Use Policy. 2015. Vol. 48. P. 38–50. http://dx.doi.org/10.1016/j.landusepol.2015.05.021
  51. Panagos P., Borrelli P., Spinoni J., et al. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments // Water. 2016. Vol. 8. № 4. Art. 119. https://doi.org/10.3390/w8040119
  52. Panagos P., Hengl T., Wheeler I., et al. Global rainfall erosivity database (GloREDa) and monthly R-factor data at 1 km spatial resolution // Data in Brief. 2023. Vol. 50. Art. 109482. https://doi.org/10.1016/j.dib.2023.109482
  53. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Department of Agriculture, 1997. 403 p.
  54. Renard K.G., Yoder D.C., Lightle D.T., Dabney S.M. Universal Soil Loss Equation and Revised Universal Soil Loss Equation. In: Handbook of Erosion Modelling / R.P.C. Morgan, M.A. Nearing (Eds.). Wiley, 2011. P. 137–167. https://doi.org/10.1002/9781444328455.ch8
  55. van Rossum G., Drake F.L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009. 242 p.
  56. Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses: A guide to conservation planning. Washington: US Gov. Print. Office, 1978. 537 p.
  57. Yamazaki D., Ikeshima D., Tawatari R., Yamaguchi T., O’Loughlin F., Neal J.C., Sampson C.C., et al. A high‐accuracy map of global terrain elevations // Geophys. Res. Let. 2017. Vol. 44. № 11. P. 5844–5853. https://doi.org/10.1002/2017GL072874

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).