Interpretable Machine Learning Model for Spring Wheat Yield Forecasting

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The research was conducted to construct an interpretable machine learning model (explainable artificial intelligence) for spring wheat yield forecasting. The data of a long-term field experiment (2001–2024) carried out in the forest-steppe of the Altai Priobye region were used. The scheme of the experiment provided for the analysis of predecessors’ role, methods of basic cultivation of leached chernozem, as well as levels of application of mineral fertilizers and chemical plant protection products in the formation of spring soft wheat yield. Extreme gradient boosting (XGBoost) was used to construct the model, and SHapley Additive exPlanations (SHAP) were used for its interpretation, which allowed estimating the contribution of each feature. The constructed XGBoost model demonstrated high prediction accuracy (R² = 0.95, MAE = 0.13 t/ha, RMSE = 0.17 t/ha), and integration with SHAP-analysis revealed the most significant features (5…6 out of 18) determining yield in the forest-steppe of the Altai Priobie. The greatest contribution to high predicted yield in the experiment was made by sufficient moisture for the crop year (596.5 mm; 1.19 t/ha), the use of fallow as a predecessor (0.58 t/ha) and the use of nitrogen-phosphorus fertilizers (0.21 t/ha). Low predicted yields are due to lack of moisture during the crop year (317 mm; –0.77 t/ha) and from May to October (246 mm; –0.24 t/ha), as well as high values of the sum of positive temperatures (2527.5 °C; –0.13 t/ha), low precipitation during wheat growing season (175 mm; –0.10 t/ha) and lack of application of plant protection products (–0.10 t/ha). The model expands the possibilities of applying machine learning, allowing us to obtain more reliable and informative results.

About the authors

V. K. Kalichkin

Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences

Email: vk.kalichkin@gmail.com
630501, Novosibirskaya obl., Novosibirskii r-n, pos. Krasnoobsk

V. I. Usenko

Federal Altai Scientific Center of Agrobiotechnologies

Email: usenko.001@mail.ru
656910, Barnaul, pos. Nauchnyi gorodok, 35

A. A. Garkusha

Federal Altai Scientific Center of Agrobiotechnologies

656910, Barnaul, pos. Nauchnyi gorodok, 35

D. S. Fedorov

Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences

630501, Novosibirskaya obl., Novosibirskii r-n, pos. Krasnoobsk

K. Y. Maksimovich

Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences

630501, Novosibirskaya obl., Novosibirskii r-n, pos. Krasnoobsk

References

  1. Влияние длительного применения органических и минеральных удобрений на урожайность и качество яровой пшеницы / И. В. Понкратенкова, А. Ю. Гаврилова, Г. Е. Мерзлая и др. // Аграрный вестник Урала. 2019. № 7(186). С. 39–44.
  2. Эффективность использования азота в длительных и краткосрочных опытах агрохимслужбы и Геосети Российской Федерации / В. А. Романенков, М. В. Беличенко, О. В. Рухович и др. // Агрохимия. 2020. № 12. С. 28–37. doi: 10.31857/S0002188120120091.
  3. Зерновая продуктивность свекловичных севооборотов в зависимости от степени биологизации в условиях Центрального Черноземья / А. С. Акименко, В. И. Свиридов, Т. А. Дудкина и др. // Земледелие. 2022. № 3. С. 12–18.
  4. Сычев В. Г., Беличенко М. В., Романенков В. А. Результаты мониторинга урожайности сельскохозяйственных культур, продуктивности севооборотов и изменения свойств почв в длительных опытах Географической сети // Плодородие. 2017. № 6(99). С. 2–5.
  5. Рублюк М. В., Иванов Д. А. Изменение свойств дерново-подзолистой почвы в зависимости от условий осушаемого агроландшафта при возделывании овса в фитоценозе с травами // Земледелие. 2023. № 3. С. 8–12.
  6. Подлесных И. В., Тарасов С. А., Рубаник Ю. О. Динамика органического углерода почвы в пахотном слое и продуктивность культур почвозащитного агропесопандшафтного комплекса в ЦЧР // Земледелие. 2023. № 5. С. 37–41.
  7. Bali N., Singla A. Emerging Trends in Machine Learning to Predict Crop Yield and Study Its Influential Factors: A Survey // Archives of Computational Methods in Engineering. 2022. Vol. 29. Р. 95–112. doi: 10.1007/s11831-021-09569-8.
  8. Иванов Д. А., Рублюк М. В., Анциферова О. Н. Прогнозирование размещения посевов льна на основе данных мониторинга и ГИС-технологий // Земледелие. 2023. № 7. С. 3–6.
  9. Страшная А. И., Береза О. В., Кланг П. С. Прогнозирование урожайности зерновых культур на основе комплексирования наземных и спутниковых данных в субъектах Южного федерального округа // Гидрометеорологические исследования и прогнозы. 2021. № 2. С. 111–137. doi: 10.37162/2618-9631-2021-2-111-137.
  10. Математические модели и программный комплекс по прогнозированию урожайности сельскохозяйственных культур / Д. А. Благов, С. В. Митрофанов, В. С. Никитин и др. // Агротехника и энергообеспечение. 2019. № 3(24). С. 182–188.
  11. Прогнозирование урожайности яровой пшеницы по агрохимическим свойствам в условиях Тетюшского района Республики Татарстан / А. А. Лукманов, Ю. П. Переведенцев, А. Б. Мустафина и др. // Вестник Казанского государственного аграрного университета. 2023. Т. 18. № 3(71). С. 39–45.
  12. Panigrahi B., Kathala K. C. R., Sujatha M. A machine learning-based comparative approach to predict the crop yield using supervised learning with regression models // Procedia Computer Science. 2023. Vol. 218. P. 2684–2693. doi: 10.1016/j.procs.2023.01.241.
  13. Boppudi S. Deep ensemble model with hybrid intelligence technique for crop yield prediction // Multimedia Tools and Applications. 2024. Vol. 83. No. 31. Р. 75709–75729. doi: 10.1007/s11042-024-18354-1.
  14. Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges / K. Meghraoui, I. Sebari, J. Pilz, et al. // Technologies. 2024. Vol. 12. No. 4. P. 43. URL: https://www.mdpi.com/2227-7080/12/4/43 (дата обращения: 03.03.2025). doi: 10.3390/technologies12040043.
  15. Shingade S. D., Mudhalwadkar R. P. Analysis of crop prediction models using data analytics and ML techniques: a review // Multimedia Tools and Applications. 2024. Vol. 83. No. 13. P. 37813–37838. doi: 10.1007/s11042-023-17038-6.
  16. Ramesh V., Kumaresan P. Stacked Ensemble Model for Accurate Crop Yield Prediction Using Machine Learning Techniques // Environmental Research Communications. 2025. Vol. 7. No. 3. URL: https://iopscience.iop.org/article/10.1088/2515-7620/adb9c0/pdf. (дата обращения: 03.03.2025). doi: 10.1088/2515-7620/adb9c0.
  17. Ryo M. Explainable artificial intelligence and interpretable machine learning for agricultural data analysis // Artificial Intelligence in Agriculture. 2022. Vol. 6. Р. 257–265. doi: 10.1016/j.aiia.2022.11.003.
  18. Cartolano A., Cuzzocrea A., Pilato G. Analyzing and assessing explainable AI models for smart agriculture environments // Multimedia Tools and Applications. 2024. Vol. 83. Р. 37225–37246. doi: 10.1007/s11042-023-17978-z.
  19. Bifarin O. O. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification // Plos one. 2023. Vol. 18. No. 5. Р. e0284315. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284315 (дата обращения: 03.03.2025). doi: 10.1371/journal.pone.0284315.
  20. Interpretable Machine Learning Techniques for an Advanced Crop Recommendation Model / M. Bouni, B. Hssina, K. Douzi, et al. // Journal of Electrical and Computer Engineering. 2024. Vol. 2024. No. 1. Р. 7405217. URL: https://onlinelibrary.wiley.com/doi/full/10.1155/2024/7405217 (дата обращения: 03.03.2025). doi: 10.1155/2024/7405217.
  21. Степанова А. И., Хальясмаа А. И., Матренин П. В. Краткосрочное прогнозирование нагрузки предприятия нефтегазовой промышленности с использованием технологических факторов и аддитивного объяснения Шепли // Известия высших учебных заведений. Проблемы энергетики. 2024. Т. 26. № 4. С. 75–88. doi: 10.30724/1998-9903-2024-26-4-75-88.
  22. Горшенин А. Ю., Грицай А. С., Денисова Л. А. Применение машинного обучения деревьев решений для краткосрочного прогнозирования электропотребления // Известия Тульского государственного университета. Технические науки. 2023. № 11. С. 226–231. doi: 10.24412/2071-6168-2023-11-226-227.
  23. Бадыкова И. Р., Биктимирова К. Р. Выявление факторов воздействия на сектор связи и телекоммуникаций с применением ансамблевых методов машинного обучения // π-Economy. 2024. Т. 17. № 6. С. 61–78. doi: 10.18721/JE.17604.
  24. Интерпретируемые модели машинного обучения как инструмент объяснения прогнозных оценок в кардиологии / К. И. Шахгельдян, В. Ю. Рублев, Н. С. Куксин и др. // Вестник современной клинической медицины. 2025. Т. 18. № 1. С. 98–106. doi: 10.20969/VSKM.2025.18(1).98-106.
  25. Friedman J. H. Greedy function approximation: a gradient boosting machine // Annals of statistics. 2001. Vol. 29. No. 5. P. 1189–1232. URL: https://www.jstor.org/stable/2699986 (дата обращения: 03.03.2025).
  26. From Local Explanations to Global Understanding With Explainable AI for Trees / S. M. Lundberg, G. Erion, H. Chen, et al. // Nature Machine Intelligence. 2020. Vol. 2. No. 1. Р. 56–67. doi: 10.1038/s42256-019-0138-9.
  27. Программа анализа и прогнозирования урожайности сельскохозяйственных культур (CYAF – Crop Yield Analysis & Forecast) / Д. С. Федоров, О. К. Альсова, В. К. Каличкин и др. // Свидетельство о государственной регистрации программы для ЭВМ № 2021777894, 08.11.2021.
  28. Разработка программы анализа и прогнозирования урожайности сельскохозяйственных культур / В. К. Каличкин, Д. С. Федоров, О. К. Альсова и др. // Достижения науки и техники АПК. 2022. Т. 36. № 1. С. 51–56. doi: 10.53859/02352451_2022_36_1_51.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».